Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)

ilustraciones, fotografías, gráficas, tablas

Autores:
Cardona Vásquez, Jorge Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83161
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83161
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Manganita
Perovskita
Refinamiento Rietveld
Susceptibilidad magnética
Impedancia compleja
Perovskite
Manganite
Rietveld refinement
Magnetic susceptibility
Complex impedance
Tecnología de materiales
Magnetismo
Propiedad eléctrica
Materials engineering
Magnetism
Electrical properties
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8e8a153f1c2145ddb40c090ffc11150b
oai_identifier_str oai:repositorio.unal.edu.co:unal/83161
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
dc.title.translated.eng.fl_str_mv Synthesis and characterization of the new material with triple perovskite structure R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 and 1.5)
title Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
spellingShingle Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
620 - Ingeniería y operaciones afines::621 - Física aplicada
Manganita
Perovskita
Refinamiento Rietveld
Susceptibilidad magnética
Impedancia compleja
Perovskite
Manganite
Rietveld refinement
Magnetic susceptibility
Complex impedance
Tecnología de materiales
Magnetismo
Propiedad eléctrica
Materials engineering
Magnetism
Electrical properties
title_short Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
title_full Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
title_fullStr Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
title_full_unstemmed Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
title_sort Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)
dc.creator.fl_str_mv Cardona Vásquez, Jorge Andrés
dc.contributor.advisor.spa.fl_str_mv Roa Rojas, Jairo
dc.contributor.author.spa.fl_str_mv Cardona Vásquez, Jorge Andrés
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física de Nuevos Materiales
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Manganita
Perovskita
Refinamiento Rietveld
Susceptibilidad magnética
Impedancia compleja
Perovskite
Manganite
Rietveld refinement
Magnetic susceptibility
Complex impedance
Tecnología de materiales
Magnetismo
Propiedad eléctrica
Materials engineering
Magnetism
Electrical properties
dc.subject.proposal.spa.fl_str_mv Manganita
Perovskita
Refinamiento Rietveld
Susceptibilidad magnética
Impedancia compleja
dc.subject.proposal.eng.fl_str_mv Perovskite
Manganite
Rietveld refinement
Magnetic susceptibility
Complex impedance
dc.subject.unesco.spa.fl_str_mv Tecnología de materiales
Magnetismo
Propiedad eléctrica
dc.subject.unesco.eng.fl_str_mv Materials engineering
Magnetism
Electrical properties
description ilustraciones, fotografías, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-03
dc.date.accessioned.none.fl_str_mv 2023-01-27T14:10:38Z
dc.date.available.none.fl_str_mv 2023-01-27T14:10:38Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83161
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83161
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, Aug. 2006, doi: 10.1038/nature05023
Y. Zhou, J. Zhang, B. Li, Y. Su, B. Kang, and S. Cao, “Converse magnetoelectric effect in nano-microscale lead-free multiferroic composite,” Curr. Appl. Phys., vol. 11, no. 3, pp. S232–S235, May 2011, doi: 10.1016/j.cap.2011.01.008
G. Qian et al., “Enhanced Ferromagnetic, Ferroelectric, and Dielectric Properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 Ceramics,” J. Electron. Mater., vol. 46, no. 11, pp. 6717–6726, Nov. 2017, doi: 10.1007/s11664-017-5689-0
A. Shukla, R. N. P. Choudhary, and A. K. Thakur, “Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic,” J. Phys. Chem. Solids, vol. 70, no. 11, pp. 1401–1407, Nov. 2009, doi: 10.1016/j.jpcs.2009.08.015
S. Idrissi, O. Mounkachi, L. Bahmad, and A. Benyoussef, “Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods,” Comput. Condens. Matter, p. e00617, Nov. 2021, doi: 10.1016/j.cocom.2021.e00617
M. A. Bousahla et al., “DFT study on the crystal structure, optoelectronic, and thermoelectric properties of lead-free inorganic A2PdBr6 (A = K, Rb, and Cs) perovskites,” Mater. Today Commun., vol. 30, p. 103061, Mar. 2022, doi: 10.1016/j.mtcomm.2021.103061
R. J. D. Tilley, Perovskites Structure–Property Relationships, 1st ed. John Wiley & Sons, Ltd (2016)
R. M. Hazen, S. S. American, and N. June, “Perovskites gives rise to materials that have a wide array of electrical properties,” Sci. Am., vol. 258, no. 6, pp. 74–81, 1988, doi: 10.2307/24989124
M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B, vol. 57, pp. 725–738, 2001
M. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, “B-cation arrangements in double perovskites,” Prog. Solid State Chem., vol. 22, no. 3, pp. 197–233, 1993, doi: 10.1016/0079-6786(93)90004-B
A. M. Glazer, “Simple ways of determining perovskite structures,” Acta Crystallogr. Sect. A, vol. 31, no. 6, pp. 756–762, 1975, doi: 10.1107/S0567739475001635
G. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, 2010, doi: 10.1039/b926757c
T. A. Kaplan and S. D. Mahanti, Physics of Manganites, 4th ed. New York: Springer US, 2013. doi: 10.1007/b114807
S. Dong and J.-M. Liu, “Recent Progress of Multiferroic Perovskite Manganites,” vol. 26, no. 9, pp. 1–26, 2012, doi: 10.1142/S0217984912300049
K. F. Wang, J. M. Liu, and Z. F. Ren, “Multiferroicity: The coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, 2009, doi: 10.1080/00018730902920554
L. Fuentes, “Magnetic-Coupling Properties in Polycrystals,” Textures Microstruct., vol. 30, no. 3–4, pp. 167–189, 1998, doi: 10.1155/tsm.30.167
IUCr, International Tables for Crystallography, vol. A. Chester, England: International Union of Crystallography, 2006. doi: 10.1107/97809553602060000100
C. Kittel, Introduction to solid state physics, 7th ed. Willey & Song, 1996
L. Fuentes-Cobas, A. Muñoz-Romero, M. Montero-Cabrera, L. Fuentes-Montero, and M. Fuentes-Montero, “Predicting the Coupling Properties of Axially-Textured Materials,” Materials (Basel)., vol. 6, no. 11, pp. 4967–4984, Oct. 2013, doi: 10.3390/ma6114967
L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, “Rietveld refinement guidelines,” J. Appl. Crystallogr., vol. 32, no. 1, pp. 36–50, Feb. 1999, doi: 10.1107/S0021889898009856
K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials. Boston, MA: Springer US, 2003. doi: 10.1007/b100503
J. A. Cardona Vasquez, “Producción y Caracterización de Nuevos Materiales Multiferróicos de la Familia RMn 1-x Fe x O 3 (R = Ho, Dy, Gd),” 2014
N. A. Spaldin, Magnetic Materials. Cambridge: Cambridge University Press, 2010. doi: 10.1017/CBO9780511781599
W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering : an integrated approach, 5th ed. 2015
S. Burbano De Ercilla, E. Burbano García, and C. García Muñoz, Fisica General, Madrid: Editorial Tébar, S.L., 2003
S.-J. Cho, M.-J. Uddin, and P. Alaboina, “Chapter three - Review of Nanotechnology for Cathode Materials in Batteries,” 2017. doi: 10.1016/B978-0-323-42977-1/00003-0
E. S. Thian and S. M. Best, “Si-substituted hydroxyapatite,” in Bioceramics and their Clinical Applications, Elsevier Inc., 2008, pp. 424–437. doi: 10.1533/9781845694227.2.424
S. Pathreeker, S. Reed, P. Chando, and I. D. Hosein, “A study of calcium ion intercalation in perovskite calcium manganese oxide,” J. Electroanal. Chem., vol. 874, p. 114453, Oct. 2020, doi: 10.1016/j.jelechem.2020.114453
V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-09579-0
A. M. Shuvaev, A. A. Mukhin, and A. Pimenov, “Magnetic and magnetoelectric excitations in multiferroic manganites,” J. Phys. Condens. Matter, vol. 23, no. 11, 2011, doi: 10.1088/0953-8984/23/11/113201
J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, “Hexagonal versus perovskite phase of manganite RMn O3 (R=Y, Ho, Er, Tm, Yb, Lu),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 74, no. 1, pp. 1–7, 2006, doi: 10.1103/PhysRevB.74.014422
R. Choithrani, M. N. Rao, S. L. Chaplot, N. K. Gaur, and R. K. Singh, “Structural and phonon dynamical properties of perovskite manganites: (Tb, Dy, Ho)MnO3,” J. Magn. Magn. Mater., vol. 323, no. 12, pp. 1627–1635, 2011, doi: 10.1016/j.jmmm.2011.01.026
O. Peña, M. Bahout, Y. Ma, D. Gutiérrez, P. Durán, and C. Moure, “Interacting networks and spin reversal in (RE, Ca)MnO3,” in Physica C: Superconductivity and its Applications, Aug. 2004, vol. 408–410, no. 1–4, pp. 641–642. doi: 10.1016/j.physc.2004.03.091
M. Mouallem-Bahout, O. Peña, D. Gutierrez, P. Duran, C. Moure, and P. Burlet, “Peculiar magnetic properties of (Dy,Ca)MnO 3.” [Online]. Available: www.elsevier.com/locate/ssc
T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite,” Powder Diffr., vol. 29, no. S2, pp. S13–S18, Dec. 2014, doi: 10.1017/S0885715614000840
M. W. Lufaso and P. M. Woodward, “SPuDS Users Guide,” 2020. [Online]. Available: https://www.unf.edu/~michael.lufaso/spuds/manual.pdf
A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748. 2004
B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr., vol. 34, no. 2, pp. 210–213, Apr. 2001, doi: 10.1107/S0021889801002242
K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, Dec. 2011, doi: 10.1107/S0021889811038970
Quantum Design, Physical Property Measurement System, Vibrating Sample Magnetometer (VSM) Option User’s Manual, A-2., vol. Part No. 1096-100. 2004
S. Foner, “Versatile and Sensitive Vibrating‐Sample Magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679
E. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica dc em sólidos: como efetuá-las corretamente,” Rev. Química Nov., vol. 25, no. 4, pp. 639–647, 2002
S. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr., vol. 34, no. 4, pp. 352–360, Dec. 2019, doi: 10.1017/S0885715619000812
S. Gražulis et al., “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,” Nucleic Acids Res., vol. 40, no. D1, pp. D420–D427, Jan. 2012, doi: 10.1093/nar/gkr900
A. Vaitkus, A. Merkys, and S. Gražulis, “Validation of the Crystallography Open Database using the Crystallographic Information Framework,” J. Appl. Crystallogr., vol. 54, no. 2, pp. 661–672, Apr. 2021, doi: 10.1107/S1600576720016532
J. Hu and H. Qin, “Magnetoimpedance effect at various temperatures for manganite La0.7Ca0.3MnO3-δ,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 100, no. 3, pp. 304–306, 2003, doi: 10.1016/S0921-5107(03)00123-5
R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551
G. Blaise, “Charge localization and transport in disordered dielectric materials,” J. Electrostat., vol. 50, no. 2, pp. 69–89, Jan. 2001, doi: 10.1016/S0304-3886(00)00027-9
Yet-Ming Chiang, Dunbar P. Birnie, and W. David Kingery, Physical ceramics: principles for ceramic science and engineering, vol. 34. 1996. doi: 10.5860/CHOICE.34-1566
P. Lakhani, M. Unadkat, P. Solanki, J. H. Markana, M. Ranjan, and B. Kataria, “Structural, electrical transport and optical properties of doped La0.7Ca0.3MnO3 ceramics,” Bol. la Soc. Esp. Ceram. y Vidr., 2021, doi: 10.1016/j.bsecv.2021.07.003
J. J. Sprague and H. L. Tuller, “Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate,” J. Eur. Ceram. Soc., vol. 19, no. 6–7, pp. 803–806, Jun. 1999, doi: 10.1016/S0955-2219(98)00319-7
V. Kharton et al., “Oxygen ionic conductivity of Ti-containing strontium ferrite,” Solid State Ionics, vol. 133, no. 1–2, pp. 57–65, Aug. 2000, doi: 10.1016/S0167-2738(00)00738-4
M. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri, and M. A. Garcia, “Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite,” J. Mater. Sci. Mater. Electron., vol. 31, no. 14, pp. 11810–11818, Jul. 2020, doi: 10.1007/s10854-020-03733-9
L. Singh, I. W. Kim, B. Cheol Sin, A. Ullah, S. Kook Woo, and Y. Lee, “Study of dielectric, AC-impedance, modulus properties of 0.5Bi0.5Na0.5TiO3·0.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method,” Mater. Sci. Semicond. Process., vol. 31, pp. 386–396, Mar. 2015, doi: 10.1016/j.mssp.2014.12.025
C. Ge et al., “Metal-Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquid-Gated Manganite Films,” Adv. Mater. Interfaces, vol. 2, no. 17, p. 1500407, Nov. 2015, doi: 10.1002/admi.201500407
M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, “Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites,” Science (80-. )., vol. 285, no. 5433, pp. 1540–1542, Sep. 1999, doi: 10.1126/science.285.5433.1540
T. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen, “Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots,” Phys. Rev. Lett., vol. 106, no. 15, p. 157207, Apr. 2011, doi: 10.1103/PhysRevLett.106.157207
A. Ben Jazia Kharrat, K. Khirouni, and W. Boujelben, “Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route,” Phys. Lett. A, vol. 382, no. 48, pp. 3435–3448, Dec. 2018, doi: 10.1016/j.physleta.2018.10.010
S. V. Zubkov, I. A. Parinov, and Y. A. Kuprina, “The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0),” Electronics, vol. 11, no. 2, p. 277, Jan. 2022, doi: 10.3390/electronics11020277
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxv, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83161/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83161/2/94482128.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83161/3/94482128.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a7e260155554406adf75801e1ee67a3a
9549815610b57c47565bab80251b546f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089403986870272
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roa Rojas, Jairo07f67cd42f02e686a14bccff900b3b5f600Cardona Vásquez, Jorge Andrés5b7a98a8af166d6c9ff36461147d10a2Grupo de Física de Nuevos Materiales2023-01-27T14:10:38Z2023-01-27T14:10:38Z2022-03https://repositorio.unal.edu.co/handle/unal/83161Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEl presente trabajo muestra un detallado estudio de materiales basados en manganitas de tierras raras RMnO3 (R = ion de tierras raras). En la literatura hay diversos reportes que muestran que las propiedades estructurales, magnéticas, eléctricas, y ópticas de estos materiales, dependen de la naturaleza del ion de tierras raras, así como de su tamaño. Tomando como punto de partida las manganitas de tierras raras con gadolinio (Gd) y disprosio (Dy), se realizaron sustituciones en las posiciones de los iones R y Mn para dar lugar a la familia de materiales dada por la formula genérica R2AMn3-xCoxO9, donde A un ion alcalinotérreo (Ca o Sr) y x determina el grado de sustitución de iones de cobalto (Co) en las posiciones de los iones de manganeso (Mn). Estas sustituciones buscaban fundamentalmente inducir estados de valencia mixta en los iones Mn, para generar ferromagnetismo en los materiales, de igual manera, se buscaba reforzar este comportamiento con la introducción de iones Co en las posiciones Mn. La síntesis de los materiales se realizó por medio de la técnica de reacción de estado sólido convencional, partiendo de precursores de alta pureza (>99%) disponibles comercialmente. Por medio de la técnica de difracción de rayos X se realizó el seguimiento de la evolución del proceso de síntesis. Este análisis mostró que a partir de un tratamiento térmico con temperaturas máximas de 1473 K es posible la obtención de fases de alta pureza y cristalinidad para todos los materiales estudiados. La caracterización estructural del sistema se llevó a cabo por medio del refinamiento Rietveld de los patrones de difracción medidos sobre las muestras finales, observando que todos los materiales de la familia presentan una simetría ortorrómbica con grupo espacial Pbnm (No. 62). Así mismo, el refinamiento permitió estudiar el comportamiento de los parámetros de red, distorsiones y rotaciones octaédricas del sistema, evidenciando la estabilización estructural (aumento del grado de simetría) de los materiales al aumentar el radio iónico del ion A o aumentar el grado de sustitución x, acercando la celda unitaria a la simetría tetragonal. El comportamiento magnético de los materiales fue estudiado por medio de medidas de magnetización en función de la temperatura en ciclos de enfiado a campo cero (ZFC) y de enfriamiento con campo aplicado (FC), observando un carácter paramagnético a temperatura ambiente, con transiciones de fase por debajo de 100 K a estados ferromagnético y antiferromagnético que compiten entre sí, viéndose favorecido el antiferromagnetismo por debajo de 50 K y el ferromagnetismo entre 50 K y 100 K. Finalmente, la respuesta eléctrica de los materiales fue estudiada mediante curvas de impedancia compleja en función de la temperatura en un rango de 70 K a 300 K con frecuencias aplicadas de 100 Hz, 1kHz, 10 kHz y 100 kHz, observando un comportamiento semiconductor en todo el rango de temperatura y transiciones de fase dependientes de la frecuencia asociadas con los mecanismos de transporte y relajación dieléctrica de los materiales. (Texto tomado de la fuente).This work shows a detailed study of materials based on rare earth manganites RMnO3 (R = rare earth ion). In the literature there are several reports showing that the structural, magnetic, electrical and optical properties of these materials depend on the nature of the rare earth ion, as well as its size. Taking the rare earth manganites with gadolinium (Gd) and dysprosium (Dy) as a starting point, substitutions were made in the positions of the R and Mn ions to give rise to the family of materials given by the generic formula R2AMn3-xCoxO9, where A binding alkaline earth (Ca or Sr) and x determines the degree of substitution of cobalt (Co) ions at the manganese (Mn) ion positions. These substitutions sought to induce states of mixed valence in the Mn ions, to generate ferromagnetism in the materials, additionally, they sought to reinforce this behavior with the introduction of Co ions in the Mn positions. Synthesis of the materials was carried out by the conventional solid state reaction technique, starting from commercially available high purity precursors (>99%). Through the X-ray diffraction technique, the evolution of the synthesis process was monitored. This analysis showed that from a thermal treatment with maximum temperatures of 1473 K it is possible to obtain phases of high purity and crystallinity for all materials. Structural characterization of the system was carried out through the Rietveld refinement of the diffraction patterns measured on the final samples, observing that all the materials of the family present an orthorhombic symmetry with a Pbnm space group (No. 62). Likewise, the refinement allowed studying the behavior of the lattice parameters, distortions and octahedral rotations of the system, evidencing the structural stabilization (increase in the degree of symmetry) of the materials by increasing the ionic radius of the A ion or increasing the degree of substitution. x, bringing the unit cell closer to tetragonal symmetry. The magnetic behavior of the materials was studied by means of measurements of magnetization as a function of temperature in zero field cooling (ZFC) and field cooling (FC) loops, observing a paramagnetic character at room temperature, with phase transitions below 100 K to competing ferromagnetic and antiferromagnetic states, showing that the antiferromagnetism being favored below 50 K and ferromagnetism dominates between 50 K and 100 K. Finally, the electrical response of the materials was studied using complex impedance curves as a function of temperature in a range from 70 K to 300 K with applied frequencies of 100 Hz. , 1kHz, 10kHz, and 100kHz, observing semiconductor behavior over the entire temperature range and frequency-dependent phase transitions associated with the dielectric relaxation and transport mechanisms of materials.Incluye anexosDoctoradoDoctor en IngenieríaCiencia y tecnología de materiales cerámicos y compuestosxxv, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaManganitaPerovskitaRefinamiento RietveldSusceptibilidad magnéticaImpedancia complejaPerovskiteManganiteRietveld refinementMagnetic susceptibilityComplex impedanceTecnología de materialesMagnetismoPropiedad eléctricaMaterials engineeringMagnetismElectrical propertiesSíntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 y 1.5)Synthesis and characterization of the new material with triple perovskite structure R2AMn3-xCoxO9 (R = Gd, Dy; A = Ca, Sr; x = 0.0, 0.5, 1.0 and 1.5)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDW. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, Aug. 2006, doi: 10.1038/nature05023Y. Zhou, J. Zhang, B. Li, Y. Su, B. Kang, and S. Cao, “Converse magnetoelectric effect in nano-microscale lead-free multiferroic composite,” Curr. Appl. Phys., vol. 11, no. 3, pp. S232–S235, May 2011, doi: 10.1016/j.cap.2011.01.008G. Qian et al., “Enhanced Ferromagnetic, Ferroelectric, and Dielectric Properties in BiFeO3-SrTiO3-Bi0.5Na0.5TiO3 Ceramics,” J. Electron. Mater., vol. 46, no. 11, pp. 6717–6726, Nov. 2017, doi: 10.1007/s11664-017-5689-0A. Shukla, R. N. P. Choudhary, and A. K. Thakur, “Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic,” J. Phys. Chem. Solids, vol. 70, no. 11, pp. 1401–1407, Nov. 2009, doi: 10.1016/j.jpcs.2009.08.015S. Idrissi, O. Mounkachi, L. Bahmad, and A. Benyoussef, “Study of the electronic and opto-electronic properties of the perovskite KPbBr3 by DFT and TDDFT methods,” Comput. Condens. Matter, p. e00617, Nov. 2021, doi: 10.1016/j.cocom.2021.e00617M. A. Bousahla et al., “DFT study on the crystal structure, optoelectronic, and thermoelectric properties of lead-free inorganic A2PdBr6 (A = K, Rb, and Cs) perovskites,” Mater. Today Commun., vol. 30, p. 103061, Mar. 2022, doi: 10.1016/j.mtcomm.2021.103061R. J. D. Tilley, Perovskites Structure–Property Relationships, 1st ed. John Wiley & Sons, Ltd (2016)R. M. Hazen, S. S. American, and N. June, “Perovskites gives rise to materials that have a wide array of electrical properties,” Sci. Am., vol. 258, no. 6, pp. 74–81, 1988, doi: 10.2307/24989124M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B, vol. 57, pp. 725–738, 2001M. T. Anderson, K. B. Greenwood, G. A. Taylor, and K. R. Poeppelmeier, “B-cation arrangements in double perovskites,” Prog. Solid State Chem., vol. 22, no. 3, pp. 197–233, 1993, doi: 10.1016/0079-6786(93)90004-BA. M. Glazer, “Simple ways of determining perovskite structures,” Acta Crystallogr. Sect. A, vol. 31, no. 6, pp. 756–762, 1975, doi: 10.1107/S0567739475001635G. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, 2010, doi: 10.1039/b926757cT. A. Kaplan and S. D. Mahanti, Physics of Manganites, 4th ed. New York: Springer US, 2013. doi: 10.1007/b114807S. Dong and J.-M. Liu, “Recent Progress of Multiferroic Perovskite Manganites,” vol. 26, no. 9, pp. 1–26, 2012, doi: 10.1142/S0217984912300049K. F. Wang, J. M. Liu, and Z. F. Ren, “Multiferroicity: The coupling between magnetic and polarization orders,” Adv. Phys., vol. 58, no. 4, pp. 321–448, 2009, doi: 10.1080/00018730902920554L. Fuentes, “Magnetic-Coupling Properties in Polycrystals,” Textures Microstruct., vol. 30, no. 3–4, pp. 167–189, 1998, doi: 10.1155/tsm.30.167IUCr, International Tables for Crystallography, vol. A. Chester, England: International Union of Crystallography, 2006. doi: 10.1107/97809553602060000100C. Kittel, Introduction to solid state physics, 7th ed. Willey & Song, 1996L. Fuentes-Cobas, A. Muñoz-Romero, M. Montero-Cabrera, L. Fuentes-Montero, and M. Fuentes-Montero, “Predicting the Coupling Properties of Axially-Textured Materials,” Materials (Basel)., vol. 6, no. 11, pp. 4967–4984, Oct. 2013, doi: 10.3390/ma6114967L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër, and P. Scardi, “Rietveld refinement guidelines,” J. Appl. Crystallogr., vol. 32, no. 1, pp. 36–50, Feb. 1999, doi: 10.1107/S0021889898009856K. H. J. Buschow and F. R. de Boer, Physics of Magnetism and Magnetic Materials. Boston, MA: Springer US, 2003. doi: 10.1007/b100503J. A. Cardona Vasquez, “Producción y Caracterización de Nuevos Materiales Multiferróicos de la Familia RMn 1-x Fe x O 3 (R = Ho, Dy, Gd),” 2014N. A. Spaldin, Magnetic Materials. Cambridge: Cambridge University Press, 2010. doi: 10.1017/CBO9780511781599W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering : an integrated approach, 5th ed. 2015S. Burbano De Ercilla, E. Burbano García, and C. García Muñoz, Fisica General, Madrid: Editorial Tébar, S.L., 2003S.-J. Cho, M.-J. Uddin, and P. Alaboina, “Chapter three - Review of Nanotechnology for Cathode Materials in Batteries,” 2017. doi: 10.1016/B978-0-323-42977-1/00003-0E. S. Thian and S. M. Best, “Si-substituted hydroxyapatite,” in Bioceramics and their Clinical Applications, Elsevier Inc., 2008, pp. 424–437. doi: 10.1533/9781845694227.2.424S. Pathreeker, S. Reed, P. Chando, and I. D. Hosein, “A study of calcium ion intercalation in perovskite calcium manganese oxide,” J. Electroanal. Chem., vol. 874, p. 114453, Oct. 2020, doi: 10.1016/j.jelechem.2020.114453V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-09579-0A. M. Shuvaev, A. A. Mukhin, and A. Pimenov, “Magnetic and magnetoelectric excitations in multiferroic manganites,” J. Phys. Condens. Matter, vol. 23, no. 11, 2011, doi: 10.1088/0953-8984/23/11/113201J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, “Hexagonal versus perovskite phase of manganite RMn O3 (R=Y, Ho, Er, Tm, Yb, Lu),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 74, no. 1, pp. 1–7, 2006, doi: 10.1103/PhysRevB.74.014422R. Choithrani, M. N. Rao, S. L. Chaplot, N. K. Gaur, and R. K. Singh, “Structural and phonon dynamical properties of perovskite manganites: (Tb, Dy, Ho)MnO3,” J. Magn. Magn. Mater., vol. 323, no. 12, pp. 1627–1635, 2011, doi: 10.1016/j.jmmm.2011.01.026O. Peña, M. Bahout, Y. Ma, D. Gutiérrez, P. Durán, and C. Moure, “Interacting networks and spin reversal in (RE, Ca)MnO3,” in Physica C: Superconductivity and its Applications, Aug. 2004, vol. 408–410, no. 1–4, pp. 641–642. doi: 10.1016/j.physc.2004.03.091M. Mouallem-Bahout, O. Peña, D. Gutierrez, P. Duran, C. Moure, and P. Burlet, “Peculiar magnetic properties of (Dy,Ca)MnO 3.” [Online]. Available: www.elsevier.com/locate/sscT. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite,” Powder Diffr., vol. 29, no. S2, pp. S13–S18, Dec. 2014, doi: 10.1017/S0885715614000840M. W. Lufaso and P. M. Woodward, “SPuDS Users Guide,” 2020. [Online]. Available: https://www.unf.edu/~michael.lufaso/spuds/manual.pdfA. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748. 2004B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr., vol. 34, no. 2, pp. 210–213, Apr. 2001, doi: 10.1107/S0021889801002242K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, Dec. 2011, doi: 10.1107/S0021889811038970Quantum Design, Physical Property Measurement System, Vibrating Sample Magnetometer (VSM) Option User’s Manual, A-2., vol. Part No. 1096-100. 2004S. Foner, “Versatile and Sensitive Vibrating‐Sample Magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679E. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica dc em sólidos: como efetuá-las corretamente,” Rev. Química Nov., vol. 25, no. 4, pp. 639–647, 2002S. Gates-Rector and T. Blanton, “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr., vol. 34, no. 4, pp. 352–360, Dec. 2019, doi: 10.1017/S0885715619000812S. Gražulis et al., “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,” Nucleic Acids Res., vol. 40, no. D1, pp. D420–D427, Jan. 2012, doi: 10.1093/nar/gkr900A. Vaitkus, A. Merkys, and S. Gražulis, “Validation of the Crystallography Open Database using the Crystallographic Information Framework,” J. Appl. Crystallogr., vol. 54, no. 2, pp. 661–672, Apr. 2021, doi: 10.1107/S1600576720016532J. Hu and H. Qin, “Magnetoimpedance effect at various temperatures for manganite La0.7Ca0.3MnO3-δ,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 100, no. 3, pp. 304–306, 2003, doi: 10.1016/S0921-5107(03)00123-5R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551G. Blaise, “Charge localization and transport in disordered dielectric materials,” J. Electrostat., vol. 50, no. 2, pp. 69–89, Jan. 2001, doi: 10.1016/S0304-3886(00)00027-9Yet-Ming Chiang, Dunbar P. Birnie, and W. David Kingery, Physical ceramics: principles for ceramic science and engineering, vol. 34. 1996. doi: 10.5860/CHOICE.34-1566P. Lakhani, M. Unadkat, P. Solanki, J. H. Markana, M. Ranjan, and B. Kataria, “Structural, electrical transport and optical properties of doped La0.7Ca0.3MnO3 ceramics,” Bol. la Soc. Esp. Ceram. y Vidr., 2021, doi: 10.1016/j.bsecv.2021.07.003J. J. Sprague and H. L. Tuller, “Mixed ionic and electronic conduction in Mn/Mo doped gadolinium titanate,” J. Eur. Ceram. Soc., vol. 19, no. 6–7, pp. 803–806, Jun. 1999, doi: 10.1016/S0955-2219(98)00319-7V. Kharton et al., “Oxygen ionic conductivity of Ti-containing strontium ferrite,” Solid State Ionics, vol. 133, no. 1–2, pp. 57–65, Aug. 2000, doi: 10.1016/S0167-2738(00)00738-4M. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri, and M. A. Garcia, “Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite,” J. Mater. Sci. Mater. Electron., vol. 31, no. 14, pp. 11810–11818, Jul. 2020, doi: 10.1007/s10854-020-03733-9L. Singh, I. W. Kim, B. Cheol Sin, A. Ullah, S. Kook Woo, and Y. Lee, “Study of dielectric, AC-impedance, modulus properties of 0.5Bi0.5Na0.5TiO3·0.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method,” Mater. Sci. Semicond. Process., vol. 31, pp. 386–396, Mar. 2015, doi: 10.1016/j.mssp.2014.12.025C. Ge et al., “Metal-Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquid-Gated Manganite Films,” Adv. Mater. Interfaces, vol. 2, no. 17, p. 1500407, Nov. 2015, doi: 10.1002/admi.201500407M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, “Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites,” Science (80-. )., vol. 285, no. 5433, pp. 1540–1542, Sep. 1999, doi: 10.1126/science.285.5433.1540T. Z. Ward, Z. Gai, X. Y. Xu, H. W. Guo, L. F. Yin, and J. Shen, “Tuning the Metal-Insulator Transition in Manganite Films through Surface Exchange Coupling with Magnetic Nanodots,” Phys. Rev. Lett., vol. 106, no. 15, p. 157207, Apr. 2011, doi: 10.1103/PhysRevLett.106.157207A. Ben Jazia Kharrat, K. Khirouni, and W. Boujelben, “Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route,” Phys. Lett. A, vol. 382, no. 48, pp. 3435–3448, Dec. 2018, doi: 10.1016/j.physleta.2018.10.010S. V. Zubkov, I. A. Parinov, and Y. A. Kuprina, “The Structural and Dielectric Properties of Bi3−xNdxTi1.5W0.5O9 (x = 0.25, 0.5, 0.75, 1.0),” Electronics, vol. 11, no. 2, p. 277, Jan. 2022, doi: 10.3390/electronics11020277EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83161/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL94482128.2022.pdf94482128.2022.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf9551525https://repositorio.unal.edu.co/bitstream/unal/83161/2/94482128.2022.pdfa7e260155554406adf75801e1ee67a3aMD52THUMBNAIL94482128.2022.pdf.jpg94482128.2022.pdf.jpgGenerated Thumbnailimage/jpeg4910https://repositorio.unal.edu.co/bitstream/unal/83161/3/94482128.2022.pdf.jpg9549815610b57c47565bab80251b546fMD53unal/83161oai:repositorio.unal.edu.co:unal/831612023-08-14 23:04:35.58Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=