Existence and analyticity of lump solutions for generalized benney-luke equations

We prove the existence and analyticity of lump solutions (finiteenergy solitary waves) for generalized Benney-Luke equations that arise in the study of the evolution of small amplitude, three-dimensional water waves. The family of generalized Benney-Luke equations reduce formally to the generalized...

Full description

Autores:
Quintero, José Raúl
Tipo de recurso:
Article of journal
Fecha de publicación:
2002
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43807
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43807
http://bdigital.unal.edu.co/33905/
Palabra clave:
Weakly nonlinear waves
travelling waves
concentrationcompactness
analyticity
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We prove the existence and analyticity of lump solutions (finiteenergy solitary waves) for generalized Benney-Luke equations that arise in the study of the evolution of small amplitude, three-dimensional water waves. The family of generalized Benney-Luke equations reduce formally to the generalized Korteweg-de Vries (GKdV) equation and to the generalized Kadomtsev Petviashvili (GKP-I or GKP-II) equation in the appropriate limits. Existence lumps is proved via the concentration-compactness method. When surface tensión is sufficiently strong (Bond number larger thanlj3), we prove that a suitable family of generalized Benney-Luke lump solutions converges to a nontrivial lump solution for the GKP-I equation.