Álgebra lineal

El material que se ofrece corresponde a un curso básico de álgebra lineal sobre cuerpos y abarca dos grandes ramas del álgebra lineal: una parte algebraica que va desde el concepto de espacio vectorial hasta el estudio de la forma canónica de Jordan. Este material se aborda en los primeros seis capí...

Full description

Autores:
Lezama Serrano, José Oswaldo
Tipo de recurso:
Interactive resource
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84729
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84729
https://repositorio.una.edu.co
Palabra clave:
510 - Matemáticas
Algebras líneales
Determinantes
Espacios vectoriales
Estructuras algebraicas
Transformaciones lineales
Matrices
Espacios duales
Polinomios
Formas cónicas
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8eb627049b0b31594d65a37a7eb3ecd4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84729
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Álgebra lineal
title Álgebra lineal
spellingShingle Álgebra lineal
510 - Matemáticas
Algebras líneales
Determinantes
Espacios vectoriales
Estructuras algebraicas
Transformaciones lineales
Matrices
Espacios duales
Polinomios
Formas cónicas
title_short Álgebra lineal
title_full Álgebra lineal
title_fullStr Álgebra lineal
title_full_unstemmed Álgebra lineal
title_sort Álgebra lineal
dc.creator.fl_str_mv Lezama Serrano, José Oswaldo
dc.contributor.author.none.fl_str_mv Lezama Serrano, José Oswaldo
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Algebras líneales
Determinantes
Espacios vectoriales
Estructuras algebraicas
Transformaciones lineales
Matrices
Espacios duales
Polinomios
Formas cónicas
dc.subject.lemb.spa.fl_str_mv Algebras líneales
Determinantes
dc.subject.proposal.spa.fl_str_mv Espacios vectoriales
Estructuras algebraicas
Transformaciones lineales
Matrices
Espacios duales
Polinomios
Formas cónicas
description El material que se ofrece corresponde a un curso básico de álgebra lineal sobre cuerpos y abarca dos grandes ramas del álgebra lineal: una parte algebraica que va desde el concepto de espacio vectorial hasta el estudio de la forma canónica de Jordan. Este material se aborda en los primeros seis capítulos. La segunda parte del curso tiene que ver con los aspectos geométricos del álgebra lineal y va desde los espacios euclidianos hasta el estudio de las formas cuadráticas. En la primera parte se destacan tres teoremas que son fundamentales para un estudio detallado de las formas canónicas clásicas: una versión completa del teorema de Hamilton-Cayley, el Teorema de Descomposición Irreducible y el Teorema de Descomposición Cíclica. Como aplicación de estos teoremas a las formas canónicas se considera el problema de clasificación de transformaciones lineales y matrices por medio de similaridad y equivalencia. En la segunda parte se realiza el estudio de las diversas clases de operadores sobre espacios euclidianos y unitarios, y se consideran las formas bilineales sobre cuerpos arbitrarios. (Tomado de la fuente)
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-09-25T19:08:26Z
dc.date.available.none.fl_str_mv 2023-09-25T19:08:26Z
dc.type.spa.fl_str_mv Objeto de aprendizaje
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_e9a0
dc.type.content.spa.fl_str_mv InteractiveResource
format http://purl.org/coar/resource_type/c_e9a0
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84729
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.una.edu.co
url https://repositorio.unal.edu.co/handle/unal/84729
https://repositorio.una.edu.co
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv K. Spindler, Abstract Algebra with Applications, Vol. I, II, Marcel Dekker, New York, 1994.
N. Jacobson, Basic Algebra, Freeman, San Francisco, 1974
B. Fraleight & R. Beauredard, Linear Algebra, Addison-Wesley, 1994
I. Herstein, Algebra Lineal y Teoría de Matrices, Grupo Editorial Iberoamericana, 1989
K. Hoffman & R. Kunze, Linear Algebra, Prentice Hall, 1971
S. Lang, Algebra Lineal, 2a. edición, Fondo Educativo Interamericano, Bogotá, 1975
S. Roman, Advanced Linear Algebra, Springer-Verlag, New York, 1992
S. Larry, Linear Algebra, Springer-Verlag, New York, 1984
A. Maltsev, Fundamentos de Algebra Lineal, Mir, Moscú,1978
M.Hirsh & S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, London, 1974
T.S. Blyth and E.F. Robertson, Basic Linear Algebra, Springer, 2002.
T.S. Blyth and E.F. Robertson, Further Linear Algebra, Springer, 2002.
D. Serre, Matrices: theory and applications, Springer, 2002.
H.E. Rose, Linear Algebra: a Pure Mathematical Approach, Springer, 2002.
S. Axler, Linear Algebra Done Right, Springer, 2002.
M. Adams and T. Shifrin, Linear Algebra (A Geometric Approach), Freeman, 2002.
E. Herman, J. King, J., King, R. Moore and M. Pepe, Linear Algebra: Modules for Interactive Learning Using Maple®, Addison-Wesley, 2001.
D. Lay, Linear Algebra and Its Applications, 3/E, Addison-Wesley, 2003.
Ch. G. Cullen, Linear Algebra with Applications, 2/E, Addison-Wesley, 2003.
G.L. Peterson, Linear Algebra and Differential Equations, Addison-Wesley, 2003.
S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, 4/E, Prentice Hall, 2003.
B. Noble and J.W. Daniel, Applied Linear Algebra, 3/E, Prentice Hall, 1988.
Java Script Linear Algebra
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 Recurso en línea
dc.format.mimetype.spa.fl_str_mv text/html
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.source.spa.fl_str_mv http://alejandria-d.unal.edu.co:8888/xmlui/handle/123456789/29
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84729/4/Lezama%20Jose%20oswaldo_Algebra%20lineal.pdf
https://repositorio.unal.edu.co/bitstream/unal/84729/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84729/5/index.html
bitstream.checksum.fl_str_mv 43c80cc11101f01ca3db20f43d34c8c6
eb34b1cf90b7e1103fc9dfd26be24b4a
7501dd629de1de5aa3035efd4839f151
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090247214989312
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lezama Serrano, José Oswaldo32c0e4a3449bb6798f49fdc910b5105a6002023-09-25T19:08:26Z2023-09-25T19:08:26Z2020https://repositorio.unal.edu.co/handle/unal/84729Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.una.edu.coEl material que se ofrece corresponde a un curso básico de álgebra lineal sobre cuerpos y abarca dos grandes ramas del álgebra lineal: una parte algebraica que va desde el concepto de espacio vectorial hasta el estudio de la forma canónica de Jordan. Este material se aborda en los primeros seis capítulos. La segunda parte del curso tiene que ver con los aspectos geométricos del álgebra lineal y va desde los espacios euclidianos hasta el estudio de las formas cuadráticas. En la primera parte se destacan tres teoremas que son fundamentales para un estudio detallado de las formas canónicas clásicas: una versión completa del teorema de Hamilton-Cayley, el Teorema de Descomposición Irreducible y el Teorema de Descomposición Cíclica. Como aplicación de estos teoremas a las formas canónicas se considera el problema de clasificación de transformaciones lineales y matrices por medio de similaridad y equivalencia. En la segunda parte se realiza el estudio de las diversas clases de operadores sobre espacios euclidianos y unitarios, y se consideran las formas bilineales sobre cuerpos arbitrarios. (Tomado de la fuente)1 Recurso en líneatext/htmlspaUniversidad Nacional de Colombiahttp://alejandria-d.unal.edu.co:8888/xmlui/handle/123456789/29510 - MatemáticasAlgebras línealesDeterminantesEspacios vectorialesEstructuras algebraicasTransformaciones linealesMatricesEspacios dualesPolinomiosFormas cónicasÁlgebra linealObjeto de aprendizajehttp://purl.org/coar/resource_type/c_e9a0InteractiveResourceK. Spindler, Abstract Algebra with Applications, Vol. I, II, Marcel Dekker, New York, 1994.N. Jacobson, Basic Algebra, Freeman, San Francisco, 1974B. Fraleight & R. Beauredard, Linear Algebra, Addison-Wesley, 1994I. Herstein, Algebra Lineal y Teoría de Matrices, Grupo Editorial Iberoamericana, 1989K. Hoffman & R. Kunze, Linear Algebra, Prentice Hall, 1971S. Lang, Algebra Lineal, 2a. edición, Fondo Educativo Interamericano, Bogotá, 1975S. Roman, Advanced Linear Algebra, Springer-Verlag, New York, 1992S. Larry, Linear Algebra, Springer-Verlag, New York, 1984A. Maltsev, Fundamentos de Algebra Lineal, Mir, Moscú,1978M.Hirsh & S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, London, 1974T.S. Blyth and E.F. Robertson, Basic Linear Algebra, Springer, 2002.T.S. Blyth and E.F. Robertson, Further Linear Algebra, Springer, 2002.D. Serre, Matrices: theory and applications, Springer, 2002.H.E. Rose, Linear Algebra: a Pure Mathematical Approach, Springer, 2002.S. Axler, Linear Algebra Done Right, Springer, 2002.M. Adams and T. Shifrin, Linear Algebra (A Geometric Approach), Freeman, 2002.E. Herman, J. King, J., King, R. Moore and M. Pepe, Linear Algebra: Modules for Interactive Learning Using Maple®, Addison-Wesley, 2001.D. Lay, Linear Algebra and Its Applications, 3/E, Addison-Wesley, 2003.Ch. G. Cullen, Linear Algebra with Applications, 2/E, Addison-Wesley, 2003.G.L. Peterson, Linear Algebra and Differential Equations, Addison-Wesley, 2003.S.H. Friedberg, A.J. Insel and L.E. Spence, Linear Algebra, 4/E, Prentice Hall, 2003.B. Noble and J.W. Daniel, Applied Linear Algebra, 3/E, Prentice Hall, 1988.Java Script Linear AlgebraPúblico generalCC-LICENSELezama Jose oswaldo_Algebra lineal.pdfLezama Jose oswaldo_Algebra lineal.pdfapplication/pdf1914881https://repositorio.unal.edu.co/bitstream/unal/84729/4/Lezama%20Jose%20oswaldo_Algebra%20lineal.pdf43c80cc11101f01ca3db20f43d34c8c6MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84729/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALindex.htmlindex.htmltext/html215https://repositorio.unal.edu.co/bitstream/unal/84729/5/index.html7501dd629de1de5aa3035efd4839f151MD55unal/84729oai:repositorio.unal.edu.co:unal/847292024-05-14 16:57:58.671Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=