Fisiología hemodinámica en análogos espaciales. Revisión narrativa
ilustraciones, diagramas, tablas
- Autores:
-
Campos Cuervo, Diego Hernán
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85939
- Palabra clave:
- 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
610 - Medicina y salud::612 - Fisiología humana
Fenómenos Fisiológicos Sanguíneos
Revisión
Medicina Aeroespacial
Blood Physiological Phenomena
Review
Aerospace Medicine
hemodinamia
Análogos espaciales
Vuelo espacial
Microgravedad
Space analogs
Weightlessness
Space flight
Hemodynamic
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8eb06445fe6fa328b4b8033c6126d355 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85939 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
dc.title.translated.eng.fl_str_mv |
Hemodynamic physiology in space analogs. Narrative review |
title |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
spellingShingle |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales 610 - Medicina y salud::612 - Fisiología humana Fenómenos Fisiológicos Sanguíneos Revisión Medicina Aeroespacial Blood Physiological Phenomena Review Aerospace Medicine hemodinamia Análogos espaciales Vuelo espacial Microgravedad Space analogs Weightlessness Space flight Hemodynamic |
title_short |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
title_full |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
title_fullStr |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
title_full_unstemmed |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
title_sort |
Fisiología hemodinámica en análogos espaciales. Revisión narrativa |
dc.creator.fl_str_mv |
Campos Cuervo, Diego Hernán |
dc.contributor.advisor.spa.fl_str_mv |
Corzo Zamora, María Alejandra |
dc.contributor.author.spa.fl_str_mv |
Campos Cuervo, Diego Hernán |
dc.subject.ddc.spa.fl_str_mv |
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales 610 - Medicina y salud::612 - Fisiología humana |
topic |
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales 610 - Medicina y salud::612 - Fisiología humana Fenómenos Fisiológicos Sanguíneos Revisión Medicina Aeroespacial Blood Physiological Phenomena Review Aerospace Medicine hemodinamia Análogos espaciales Vuelo espacial Microgravedad Space analogs Weightlessness Space flight Hemodynamic |
dc.subject.decs.spa.fl_str_mv |
Fenómenos Fisiológicos Sanguíneos Revisión Medicina Aeroespacial |
dc.subject.decs.eng.fl_str_mv |
Blood Physiological Phenomena Review Aerospace Medicine |
dc.subject.proposal.spa.fl_str_mv |
hemodinamia Análogos espaciales Vuelo espacial Microgravedad |
dc.subject.proposal.eng.fl_str_mv |
Space analogs Weightlessness Space flight Hemodynamic |
description |
ilustraciones, diagramas, tablas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11-15 |
dc.date.accessioned.none.fl_str_mv |
2024-04-17T18:54:19Z |
dc.date.available.none.fl_str_mv |
2024-04-17T18:54:19Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85939 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85939 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acharya, A., Brungs, S., Lichterfeld, Y., Hescheler, J., Hemmersbach, R., Boeuf, H., & Sachinidis, A. (2019). Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes. Cells, 8(4), 352. https://doi.org/10.3390/cells8040352 Álvarez Calderón, C. E. Á., Corzo Zamora, M. A., Jaimes Parada, G. R., & Paredes Muñoz, R. J. (2019). Capítulo VI. La nueva economía del siglo XXI: El sector privado en el espacio. En C. E. Á. Álvarez Calderón & C. G. Corredor Gutiérrez (Eds.), El espacio exterior: Una oportunidad infinita para Colombia (1.a ed., Vol. 1, pp. 331-368). Amirova, L., Navasiolava, N., Rukavishvikov, I., Gauquelin-Koch, G., Gharib, C., Kozlovskaya, I., Custaud, M.-A., & Tomilovskaya, E. (2020). Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Frontiers in Physiology, 11, 395. https://doi.org/10.3389/fphys.2020.00395 Arzeno, N. M., Stenger, M. B., Lee, S. M. C., Ploutz-Snyder, R., & Platts, S. H. (2013). Sex differences in blood pressure control during 6° head-down tilt bed rest. American Journal of Physiology-Heart and Circulatory Physiology, 304(8), H1114-H1123. https://doi.org/10.1152/ajpheart.00391.2012 Aubert, A. E., Larina, I., Momken, I., Blanc, S., White, O., Kim Prisk, G., & Linnarsson, D. (2016). Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. Npj Microgravity, 2(1), 16031, npjmgrav.2016.31. https://doi.org/10.1038/npjmgrav.2016.31 Bensoussan, D. (2010). Space tourism risks: A space insurance perspective. Acta Astronautica, 66(11-12), 1633-1638. https://doi.org/10.1016/j.actaastro.2010.01.009 Bimpong-Buta, N.-Y., Muessig, J. M., Knost, T., Masyuk, M., Binneboessel, S., Nia, A. M., Kelm, M., & Jung, C. (2020). Comprehensive Analysis of Macrocirculation and Microcirculation in Microgravity During Parabolic Flights. Frontiers in Physiology, 11, 960. https://doi.org/10.3389/fphys.2020.00960 Caiani, E. G., Weinert, L., Lang, R. M., & Vaïda, P. (2009). The role of echocardiography in the assessment of cardiac function in weightlessness—Our experience during parabolic flights. Respiratory Physiology & Neurobiology, 169, S6-S9. https://doi.org/10.1016/j.resp.2009.07.007 Cater, C. I. (2010). Steps to Space; opportunities for astrotourism. Tourism Management, 31(6), 838-845. https://doi.org/10.1016/j.tourman.2009.09.001 Deliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013a). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372 Deliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013b). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372 Demangel, R., Treffel, L., Py, G., Brioche, T., Pagano, A. F., Bareille, M.-P., Beck, A., Pessemesse, L., Candau, R., Gharib, C., Chopard, A., & Millet, C. (2017). Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model: Short-term muscle deconditioning. The Journal of Physiology, 595(13), 4301-4315. https://doi.org/10.1113/JP273895 Eiken, O., Keramidas, M. E., Sköldefors, H., & Kölegård, R. (2022). Human cardiovascular adaptation to hypergravity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322(6), R597-R608. https://doi.org/10.1152/ajpregu.00043.2022 Ercan, E. (2021). Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology, 25(Supp1), S3-S6. https://doi.org/10.5152/AnatolJCardiol.2021.S103 Hargens, A. R., & Vico, L. (2016). Long-duration bed rest as an analog to microgravity. Journal of Applied Physiology, 120(8), 891-903. https://doi.org/10.1152/japplphysiol.00935.2015 Hoffmann, B., Dehkordi, P., Khosrow-Khavar, F., Goswami, N., Blaber, A. P., & Tavakolian, K. (2022). Mechanical deconditioning of the heart due to long-term bed rest as observed on seismocardiogram morphology. Npj Microgravity, 8(1), 25. https://doi.org/10.1038/s41526-022-00206-7 Krohova, J., Czippelova, B., Turianikova, Z., Lazarova, Z., Tonhajzerova, I., & Javorka, M. (2017). Preejection Period as a Sympathetic Activity Index: A Role of Confounding Factors. Physiological Research, S265-S275. https://doi.org/10.33549/physiolres.933682 Lee, A. G., Mader, T. H., Gibson, C. R., Tarver, W., Rabiei, P., Riascos, R. F., Galdamez, L. A., & Brunstetter, T. (2020). Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. Npj Microgravity, 6(1), 7. https://doi.org/10.1038/s41526-020-0097-9 Lee, S. M. C., Martin, D. S., Miller, C. A., Scott, J. M., Laurie, S. S., Macias, B. R., Mercaldo, N. D., Ploutz-Snyder, L., & Stenger, M. B. (2020). Venous and Arterial Responses to Partial Gravity. Frontiers in Physiology, 11, 863. https://doi.org/10.3389/fphys.2020.00863 Limper, U., Gauger, P., Beck, P., Krainski, F., May, F., & Beck, L. E. J. (2014). Interactions of the human cardiopulmonary, hormonal and body fluid systems in parabolic flight. European Journal of Applied Physiology, 114(6), 1281-1295. https://doi.org/10.1007/s00421-014-2856-3 Liu, J., Verheyden, B., Beckers, F., & Aubert, A. E. (2012). Haemodynamic adaptation during sudden gravity transitions. European Journal of Applied Physiology, 112(1), 79-89. https://doi.org/10.1007/s00421-011-1956-6 Manen, O., Dussault, C., Sauvet, F., & Montmerle-Borgdorff, S. (2015). Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity. PLOS ONE, 10(3), e0121936. https://doi.org/10.1371/journal.pone.0121936 Marshall-Goebel, K., Ambarki, K., Eklund, A., Malm, J., Mulder, E., Gerlach, D., Bershad, E., & Rittweger, J. (2016). Effects of short-term exposure to head-down tilt on cerebral hemodynamics: A prospective evaluation of a spaceflight analog using phase-contrast MRI. Journal of Applied Physiology, 120(12), 1466-1473. https://doi.org/10.1152/japplphysiol.00841.2015 Marshall-Goebel, K., Laurie, S. S., Alferova, I. V., Arbeille, P., Auñón-Chancellor, S. M., Ebert, D. J., Lee, S. M. C., Macias, B. R., Martin, D. S., Pattarini, J. M., Ploutz-Snyder, R., Ribeiro, L. C., Tarver, W. J., Dulchavsky, S. A., Hargens, A. R., & Stenger, M. B. (2019). Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Network Open, 2(11), e1915011. https://doi.org/10.1001/jamanetworkopen.2019.15011 Martin, D. S., Lee, S. M. C., Matz, T. P., Westby, C. M., Scott, J. M., Stenger, M. B., & Platts, S. H. (2016). Internal jugular pressure increases during parabolic flight. Physiological Reports, 4(24), e13068. https://doi.org/10.14814/phy2.13068 Möstl, S., Orter, S., Hoffmann, F., Bachler, M., Hametner, B., Wassertheurer, S., Rabineau, J., Mulder, E., Johannes, B., Jordan, J., & Tank, J. (2021). Limited Effect of 60-Days Strict Head Down Tilt Bed Rest on Vascular Aging. Frontiers in Physiology, 12, 685473. https://doi.org/10.3389/fphys.2021.685473 Nakajima, T., Iida, H., Kurano, M., Takano, H., Morita, T., Meguro, K., Sato, Y., Yamazaki, Y., Kawashima, S., Ohshima, H., Tachibana, S., Ishii, N., & Abe, T. (2008). Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction. European Journal of Applied Physiology, 104(4), 727-737. https://doi.org/10.1007/s00421-008-0834-3 Nishimura, H., & Yamasaki, M. (2018). Changes in blood pressure, blood flow towards the head and heart rate during 90 deg head-up tilting for 30 min in anaesthetized male rats: Cardiovascular parameter changes during 90 deg head-up tilting. Experimental Physiology, 103(1), 31-39. https://doi.org/10.1113/EP086543 Norsk, P., Asmar, A., Damgaard, M., & Christensen, N. J. (2015). Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight: Vasodilatation and ambulatory blood pressure during spaceflight. The Journal of Physiology, 593(3), 573-584. https://doi.org/10.1113/jphysiol.2014.284869 Ong, J., Lee, A. G., & Moss, H. E. (2021). Head-Down Tilt Bed Rest Studies as a Terrestrial Analog for Spaceflight Associated Neuro-Ocular Syndrome. Frontiers in Neurology, 12, 648958. https://doi.org/10.3389/fneur.2021.648958 Pandiarajan, M., & Hargens, A. R. (2020). Ground-Based Analogs for Human Spaceflight. Frontiers in Physiology, 11, 716. https://doi.org/10.3389/fphys.2020.00716 Patel, S. (2020). The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart & Vasculature, 30, 100595. https://doi.org/10.1016/j.ijcha.2020.100595 Pavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J., & Vernikos, J. (2007). From space to Earth: Advances in human physiology from 20 years of bed rest studies (1986–2006). European Journal of Applied Physiology, 101(2), 143-194. https://doi.org/10.1007/s00421-007-0474-z Rohdin, M., Petersson, J., Sundblad, P., Mure, M., Glenny, R. W., Lindahl, S. G. E., & Linnarsson, D. (2003). Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. Journal of Applied Physiology, 95(1), 3-10. https://doi.org/10.1152/japplphysiol.01154.2002 Russomano, T., Dalmarco, G., & Falcão, F. P. (2008). Effects of Hypergravity and Microgravity on Biomedical Experiments, The. Springer International Publishing. https://doi.org/10.1007/978-3-031-01624-0 Seibert, F. S., Bernhard, F., Stervbo, U., Vairavanathan, S., Bauer, F., Rohn, B., Pagonas, N., Babel, N., Jankowski, J., & Westhoff, T. H. (2018). The Effect of Microgravity on Central Aortic Blood Pressure. American Journal of Hypertension, 31(11), 1183-1189. https://doi.org/10.1093/ajh/hpy119 Shankhwar, V., Singh, D., & Deepak, K. K. (2022). Cardiac-vascular-respiratory coupling analysis during 6-degree head-down tilt microgravity analogue. Biomedical Signal Processing and Control, 72, 103358. https://doi.org/10.1016/j.bspc.2021.103358 Tanaka, K., Nishimura, N., & Kawai, Y. (2017). Adaptation to microgravity, deconditioning, and countermeasures. The Journal of Physiological Sciences, 67(2), 271-281. https://doi.org/10.1007/s12576-016-0514-8 Verma, A. K., Xu, D., Bruner, M., Garg, A., Goswami, N., Blaber, A. P., & Tavakolian, K. (2018). Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Frontiers in Physiology, 9, 712. https://doi.org/10.3389/fphys.2018.00712 Whittle, R. S., Keller, N., Hall, E. A., Vellore, H. S., Stapleton, L. M., Findlay, K. H., Dunbar, B. J., & Diaz‐Artiles, A. (2022). Gravitational Dose‐Response Curves for Acute Cardiovascular Hemodynamics and Autonomic Responses in a Tilt Paradigm. Journal of the American Heart Association, 11(14), e024175. https://doi.org/10.1161/JAHA.121.024175 Zhang, Y., & Wang, L. (2022). Progress in space tourism studies: A systematic literature review. Tourism Recreation Research, 47(4), 372-383. https://doi.org/10.1080/02508281.2020.1857522 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
viii, 50 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Fisiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85939/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85939/2/80039863.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85939/3/80039863.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f573155ab07d2948697080daa223457c 757abbe55a678cb862609862c46b2f5d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089797128421376 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Corzo Zamora, María Alejandra9bb4ecf57ea469b6e2a68d1a128470b4600Campos Cuervo, Diego Hernán0eb7b6b7ca7a8572b5ae10d9f1d01fcd2024-04-17T18:54:19Z2024-04-17T18:54:19Z2023-11-15https://repositorio.unal.edu.co/handle/unal/85939Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl advenimiento de una nueva era espacial ha motivado una nueva era de investigación. En este segmento, la fisiología hemodinámica ha sido de especial interés debido a los riesgos potenciales de los viajeros espaciales. Sin embargo, la investigación en el espacio presencia grandes limitantes que pueden solventarse mediante análogos espaciales. Está revisión narrativa busca explicar los principales cambios del gasto cardíaco, volumen sistólico, presión arterial y presión venosa central en los diferentes análogos espaciales, como Bed Rest, Inmersión seca, Tilt Test, Vuelo parabólico y la centrífuga de brazo corto. La metodología empleada fue basada en la estrategia PRISMA. En general, los cambios encontrados se relacionan con la dinámica de fluidos, donde se presenta una cefalización de fluidos en microgravedad y la distribución de fluidos hacia abajo en hipergravedad. En microgravedad se presenta un aumento del gasto cardíaco, de la presión venosa central y del del volumen latido, y una disminución en la presión arterial. En hipergravedad encontramos hallazgos parcialmente opuestos, con mantenimiento del gasto cardíaco, disminución de la presión venosa central y del volumen latido, con un aumento de la presión arterial. Este tipo de revisiones busca incentivar futuras investigaciones en el campo de la medicina aeroespacial. (Texto tomado de la fuente).The advent of a new space age has prompted a new era of research. In this segment, hemodynamic physiology has been of special interest because of the potential risks to space travelers. However, research in space has major limitations that can be overcome by space analogs. This narrative review seeks to explain the main changes in cardiac output, systolic volume, arterial pressure, and central venous pressure in different space analogues, such as Bed Rest, Dry Dive, Tilt Test, Parabolic Flight, and the short arm centrifuge. The methodology used was based on the PRISMA strategy. In general, the changes found are related to fluid dynamics, where there is an upward fluid distribution in microgravity and downward fluid distribution in hypergravity. In microgravity there is an increase in cardiac output, central venous pressure and stroke volume, and a decrease in arterial pressure. In hypergravity we find partially opposite findings, with maintenance of cardiac output, decrease in central venous pressure and stroke volume, and an increase in arterial pressure. This type of review seeks to encourage future research in the field of aerospace medicine.MaestríaMagíster en FisiologíaSe realizó una revisión narrativa de la literatura científica de los modelos fisiológicos en simulación espacial más usados en la medición de variables hemodinámicas, como son: mesa inclinada, centrífuga de brazo corto, inmersión seca, Bed Rest y Vuelo parabólico. Estas variables se contrastan con los parámetros hemodinámicos evaluados en simulación espacial y en el espacio, en conjunto con las herramientas utilizadas en cada estudio: gasto cardiaco, volumen latido, presión arterial (tensión arterial sistólica, diastólica y media) y presión venosa central.Medicina y fisiología del espacioviii, 50 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en FisiologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales610 - Medicina y salud::612 - Fisiología humanaFenómenos Fisiológicos SanguíneosRevisiónMedicina AeroespacialBlood Physiological PhenomenaReviewAerospace MedicinehemodinamiaAnálogos espacialesVuelo espacialMicrogravedadSpace analogsWeightlessnessSpace flightHemodynamicFisiología hemodinámica en análogos espaciales. Revisión narrativaHemodynamic physiology in space analogs. Narrative reviewTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcharya, A., Brungs, S., Lichterfeld, Y., Hescheler, J., Hemmersbach, R., Boeuf, H., & Sachinidis, A. (2019). Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes. Cells, 8(4), 352. https://doi.org/10.3390/cells8040352Álvarez Calderón, C. E. Á., Corzo Zamora, M. A., Jaimes Parada, G. R., & Paredes Muñoz, R. J. (2019). Capítulo VI. La nueva economía del siglo XXI: El sector privado en el espacio. En C. E. Á. Álvarez Calderón & C. G. Corredor Gutiérrez (Eds.), El espacio exterior: Una oportunidad infinita para Colombia (1.a ed., Vol. 1, pp. 331-368).Amirova, L., Navasiolava, N., Rukavishvikov, I., Gauquelin-Koch, G., Gharib, C., Kozlovskaya, I., Custaud, M.-A., & Tomilovskaya, E. (2020). Cardiovascular System Under Simulated Weightlessness: Head-Down Bed Rest vs. Dry Immersion. Frontiers in Physiology, 11, 395. https://doi.org/10.3389/fphys.2020.00395Arzeno, N. M., Stenger, M. B., Lee, S. M. C., Ploutz-Snyder, R., & Platts, S. H. (2013). Sex differences in blood pressure control during 6° head-down tilt bed rest. American Journal of Physiology-Heart and Circulatory Physiology, 304(8), H1114-H1123. https://doi.org/10.1152/ajpheart.00391.2012Aubert, A. E., Larina, I., Momken, I., Blanc, S., White, O., Kim Prisk, G., & Linnarsson, D. (2016). Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. Npj Microgravity, 2(1), 16031, npjmgrav.2016.31. https://doi.org/10.1038/npjmgrav.2016.31Bensoussan, D. (2010). Space tourism risks: A space insurance perspective. Acta Astronautica, 66(11-12), 1633-1638. https://doi.org/10.1016/j.actaastro.2010.01.009Bimpong-Buta, N.-Y., Muessig, J. M., Knost, T., Masyuk, M., Binneboessel, S., Nia, A. M., Kelm, M., & Jung, C. (2020). Comprehensive Analysis of Macrocirculation and Microcirculation in Microgravity During Parabolic Flights. Frontiers in Physiology, 11, 960. https://doi.org/10.3389/fphys.2020.00960Caiani, E. G., Weinert, L., Lang, R. M., & Vaïda, P. (2009). The role of echocardiography in the assessment of cardiac function in weightlessness—Our experience during parabolic flights. Respiratory Physiology & Neurobiology, 169, S6-S9. https://doi.org/10.1016/j.resp.2009.07.007Cater, C. I. (2010). Steps to Space; opportunities for astrotourism. Tourism Management, 31(6), 838-845. https://doi.org/10.1016/j.tourman.2009.09.001Deliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013a). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372Deliere, Q., Migeotte, P.-F., Neyt, X., Funtova, I., Baevsky, R. M., Tank, J., & Pattyn, N. (2013b). Cardiovascular changes in parabolic flights assessed by ballistocardiography. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3801-3804. https://doi.org/10.1109/EMBC.2013.6610372Demangel, R., Treffel, L., Py, G., Brioche, T., Pagano, A. F., Bareille, M.-P., Beck, A., Pessemesse, L., Candau, R., Gharib, C., Chopard, A., & Millet, C. (2017). Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model: Short-term muscle deconditioning. The Journal of Physiology, 595(13), 4301-4315. https://doi.org/10.1113/JP273895Eiken, O., Keramidas, M. E., Sköldefors, H., & Kölegård, R. (2022). Human cardiovascular adaptation to hypergravity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 322(6), R597-R608. https://doi.org/10.1152/ajpregu.00043.2022Ercan, E. (2021). Effects of aerospace environments on the cardiovascular system. The Anatolian Journal of Cardiology, 25(Supp1), S3-S6. https://doi.org/10.5152/AnatolJCardiol.2021.S103Hargens, A. R., & Vico, L. (2016). Long-duration bed rest as an analog to microgravity. Journal of Applied Physiology, 120(8), 891-903. https://doi.org/10.1152/japplphysiol.00935.2015Hoffmann, B., Dehkordi, P., Khosrow-Khavar, F., Goswami, N., Blaber, A. P., & Tavakolian, K. (2022). Mechanical deconditioning of the heart due to long-term bed rest as observed on seismocardiogram morphology. Npj Microgravity, 8(1), 25. https://doi.org/10.1038/s41526-022-00206-7Krohova, J., Czippelova, B., Turianikova, Z., Lazarova, Z., Tonhajzerova, I., & Javorka, M. (2017). Preejection Period as a Sympathetic Activity Index: A Role of Confounding Factors. Physiological Research, S265-S275. https://doi.org/10.33549/physiolres.933682Lee, A. G., Mader, T. H., Gibson, C. R., Tarver, W., Rabiei, P., Riascos, R. F., Galdamez, L. A., & Brunstetter, T. (2020). Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. Npj Microgravity, 6(1), 7. https://doi.org/10.1038/s41526-020-0097-9Lee, S. M. C., Martin, D. S., Miller, C. A., Scott, J. M., Laurie, S. S., Macias, B. R., Mercaldo, N. D., Ploutz-Snyder, L., & Stenger, M. B. (2020). Venous and Arterial Responses to Partial Gravity. Frontiers in Physiology, 11, 863. https://doi.org/10.3389/fphys.2020.00863Limper, U., Gauger, P., Beck, P., Krainski, F., May, F., & Beck, L. E. J. (2014). Interactions of the human cardiopulmonary, hormonal and body fluid systems in parabolic flight. European Journal of Applied Physiology, 114(6), 1281-1295. https://doi.org/10.1007/s00421-014-2856-3Liu, J., Verheyden, B., Beckers, F., & Aubert, A. E. (2012). Haemodynamic adaptation during sudden gravity transitions. European Journal of Applied Physiology, 112(1), 79-89. https://doi.org/10.1007/s00421-011-1956-6Manen, O., Dussault, C., Sauvet, F., & Montmerle-Borgdorff, S. (2015). Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity. PLOS ONE, 10(3), e0121936. https://doi.org/10.1371/journal.pone.0121936Marshall-Goebel, K., Ambarki, K., Eklund, A., Malm, J., Mulder, E., Gerlach, D., Bershad, E., & Rittweger, J. (2016). Effects of short-term exposure to head-down tilt on cerebral hemodynamics: A prospective evaluation of a spaceflight analog using phase-contrast MRI. Journal of Applied Physiology, 120(12), 1466-1473. https://doi.org/10.1152/japplphysiol.00841.2015Marshall-Goebel, K., Laurie, S. S., Alferova, I. V., Arbeille, P., Auñón-Chancellor, S. M., Ebert, D. J., Lee, S. M. C., Macias, B. R., Martin, D. S., Pattarini, J. M., Ploutz-Snyder, R., Ribeiro, L. C., Tarver, W. J., Dulchavsky, S. A., Hargens, A. R., & Stenger, M. B. (2019). Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Network Open, 2(11), e1915011. https://doi.org/10.1001/jamanetworkopen.2019.15011Martin, D. S., Lee, S. M. C., Matz, T. P., Westby, C. M., Scott, J. M., Stenger, M. B., & Platts, S. H. (2016). Internal jugular pressure increases during parabolic flight. Physiological Reports, 4(24), e13068. https://doi.org/10.14814/phy2.13068Möstl, S., Orter, S., Hoffmann, F., Bachler, M., Hametner, B., Wassertheurer, S., Rabineau, J., Mulder, E., Johannes, B., Jordan, J., & Tank, J. (2021). Limited Effect of 60-Days Strict Head Down Tilt Bed Rest on Vascular Aging. Frontiers in Physiology, 12, 685473. https://doi.org/10.3389/fphys.2021.685473Nakajima, T., Iida, H., Kurano, M., Takano, H., Morita, T., Meguro, K., Sato, Y., Yamazaki, Y., Kawashima, S., Ohshima, H., Tachibana, S., Ishii, N., & Abe, T. (2008). Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction. European Journal of Applied Physiology, 104(4), 727-737. https://doi.org/10.1007/s00421-008-0834-3Nishimura, H., & Yamasaki, M. (2018). Changes in blood pressure, blood flow towards the head and heart rate during 90 deg head-up tilting for 30 min in anaesthetized male rats: Cardiovascular parameter changes during 90 deg head-up tilting. Experimental Physiology, 103(1), 31-39. https://doi.org/10.1113/EP086543Norsk, P., Asmar, A., Damgaard, M., & Christensen, N. J. (2015). Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight: Vasodilatation and ambulatory blood pressure during spaceflight. The Journal of Physiology, 593(3), 573-584. https://doi.org/10.1113/jphysiol.2014.284869Ong, J., Lee, A. G., & Moss, H. E. (2021). Head-Down Tilt Bed Rest Studies as a Terrestrial Analog for Spaceflight Associated Neuro-Ocular Syndrome. Frontiers in Neurology, 12, 648958. https://doi.org/10.3389/fneur.2021.648958Pandiarajan, M., & Hargens, A. R. (2020). Ground-Based Analogs for Human Spaceflight. Frontiers in Physiology, 11, 716. https://doi.org/10.3389/fphys.2020.00716Patel, S. (2020). The effects of microgravity and space radiation on cardiovascular health: From low-Earth orbit and beyond. IJC Heart & Vasculature, 30, 100595. https://doi.org/10.1016/j.ijcha.2020.100595Pavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J., & Vernikos, J. (2007). From space to Earth: Advances in human physiology from 20 years of bed rest studies (1986–2006). European Journal of Applied Physiology, 101(2), 143-194. https://doi.org/10.1007/s00421-007-0474-zRohdin, M., Petersson, J., Sundblad, P., Mure, M., Glenny, R. W., Lindahl, S. G. E., & Linnarsson, D. (2003). Effects of gravity on lung diffusing capacity and cardiac output in prone and supine humans. Journal of Applied Physiology, 95(1), 3-10. https://doi.org/10.1152/japplphysiol.01154.2002Russomano, T., Dalmarco, G., & Falcão, F. P. (2008). Effects of Hypergravity and Microgravity on Biomedical Experiments, The. Springer International Publishing. https://doi.org/10.1007/978-3-031-01624-0Seibert, F. S., Bernhard, F., Stervbo, U., Vairavanathan, S., Bauer, F., Rohn, B., Pagonas, N., Babel, N., Jankowski, J., & Westhoff, T. H. (2018). The Effect of Microgravity on Central Aortic Blood Pressure. American Journal of Hypertension, 31(11), 1183-1189. https://doi.org/10.1093/ajh/hpy119Shankhwar, V., Singh, D., & Deepak, K. K. (2022). Cardiac-vascular-respiratory coupling analysis during 6-degree head-down tilt microgravity analogue. Biomedical Signal Processing and Control, 72, 103358. https://doi.org/10.1016/j.bspc.2021.103358Tanaka, K., Nishimura, N., & Kawai, Y. (2017). Adaptation to microgravity, deconditioning, and countermeasures. The Journal of Physiological Sciences, 67(2), 271-281. https://doi.org/10.1007/s12576-016-0514-8Verma, A. K., Xu, D., Bruner, M., Garg, A., Goswami, N., Blaber, A. P., & Tavakolian, K. (2018). Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Frontiers in Physiology, 9, 712. https://doi.org/10.3389/fphys.2018.00712Whittle, R. S., Keller, N., Hall, E. A., Vellore, H. S., Stapleton, L. M., Findlay, K. H., Dunbar, B. J., & Diaz‐Artiles, A. (2022). Gravitational Dose‐Response Curves for Acute Cardiovascular Hemodynamics and Autonomic Responses in a Tilt Paradigm. Journal of the American Heart Association, 11(14), e024175. https://doi.org/10.1161/JAHA.121.024175Zhang, Y., & Wang, L. (2022). Progress in space tourism studies: A systematic literature review. Tourism Recreation Research, 47(4), 372-383. https://doi.org/10.1080/02508281.2020.1857522InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85939/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL80039863.2024.pdf80039863.2024.pdfTesis de Maestría en Fisiologíaapplication/pdf1016840https://repositorio.unal.edu.co/bitstream/unal/85939/2/80039863.2024.pdff573155ab07d2948697080daa223457cMD52THUMBNAIL80039863.2024.pdf.jpg80039863.2024.pdf.jpgGenerated Thumbnailimage/jpeg4440https://repositorio.unal.edu.co/bitstream/unal/85939/3/80039863.2024.pdf.jpg757abbe55a678cb862609862c46b2f5dMD53unal/85939oai:repositorio.unal.edu.co:unal/859392024-04-17 23:35:31.954Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |