Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada
Ilustraciones, fotografías a blanco y negro, fotografías a color,
- Autores:
-
Ortiz Godoy, Nicolás
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82975
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Deterioración de materiales
Materials - deterioration
Austempering
Austemperado
codeposición
niquelado químico compuesto
material ADI
resistencia al desgaste
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_8dd4bdabc11c3c39cc6185bcce40ee1b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82975 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
dc.title.translated.eng.fl_str_mv |
Synthesis and characterization of Ni-P-VC composite coatings deposited by electroless nickel plating on Austempered nodular cast iron. |
title |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
spellingShingle |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Deterioración de materiales Materials - deterioration Austempering Austemperado codeposición niquelado químico compuesto material ADI resistencia al desgaste |
title_short |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
title_full |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
title_fullStr |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
title_full_unstemmed |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
title_sort |
Síntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular Austemperizada |
dc.creator.fl_str_mv |
Ortiz Godoy, Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Ortiz Godoy, Nicolás |
dc.contributor.author.none.fl_str_mv |
Ortiz Godoy, Nicolás |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis de falla, integridad y superficies AFIS |
dc.contributor.orcid.spa.fl_str_mv |
0000000344684603 |
dc.contributor.cvlac.spa.fl_str_mv |
Nicolas Ortiz Godoy |
dc.contributor.researchgate.spa.fl_str_mv |
Nicolas Ortiz Godoy |
dc.contributor.googlescholar.spa.fl_str_mv |
Nicolas Ortiz Godoy |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Deterioración de materiales Materials - deterioration Austempering Austemperado codeposición niquelado químico compuesto material ADI resistencia al desgaste |
dc.subject.lemb.spa.fl_str_mv |
Deterioración de materiales |
dc.subject.lemb.eng.fl_str_mv |
Materials - deterioration |
dc.subject.proposal.eng.fl_str_mv |
Austempering |
dc.subject.proposal.spa.fl_str_mv |
Austemperado codeposición niquelado químico compuesto material ADI resistencia al desgaste |
description |
Ilustraciones, fotografías a blanco y negro, fotografías a color, |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-17T13:51:40Z |
dc.date.available.none.fl_str_mv |
2023-01-17T13:51:40Z |
dc.date.issued.none.fl_str_mv |
2023-01-16 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82975 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82975 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] A. Muñoz Mizuno and M. Plaza Vega, “Estado actual de la corrosión en Colombia,” Barranquilla, 2015. [2] M. Schlesinger and M. Paunovic, Modern electro-plating, vol. 5, no. 4. 2010. doi: 10.1016/s0016-0032(24)90740-x. [3] P. B. Chikali and V. D. Shinde, “Analysis of machinability in ductile iron casting,” Mater Today Proc, vol. 27, pp. 584–588, 2019, doi: 10.1016/j.matpr.2019.12.064. [4] L. Collini and A. Pirondi, “Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron,” Procedia Structural Integrity, vol. 24, no. 2019, pp. 324–336, 2019, doi: 10.1016/j.prostr.2020.02.030. [5] J. Lacaze, J. Sertucha, and L. Magnusson Åberg, “Microstructure of as-cast ferritic-pearlitic nodular cast irons,” ISIJ International, vol. 56, no. 9, pp. 1606–1615, 2016, doi: 10.2355/isijinternational.ISIJINT-2016-108. [6] American Society for Testing And Materials, “ASTM A536 Ductile Iron Castings,” vol. 84, no. Reapproved. pp. 1–5, 1999. [7] F. Concli, “Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior,” Procedia Structural Integrity, vol. 8, pp. 14–23, 2018. [8] D. Eraslan et al., “Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions,” Journal of Materials Research and Technology, vol. 11, no. 2238–7854, pp. 1443–1456, 2021, doi: 10.1016/j.jmrt.2021.01.123. [9] Y. J. Kim, H. Shin, H. Park, and J. D. Lim, “Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature,” Mater Lett, vol. 62, no. 3, pp. 357–360, 2008, doi: 10.1016/j.matlet.2007.05.028. [10] G. Vidyathee and K. K. Singh, “Thin Wall Austempered Ductile Iron: A Best Replaceable Material To Steel And Aluminum,” International Journal of Mechanical Engineering and Robotics Research, vol. 3, no. 3, pp. 465–473, 2014. [11] C. H. Hsu and M. L. Chen, “Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5% sodium chloride,” Corros Sci, vol. 52, no. 9, pp. 2945–2949, 2010, doi: 10.1016/j.corsci.2010.05.006. [12] O. J. Akinribide, S. O. Akinwamide, O. O. Ajibola, B. A. Obadele, S. O. oluwagbenga Olusunle, and P. A. Olubambi, “Corrosion behavior of ductile and austempered ductile cast iron in 0.01M and 0.05M NaCl Environments.,” Procedia Manuf, vol. 30, pp. 167–172, 2019, doi: 10.1016/j.promfg.2019.02.024. [13] A. Thakur, S. Gharde, and B. Kandasubramanian, “Electroless nickel fabrication on surface modified magnesium substrates,” Defence Technology, vol. 15, no. 4, pp. 636–644, 2019, doi: 10.1016/j.dt.2019.04.006. [14] R. Parkinson, “Properties and applications of electroless nickel,” 2001. [15] D. G. Agredo Diaz et al., “Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution,” Mater Lett, vol. 275, p. 128159, 2020, doi: 10.1016/j.matlet.2020.128159. [16] N. Biswas, R. K. Baranwal, G. Majumdar, and D. Brabazon, “Review of duplex electroless coatings and their properties,” Advances in Materials and Processing Technologies, vol. 4, no. 3, pp. 448–465, 2018, doi: 10.1080/2374068X.2018.1457298. [17] C. H. Hsu, J. K. Lu, and R. J. Tsai, “Effects of low-temperature coating process on mechanical behaviors of ADI,” Materials Science and Engineering A, vol. 398, no. 1–2, pp. 282–290, 2005, doi: 10.1016/j.msea.2005.03.092. [18] P. Sahoo and S. Kalyan Das, “Tribology of electroless nickel coatings - A review,” Mater Des, vol. 32, no. 4, pp. 1760–1775, 2011, doi: 10.1016/j.matdes.2010.11.013. [19] J. N. Balaraju, T. S. N. Sankara, and S. K. Seshadri, “Electroless Ni–P composite coatings,” J Appl Electrochem, vol. 33, no. 9, pp. 807–816, 2003, doi: 10.1023/A:1025572410205. [20] S. Jothi, R. Muraliraja, T. R. Tamilarasan, S. Udayakumar, and A. Selvakumar, “Electroless Composite Coatings,” in Electroless Nickel Plating, 2019, pp. 359–409. doi: 10.1201/9780429466274-9. [21] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. December 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046. [22] D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt Laser Technol, vol. 68, no. Complete, pp. 191–201, 2015, doi: 10.1016/j.optlastec.2014.12.005. [23] T. E. Abioye, P. K. Farayibi, D. G. McCartney, and A. T. Clare, “Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating,” J Mater Process Technol, vol. 231, pp. 89–99, 2016, doi: 10.1016/j.jmatprotec.2015.12.023. [24] G. Herranz, A. Romero, V. de Castro, and G. P. Rodríguez, “Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering,” Mater Des, vol. 54, pp. 934–946, 2014, doi: 10.1016/j.matdes.2013.09.027. [25] Z. Zhang, T. Yu, and R. Kovacevic, “Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC,” Appl Surf Sci, vol. 410, pp. 225–240, 2017, doi: 10.1016/j.apsusc.2017.03.137. [26] Q. Wu, W. Li, N. Zhong, W. Gang, and W. Haishan, “Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate,” Mater Des, vol. 49, pp. 10–18, 2013, doi: 10.1016/j.matdes.2013.01.067. [27] F. Ye et al., “Microstructure, microhardness and wear resistance of VC p /Fe surface composites fabricated in situ,” Appl Surf Sci, vol. 280, pp. 297–303, 2013, doi: 10.1016/j.apsusc.2013.04.152. [28] A. Brenner and G. Riddell, “Nickel plating on steel by chemical reduction,” J Res Natl Bur Stand (1934), pp. 31–34, 1946, [Online]. Available: http://dx.doi.org/10.6028/jres.037.019 [29] Y. Shacham-Diamand, T. Osaka, Y. Okinaka, A. Sugiyama, and V. Dubin, “30 Years of electroless plating for semiconductor and polymer micro-systems,” Microelectron Eng, vol. 132, pp. 35–45, 2015, doi: 10.1016/j.mee.2014.09.003. [30] J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J Alloys Compd, vol. 571, pp. 183–204, 2013, doi: 10.1016/j.jallcom.2013.03.107. [31] P. L. Berrío Herrera y Cairo, “Desarrollo y caracterización de un recubrimiento por niquelado químico sobre aluminio Paula Lidia Berrio Herrera y Cairo,” UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, 2017. [32] R. Tenno, K. Kantola, and H. Koivo, “ELECTROLESS NICKEL PLATING: BATH CONTROL,” IFAC-Papers OnLine, no. 1, p. 6, 2004. [33] P. Sahoo, “Friction performance optimization of electroless Ni-P coatings using the Taguchi method,” J Phys D Appl Phys, vol. 41, no. 9, 2008, doi: 10.1088/0022-3727/41/9/095305. [34] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048. [35] I. Ohno, “Electrochemistry of electroless plating,” Materials Science and Engineering A, vol. 146, no. 1–2, pp. 33–49, 1991, doi: 10.1016/0921-5093(91)90266-P. [36] J. A. Morales Soto, J. C. Rosas Islas, and E. Suarez Juarez, “Obtención y caracterización de sistemas proyección térmica níquel químico sobre aceros de bajo carbono,” Universidad Autónoma de México, 2013. doi: 10.1017/CBO9781107415324.004. [37] V. F. Makarov, Y. v. Prusov, and I. O. Lebedeva, “Electroless deposition of nickel coatings with high phosphorus content,” Russian Journal of Applied Chemistry, vol. 78, no. 1, pp. 82–84, 2005, doi: 10.1007/s11167-005-0235-x. [38] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014. [39] C. A. Loto, “Electroless Niquel Plating,” in Electroless Nickel Plating - A Review, 2016, pp. 177–186. [40] O. S. I. Fayomi, I. G. Akande, and A. A. Sode, “Corrosion Prevention of Metals via Electroless Nickel Coating: A review,” J Phys Conf Ser, vol. 1378, no. 2, 2019, doi: 10.1088/1742-6596/1378/2/022063. [41] ASTM, “Standard specification for autocatalytic (electroless) nickel-phosphorus coatings on metal,” Annual Book of ASTM Standards, pp. 1–14, 2015, doi: 10.1520/B0733-15.2. [42] I. C. Park and S. J. Kim, “Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating,” Appl Surf Sci, vol. 483, no. March, pp. 194–204, 2019, doi: 10.1016/j.apsusc.2019.03.277. [43] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048. [44] M. Meng, A. Leech, and H. Le, “Mechanical properties and tribological behaviour of electroless Ni–P–Cu coatings on corrosion-resistant alloys under ultrahigh contact stress with sprayed nanoparticles,” Tribol Int, vol. 139, no. April, pp. 59–66, 2019, doi: 10.1016/j.triboint.2019.06.031. [45] B. Panja and P. Sahoo, “Wear Behavior of Electroless Ni-P Coatings in Brine Solution and Optimization of Coating Parameters,” Procedia Technology, vol. 14, pp. 173–180, 2014, doi: 10.1016/j.protcy.2014.08.023. [46] L. L. Lobanova, E. v. Batalova, and Yu. P. Khranilov, “Reagent techniques for nickel recovery from spent electroless nickel-plating solutions,” Russian Journal of Applied Chemistry, vol. 81, no. 2, pp. 202–206, 2008, doi: 10.1134/s1070427208020080. [47] L. Bonin, V. Vitry, and F. Delaunois, “The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless NiB coatings,” Surf Coat Technol, vol. 357, no. August 2018, pp. 353–363, 2019, doi: 10.1016/j.surfcoat.2018.10.011. [48] M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5–6, pp. 735–740, 2008, doi: 10.1016/j.wear.2008.01.002. [49] Z. Huang, T. T. Nguyen, Y. Zhou, and G. Qi, “A low temperature electroless nickel plating chemistry,” Surf Coat Technol, vol. 372, no. May, pp. 160–165, 2019, doi: 10.1016/j.surfcoat.2019.05.019. [50] D. Mohanty, T. K. Barman, and P. Sahoo, “Characterisation and corrosion study of electroless Nickel-Boron coating reinforced with alumina nanoparticles,” Mater Today Proc, no. xxxx, pp. 1–5, 2019, doi: 10.1016/j.matpr.2019.07.216. [51] A. Akyol, H. Algul, M. Uysal, H. Akbulut, and A. Alp, “A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions,” Appl Surf Sci, vol. 453, no. December 2017, pp. 482–492, 2018, doi: 10.1016/j.apsusc.2018.05.152. [52] D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, “Preparation and properties of electroless Ni-P-SiO 2 composite coatings,” Appl Surf Sci, vol. 255, no. 15, pp. 7051–7055, 2009, doi: 10.1016/j.apsusc.2009.03.039. [53] J. Li, D. Wang, H. Cai, A. Wang, and J. Zhang, “Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid,” Surf Coat Technol, vol. 279, no. 5, pp. 9–15, 2015, doi: 10.1016/j.surfcoat.2015.08.017. [54] L. Zhong, X. Zhang, S. Chen, Y. Xu, H. Wu, and J. Wang, “Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion,” Int J Refract Metals Hard Mater, vol. 57, pp. 42–49, 2016, doi: 10.1016/j.ijrmhm.2016.02.001. [55] H. L. Wang, L. Y. Liu, Y. Dou, W. Z. Zhang, and W. F. Jiang, “Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy,” Appl Surf Sci, vol. 286, pp. 319–327, 2013, doi: 10.1016/j.apsusc.2013.09.079. [56] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Aplications. Orlando: American Electroplaters and Surface Finishers Society, 1990. [57] D. R. Dhakal, G. Gyawali, Y. K. Kshetri, J. H. Choi, and S. W. Lee, “Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating,” Surf Coat Technol, vol. 381, no. November 2019, p. 125135, 2020, doi: 10.1016/j.surfcoat.2019.125135. [58] Y. Jin et al., “Structural and phase transformation behaviour of electroless Ni-W-Cr-P alloy coatings on stainless steel,” Inorganic Materials, vol. 46, no. 6, pp. 631–638, 2010, doi: 10.1134/S0020168510060130. [59] E. Valova et al., “Electroless deposited Ni-Re-P, Ni-W-P and Ni-Re-W-P alloys,” J Appl Electrochem, vol. 31, no. 12, pp. 1367–1372, 2001, doi: 10.1023/A:1013862729960. [60] S. Tian, W. Sun, Y. Liu, Y. Jia, and Y. Xiao, “Effect of Na2WO4 Concentration on the Microstructure and Corrosion Behavior of Ni-W-P Ternary Alloy Coatings,” Materials Research, vol. 24, no. 4, 2021, doi: 10.1590/1980-5373-mr-2020-0580. [61] N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths,” J Electrochem Soc, vol. 119, p. 1009, 1972. [62] P. Liu and Y. Zhu, “Interaction Between Fine Diamond Particles in Electroless Nickel Solutions,” J Dispers Sci Technol, vol. 36, no. 8, pp. 1170–1177, 2015, doi: 10.1080/01932691.2014.960525. [63] V. Krishnakumar and R. Elansezhian, “Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants,” Mater Today Proc, no. xxxx, pp. 1–5, 2021, doi: 10.1016/j.matpr.2021.05.467. [64] P. Liu, Y. Zhu, G. Zhong, X. Zhao, S. Wang, and S. Yang, “Influence of inorganic coating over diamond particles on interaction force and dispersability in electroless solution,” Powder Technol, vol. 342, pp. 899–906, 2019, doi: 10.1016/j.powtec.2018.10.059. [65] S. Kundu, S. K. Das, and P. Sahoo, “Friction and wear behavior of electroless Ni-P-W coating exposed to elevated temperature,” Surfaces and Interfaces, vol. 14, no. December 2018, pp. 192–207, 2019, doi: 10.1016/j.surfin.2018.12.007. [66] D. Ahmadkhaniha, F. Eriksson, P. Leisner, and C. Zanella, “Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings,” J Alloys Compd, vol. 769, pp. 1080–1087, 2018, doi: https://doi.org/10.1016/j.jallcom.2018.08.013. [67] C. Falton, Iron casting handbook. Iron Casting Society, 1981. [68] S. K. Allen, C. S. Barrett, A. O. Benscoter, and M. B. Bever, ASM Handbook Volume 9 Metallography and Microstructures, vol. 2. 2001. doi: 10.1016/S0026-0576(03)90166-8. [69] G. Castro, “Fundiciones,” Facultad de Ingeniería Universidad de Buenos Aires, Buenos Aires, 2009. [70] K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, and M. J. S. Hashmi, “Surface melting of nodular cast iron by Nd-YAG laser and TIG,” J Mater Process Technol, vol. 170, no. 1–2, pp. 127–132, 2005, doi: 10.1016/j.jmatprotec.2005.04.108. [71] K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis, “Microstructure and erosion resistance enhancement of nodular cast iron by laser melting,” Wear, vol. 266, no. 9–10, pp. 925–933, 2009, doi: 10.1016/j.wear.2008.12.015. [72] H. Yan, A. Wang, Z. Xiong, K. Xu, and Z. Huang, “Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying,” Appl Surf Sci, vol. 256, no. 23, pp. 7001–7009, 2010, doi: 10.1016/j.apsusc.2010.05.015. [73] F. J. Rodríguez, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Evaluación de propiedades elásticas de la fundición nodular empleando micromecánica computacional,” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 31, no. 2, pp. 91–105, 2015, doi: 10.1016/j.rimni.2014.01.003. [74] J. M. Velez Restrepo, “Austemperado de la fundición nodular: fundamentos y tecnología,” Universidad Nacional de Colombia sede Medellín, 2001. [75] H. Sierra Restrepo and J. Ortega González, “Temperatura de transición de la fundición nodular austemperada no aleada,” Revista Universidad EAFIT, vol. 40, no. 134, pp. 80–89, 2004. [76] ASTM, Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, pp. 4–9. doi: 10.1520/A0897. [77] B. Wang, G. C. Barber, F. Qiu, Q. Zou, and H. Yang, “A review: Phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 1054–1069, 2020, doi: 10.1016/j.jmrt.2019.10.074. [78] Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, p. 8. [79] M. Bahmani, R. Elliott, and N. Varahram, “Austempered ductile iron: a competitive alternative for forged induction-hardened steel crankshafts,” International Journal of Cast Metals Research, vol. 9, no. 5, pp. 249–257, Jan. 1997, doi: 10.1080/13640461.1997.11819666. [80] J. Lefevre and K. L. Hayrynen, “Austempered materials for powertrain applications,” J Mater Eng Perform, vol. 22, no. 7, pp. 1914–1922, 2013, doi: 10.1007/s11665-013-0557-4. [81] L. H. Larumbe, E. H. Delgado, M. Alvarez-Vera, and P. P. Villanueva, “Forming process using austempered ductile iron (ADI) in an automotive Pitman arm,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 1–4, pp. 569–575, 2017, doi: 10.1007/s00170-016-9771-1. [82] Y. Du, X. Gao, X. Wang, X. Wang, Y. Ge, and B. Jiang, “Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures,” Wear, vol. 456–457, no. April, p. 203396, 2020, doi: 10.1016/j.wear.2020.203396. [83] R. Upadhyaya, K. K. Singh, R. Kumar, and M. S. Chandran, “Study on the Effect of Austempering Temperature on the Structure-Properties of Thin Wall Austempered Ductile Iron,” Mater Today Proc, vol. 5, no. 5, pp. 13472–13477, 2018, doi: 10.1016/j.matpr.2018.02.342. [84] J. R. Keough, “Austempered Ductile Iron (ADI) – A Green Alternative,” American Foundry Society, vol. 119, no. 11–126, pp. 591–599, 2011. [85] C. H. Hsu, K. L. Chen, and J. H. Lu, “Effects of electroless nickel interlayer on surface properties of CrN arc-coated austempered ductile iron,” Surf Coat Technol, vol. 203, no. 5–7, pp. 868–871, 2008, doi: 10.1016/j.surfcoat.2008.05.031. [86] C. H. Hsu, K. H. Huang, Y. T. Chen, and W. Y. Ho, “The effect of electroless Ni-P interlayer on corrosion behavior of TiN-coated austempered ductile iron,” Thin Solid Films, vol. 529, pp. 34–38, 2013, doi: 10.1016/j.tsf.2012.05.050. [87] O. O. Ige, O. J. Olawale, K. M. Oluwasegun, S. Aribo, B. A. Obadele, and P. A. Olubambi, “Corrosion Behaviour of Austempered Ductile Iron Produced by Forced Air Quenching Method in a Simulated Mine Water,” Procedia Manuf, vol. 7, pp. 579–583, 2017, doi: 10.1016/j.promfg.2016.12.084. [88] M. Pooja, V. Vijeesh, A. O. Surendranathan, K. R. Udupa, and K. G. Samuel, “Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry,” International Journal of Engineering, Science and Technology, vol. 8, no. 3, p. 7, 2016, doi: 10.4314/ijest.v8i3.2. [89] A. D. Sosa, C. S. Rosales, R. E. Boeri, and S. N. Simison, “Corrosion mechanisms in ADI parts,” International Journal of Cast Metals Research, vol. 29, no. 1–2, pp. 106–111, 2016, doi: 10.1080/13640461.2015.1106784. [90] C. E. Arroyave, “La corrosión de las economías,” EL TIEMPO, pp. 1–6, 1991. [91] L. Pereira, M. R. Belle, W. M. Pasini, and V. K. de Barcellos, “Determination of the process window of Austemper treatment to obtain ADI through neural network simulation,” pp. 1547–1553, 2018, doi: 10.5151/1516-392x-31701. [92] J. F. Janowak and R. B. Gundlach, “Development of a ductile iron for a commercial Austempering,” Trans Am Foundrymen’s Soc, vol. 91, p. 377, 1983. [93] D. Moore, T. N. Rouns, and K. B. Roundman, “Structure and properties of Austempered ductile iron,” Trans Am Foundrymen’s Soc, vol. 93, p. 705, 1985. [94] S. Sarkar, R. K. Baranwal, C. Biswas, G. Majumdar, and J. Haider, “Optimization of process parameters for electroless Ni-Co-P coating deposition to maximize micro-hardness,” Mater Res Express, vol. 6, no. 4, 2019, doi: 10.1088/2053-1591/aafc47. [95] F. E. Mariani, G. S. Takeya, A. N. Lombardi, C. A. Picone, and L. C. Casteletti, “Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments,” Surf Coat Technol, vol. 397, p. 126050, 2020, doi: 10.1016/j.surfcoat.2020.126050. [96] M. Peet and H. K. D. H. Bhadeshia, “https://www.factsage.com/,” Department of Materials Science and Metallurgy. [97] N. Ortiz, G. Agredo, A. Barba, J. J. Olaya, R. Valdez, and R. González, “Estudio Microestructural de Fundiciones Nodulares Sometidas a Tratamiento de Austempering.” [98] Z. H. Huang, Y. J. Zhou, and T. T. Nguyen, “Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB 2 , ZrB 2 and TiC particles for improved wear and corrosion resistance,” Surf Coat Technol, vol. 364, no. August 2018, pp. 323–329, 2019, doi: 10.1016/j.surfcoat.2019.01.060. [99] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. November 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046. [100] A. Sharma and A. K. Singh, “Electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings and their corrosion and wear resistance,” J Mater Eng Perform, vol. 22, no. 1, pp. 176–183, 2013, doi: 10.1007/s11665-012-0224-1. [101] H. Macías, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo,” 2020. [102] J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016, pp. 81–124. [103] W. Conshohocken, “G99 Standard Test Method for Wear Testing with a Pin-on-Disk,” in ASTM, vol. v, pp. 1–5. [104] M. Hanief and M. S. Charoo, “Archard ’ s wear law revisited to measure accurate wear coefficient considering actual sliding velocity,” Mater Today Proc, vol. 47, pp. 5598–5600, 2021. [105] H. Ju, S. He, L. Yu, I. Asempah, and J. Xu, “The improvement of oxidation resistance , mechanical and tribological properties of W 2 N films by doping silicon,” Surf Coat Technol, vol. 317, pp. 158–165, 2017. [106] ASM Metals, Handbook Volume 13, Corrosion. 1992. [107] U. P. Morales, E. V. López, and C. O. Otálora, “Aspectos básicos en la interpretación de diagramas de impedancia electroquímica,” Revista de ingeniería DYNA, vol. 162, pp. 13–19, 2010. [108] ASTM International, “Standard Specification for Ductile Iron Castings,” Current, vol. 83, no. Reapproved. pp. 4–9, 2019. doi: 10.1520/A0842-11A.2. [109] J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, and L. Lu, “Microstructure and mechanical properties of austempered ductile iron with different strength grades,” Material Letters, vol. 119, pp. 47–50, 2014, doi: http://dx.doi.org/10.1016/j.matlet.2013.12.086. [110] A. Ramalho and J. C. Miranda, “Friction and wear of electroless NiP and NiP + PTFE coatings,” Wear, vol. 259, no. 7–12, pp. 828–834, 2005, doi: 10.1016/j.wear.2005.02.052. [111] C. Hernández, H. Francisco, and U. Ordoñes, “Rolling contact fatigue wear of nitriding austempered ductile rolling contact fatigue wear of nitriding austempered ductile iron ( ADI ) -ADI discs,” Conference: Congresso Brasileiro de Engenharia Mecânica, no. November 2001, p. 9, 2001. [112] G. T. Sudha, B. Stalin, B. Ravichandran, and M. Balasubramanian, “Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review,” Mater Today Proc, 2020. [113] Z. hou LI, Z. yong CHEN, S. sha LIU, F. ZHENG, and A. gan DAI, “Corrosion and wear properties of electroless Ni-P plating layer on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 4, pp. 819–824, 2008, doi: 10.1016/S1003-6326(08)60142-9. [114] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 95 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82975/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82975/2/S%c3%adntesis%20y%20caracterizaci%c3%b3n%20de%20recubrimientos%20compuestos%20de%20Ni-P-VC.pdf https://repositorio.unal.edu.co/bitstream/unal/82975/3/S%c3%adntesis%20y%20caracterizaci%c3%b3n%20de%20recubrimientos%20compuestos%20de%20Ni-P-VC.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 6beed8fe361338fba81d11b57dec58be 503cbdfd3038f3e2a755c7341957fa77 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089430401548288 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz Godoy, Nicolásb3141f0fb5d548012ccbe187dbe7c998Ortiz Godoy, Nicolásb3141f0fb5d548012ccbe187dbe7c998Análisis de falla, integridad y superficies AFIS0000000344684603Nicolas Ortiz GodoyNicolas Ortiz GodoyNicolas Ortiz Godoy2023-01-17T13:51:40Z2023-01-17T13:51:40Z2023-01-16https://repositorio.unal.edu.co/handle/unal/82975Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías a blanco y negro, fotografías a color,Las piezas de ingeniería usadas en la industria automotriz como ejes, cardanes, bielas, cigüeñales, engranajes y calipers, entre otros, son fabricados en material ADI, estas piezas están sometidas principalmente a condiciones de desgaste y corrosión. El objetivo principal de esta investigación es alargar la vida útil de componentes de ingeniería de material ADI, mediante la mejora de la resistencia al desgaste y a la corrosión del sustrato, al implementar recubrimientos compuestos de Ni-P-VC usando la técnica de niquelado químico. El material ADI fue obtenido mediante la aplicación de un tratamiento térmico de Austempering en una fundición nodular grado 2, y los recubrimientos fueron obtenidos mediante la técnica de niquelado químico compuesto, realizando la coprecipitación de las partículas de VC mediante un procedimiento de bajo impacto ambiental, variando el tiempo de inmersión en el baño químico para obtener distintos espesores de recubrimiento. El sustrato y los recubrimientos fueron caracterizados estructuralmente mediante difracción de rayos X (XRD), morfológicamente mediante microscopia óptica y microscopia electrónica de barrido (SEM), rugosidad de los recubrimientos mediante interferometría, química elemental mediante (EDS) y espectroscopia de emisión óptica, la dureza mediante dureza HRC y microdureza HV, desgaste mediante Pin On Disk, adherencia mediante Scratch y electroquímica mediante EIS y TAFEL. Se encontró que los recubrimientos tienen una dureza de hasta 1013.9 ± 10 HV, presentando superficies homogéneas. Los recubrimientos con un tiempo mayor de inmersión obtuvieron un porcentaje mayor de partículas de VC y un espesor de 35 µm los cuales presentan una mejor resistencia al desgaste y a la corrosión, mejorando la resistencia al desgaste y corrosión del sustrato de material ADI en un 4772 % y 259 % respectivamente, con una tasa de desgaste de 3,14〖x10〗^(-8) 〖mm〗^3⁄Nmm y potencial de corrosión de -22 V. (Texto tomado de la fuente)The engineering parts used in the automotive industry such as axles, cardan shafts, connecting rods, crankshafts, gears and calipers, among others, are manufactured in ADI material, these parts are mainly subjected to wear and corrosion conditions. The main objective of this research is to extend the service life of engineering components made of ADI material, by improving the wear and corrosion resistance of the substrate, by implementing Ni-P-VC composite coatings using the electroless nickel plating technique. The ADI material was obtained by applying an Austempering heat treatment on a grade 2 nodular cast iron, and the coatings were obtained using the composite electroless nickel plating technique, performing the co-precipitation of VC particles using a low environmental impact procedure, varying the immersion time in the chemical bath to obtain different coating thicknesses. The substrate and coatings were characterized structurally by X-ray diffraction (XRD), morphologically by optical microscopy and scanning electron microscopy (SEM), roughness of the coatings by interferometry, elemental chemistry by (EDS) and optical emission spectroscopy, hardness by hardness HRC and microhardness HV, wear by Pin On Disk, adhesion by Scratch and electrochemistry by EIS and TAFEL. The coatings were found to have hardness up to 1013.9 ±10 HV, with homogeneous surfaces. The coatings with longer immersion time obtained a higher percentage of VC particles and a thickness of 35 µm present better wear and corrosion resistance, improving the wear and corrosion resistance of the 4772 % y 259 % respectively, with a wear rate of 3,14〖x10〗^(-8) 〖mm〗^3⁄Nmm and corrosion potential of -22 V.MaestríaMagíster en Ingeniería - Materiales y ProcesosPara el desarrollo de este trabajo se tienen en cuenta todas las variables de entrada que afectan directamente los resultados en este trabajo, las cuales son: La composición del recubrimiento, Ni-P y Ni-P-VC, y el espesor de los recubrimientos. Por lo tanto, este es un diseño factorial con dos factores de variación. Se debe establecer el error experimental y el grado de confiabilidad para elegir así la cantidad de repeticiones necesarias al realizar cada experimentación, para lo cual es necesario realizar una prueba piloto o realizar una búsqueda bibliográfica que permita determinar este parámetro [77]. Al realizar la revisión bibliográfica, de artículos y tesis en los que se realizaran procedimientos en los cuales se tienen deposición de recubrimientos mediante niquelado químico, utilizaron un número de repeticiones de los ensayos de entre 3 y 5 veces [35], [94], [45], [52], [95].Ingeniería de superficiesxviii, 95 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaDeterioración de materialesMaterials - deteriorationAustemperingAustemperadocodeposiciónniquelado químico compuestomaterial ADIresistencia al desgasteSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC depositados mediante niquelado químico sobre fundición nodular AustemperizadaSynthesis and characterization of Ni-P-VC composite coatings deposited by electroless nickel plating on Austempered nodular cast iron.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] A. Muñoz Mizuno and M. Plaza Vega, “Estado actual de la corrosión en Colombia,” Barranquilla, 2015.[2] M. Schlesinger and M. Paunovic, Modern electro-plating, vol. 5, no. 4. 2010. doi: 10.1016/s0016-0032(24)90740-x.[3] P. B. Chikali and V. D. Shinde, “Analysis of machinability in ductile iron casting,” Mater Today Proc, vol. 27, pp. 584–588, 2019, doi: 10.1016/j.matpr.2019.12.064.[4] L. Collini and A. Pirondi, “Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron,” Procedia Structural Integrity, vol. 24, no. 2019, pp. 324–336, 2019, doi: 10.1016/j.prostr.2020.02.030.[5] J. Lacaze, J. Sertucha, and L. Magnusson Åberg, “Microstructure of as-cast ferritic-pearlitic nodular cast irons,” ISIJ International, vol. 56, no. 9, pp. 1606–1615, 2016, doi: 10.2355/isijinternational.ISIJINT-2016-108.[6] American Society for Testing And Materials, “ASTM A536 Ductile Iron Castings,” vol. 84, no. Reapproved. pp. 1–5, 1999.[7] F. Concli, “Austempered Ductile Iron (ADI) for gears: Contact and bending fatigue behavior,” Procedia Structural Integrity, vol. 8, pp. 14–23, 2018.[8] D. Eraslan et al., “Machinability evaluations of austempered ductile iron and cast steel with similar mechanical properties under eco-friendly milling conditions,” Journal of Materials Research and Technology, vol. 11, no. 2238–7854, pp. 1443–1456, 2021, doi: 10.1016/j.jmrt.2021.01.123.[9] Y. J. Kim, H. Shin, H. Park, and J. D. Lim, “Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature,” Mater Lett, vol. 62, no. 3, pp. 357–360, 2008, doi: 10.1016/j.matlet.2007.05.028.[10] G. Vidyathee and K. K. Singh, “Thin Wall Austempered Ductile Iron: A Best Replaceable Material To Steel And Aluminum,” International Journal of Mechanical Engineering and Robotics Research, vol. 3, no. 3, pp. 465–473, 2014.[11] C. H. Hsu and M. L. Chen, “Corrosion behavior of nickel alloyed and austempered ductile irons in 3.5% sodium chloride,” Corros Sci, vol. 52, no. 9, pp. 2945–2949, 2010, doi: 10.1016/j.corsci.2010.05.006.[12] O. J. Akinribide, S. O. Akinwamide, O. O. Ajibola, B. A. Obadele, S. O. oluwagbenga Olusunle, and P. A. Olubambi, “Corrosion behavior of ductile and austempered ductile cast iron in 0.01M and 0.05M NaCl Environments.,” Procedia Manuf, vol. 30, pp. 167–172, 2019, doi: 10.1016/j.promfg.2019.02.024.[13] A. Thakur, S. Gharde, and B. Kandasubramanian, “Electroless nickel fabrication on surface modified magnesium substrates,” Defence Technology, vol. 15, no. 4, pp. 636–644, 2019, doi: 10.1016/j.dt.2019.04.006.[14] R. Parkinson, “Properties and applications of electroless nickel,” 2001.[15] D. G. Agredo Diaz et al., “Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution,” Mater Lett, vol. 275, p. 128159, 2020, doi: 10.1016/j.matlet.2020.128159.[16] N. Biswas, R. K. Baranwal, G. Majumdar, and D. Brabazon, “Review of duplex electroless coatings and their properties,” Advances in Materials and Processing Technologies, vol. 4, no. 3, pp. 448–465, 2018, doi: 10.1080/2374068X.2018.1457298.[17] C. H. Hsu, J. K. Lu, and R. J. Tsai, “Effects of low-temperature coating process on mechanical behaviors of ADI,” Materials Science and Engineering A, vol. 398, no. 1–2, pp. 282–290, 2005, doi: 10.1016/j.msea.2005.03.092.[18] P. Sahoo and S. Kalyan Das, “Tribology of electroless nickel coatings - A review,” Mater Des, vol. 32, no. 4, pp. 1760–1775, 2011, doi: 10.1016/j.matdes.2010.11.013.[19] J. N. Balaraju, T. S. N. Sankara, and S. K. Seshadri, “Electroless Ni–P composite coatings,” J Appl Electrochem, vol. 33, no. 9, pp. 807–816, 2003, doi: 10.1023/A:1025572410205.[20] S. Jothi, R. Muraliraja, T. R. Tamilarasan, S. Udayakumar, and A. Selvakumar, “Electroless Composite Coatings,” in Electroless Nickel Plating, 2019, pp. 359–409. doi: 10.1201/9780429466274-9.[21] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. December 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046.[22] D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, “Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding,” Opt Laser Technol, vol. 68, no. Complete, pp. 191–201, 2015, doi: 10.1016/j.optlastec.2014.12.005.[23] T. E. Abioye, P. K. Farayibi, D. G. McCartney, and A. T. Clare, “Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating,” J Mater Process Technol, vol. 231, pp. 89–99, 2016, doi: 10.1016/j.jmatprotec.2015.12.023.[24] G. Herranz, A. Romero, V. de Castro, and G. P. Rodríguez, “Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering,” Mater Des, vol. 54, pp. 934–946, 2014, doi: 10.1016/j.matdes.2013.09.027.[25] Z. Zhang, T. Yu, and R. Kovacevic, “Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC,” Appl Surf Sci, vol. 410, pp. 225–240, 2017, doi: 10.1016/j.apsusc.2017.03.137.[26] Q. Wu, W. Li, N. Zhong, W. Gang, and W. Haishan, “Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate,” Mater Des, vol. 49, pp. 10–18, 2013, doi: 10.1016/j.matdes.2013.01.067.[27] F. Ye et al., “Microstructure, microhardness and wear resistance of VC p /Fe surface composites fabricated in situ,” Appl Surf Sci, vol. 280, pp. 297–303, 2013, doi: 10.1016/j.apsusc.2013.04.152.[28] A. Brenner and G. Riddell, “Nickel plating on steel by chemical reduction,” J Res Natl Bur Stand (1934), pp. 31–34, 1946, [Online]. Available: http://dx.doi.org/10.6028/jres.037.019[29] Y. Shacham-Diamand, T. Osaka, Y. Okinaka, A. Sugiyama, and V. Dubin, “30 Years of electroless plating for semiconductor and polymer micro-systems,” Microelectron Eng, vol. 132, pp. 35–45, 2015, doi: 10.1016/j.mee.2014.09.003.[30] J. Sudagar, J. Lian, and W. Sha, “Electroless nickel, alloy, composite and nano coatings - A critical review,” J Alloys Compd, vol. 571, pp. 183–204, 2013, doi: 10.1016/j.jallcom.2013.03.107.[31] P. L. Berrío Herrera y Cairo, “Desarrollo y caracterización de un recubrimiento por niquelado químico sobre aluminio Paula Lidia Berrio Herrera y Cairo,” UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, 2017.[32] R. Tenno, K. Kantola, and H. Koivo, “ELECTROLESS NICKEL PLATING: BATH CONTROL,” IFAC-Papers OnLine, no. 1, p. 6, 2004.[33] P. Sahoo, “Friction performance optimization of electroless Ni-P coatings using the Taguchi method,” J Phys D Appl Phys, vol. 41, no. 9, 2008, doi: 10.1088/0022-3727/41/9/095305.[34] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048.[35] I. Ohno, “Electrochemistry of electroless plating,” Materials Science and Engineering A, vol. 146, no. 1–2, pp. 33–49, 1991, doi: 10.1016/0921-5093(91)90266-P.[36] J. A. Morales Soto, J. C. Rosas Islas, and E. Suarez Juarez, “Obtención y caracterización de sistemas proyección térmica níquel químico sobre aceros de bajo carbono,” Universidad Autónoma de México, 2013. doi: 10.1017/CBO9781107415324.004.[37] V. F. Makarov, Y. v. Prusov, and I. O. Lebedeva, “Electroless deposition of nickel coatings with high phosphorus content,” Russian Journal of Applied Chemistry, vol. 78, no. 1, pp. 82–84, 2005, doi: 10.1007/s11167-005-0235-x.[38] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014.[39] C. A. Loto, “Electroless Niquel Plating,” in Electroless Nickel Plating - A Review, 2016, pp. 177–186.[40] O. S. I. Fayomi, I. G. Akande, and A. A. Sode, “Corrosion Prevention of Metals via Electroless Nickel Coating: A review,” J Phys Conf Ser, vol. 1378, no. 2, 2019, doi: 10.1088/1742-6596/1378/2/022063.[41] ASTM, “Standard specification for autocatalytic (electroless) nickel-phosphorus coatings on metal,” Annual Book of ASTM Standards, pp. 1–14, 2015, doi: 10.1520/B0733-15.2.[42] I. C. Park and S. J. Kim, “Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating,” Appl Surf Sci, vol. 483, no. March, pp. 194–204, 2019, doi: 10.1016/j.apsusc.2019.03.277.[43] W. Shang et al., “Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy,” Chem Eng Sci, vol. 207, pp. 1299–1308, 2019, doi: 10.1016/j.ces.2019.07.048.[44] M. Meng, A. Leech, and H. Le, “Mechanical properties and tribological behaviour of electroless Ni–P–Cu coatings on corrosion-resistant alloys under ultrahigh contact stress with sprayed nanoparticles,” Tribol Int, vol. 139, no. April, pp. 59–66, 2019, doi: 10.1016/j.triboint.2019.06.031.[45] B. Panja and P. Sahoo, “Wear Behavior of Electroless Ni-P Coatings in Brine Solution and Optimization of Coating Parameters,” Procedia Technology, vol. 14, pp. 173–180, 2014, doi: 10.1016/j.protcy.2014.08.023.[46] L. L. Lobanova, E. v. Batalova, and Yu. P. Khranilov, “Reagent techniques for nickel recovery from spent electroless nickel-plating solutions,” Russian Journal of Applied Chemistry, vol. 81, no. 2, pp. 202–206, 2008, doi: 10.1134/s1070427208020080.[47] L. Bonin, V. Vitry, and F. Delaunois, “The tin stabilization effect on the microstructure, corrosion and wear resistance of electroless NiB coatings,” Surf Coat Technol, vol. 357, no. August 2018, pp. 353–363, 2019, doi: 10.1016/j.surfcoat.2018.10.011.[48] M. Palaniappa and S. K. Seshadri, “Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings,” Wear, vol. 265, no. 5–6, pp. 735–740, 2008, doi: 10.1016/j.wear.2008.01.002.[49] Z. Huang, T. T. Nguyen, Y. Zhou, and G. Qi, “A low temperature electroless nickel plating chemistry,” Surf Coat Technol, vol. 372, no. May, pp. 160–165, 2019, doi: 10.1016/j.surfcoat.2019.05.019.[50] D. Mohanty, T. K. Barman, and P. Sahoo, “Characterisation and corrosion study of electroless Nickel-Boron coating reinforced with alumina nanoparticles,” Mater Today Proc, no. xxxx, pp. 1–5, 2019, doi: 10.1016/j.matpr.2019.07.216.[51] A. Akyol, H. Algul, M. Uysal, H. Akbulut, and A. Alp, “A novel approach for wear and corrosion resistance in the electroless Ni-P-W alloy with CNFs co-depositions,” Appl Surf Sci, vol. 453, no. December 2017, pp. 482–492, 2018, doi: 10.1016/j.apsusc.2018.05.152.[52] D. Dong, X. H. Chen, W. T. Xiao, G. B. Yang, and P. Y. Zhang, “Preparation and properties of electroless Ni-P-SiO 2 composite coatings,” Appl Surf Sci, vol. 255, no. 15, pp. 7051–7055, 2009, doi: 10.1016/j.apsusc.2009.03.039.[53] J. Li, D. Wang, H. Cai, A. Wang, and J. Zhang, “Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid,” Surf Coat Technol, vol. 279, no. 5, pp. 9–15, 2015, doi: 10.1016/j.surfcoat.2015.08.017.[54] L. Zhong, X. Zhang, S. Chen, Y. Xu, H. Wu, and J. Wang, “Fe-W-C thermodynamics and in situ preparation of tungsten carbide-reinforced iron-based surface composites by solid-phase diffusion,” Int J Refract Metals Hard Mater, vol. 57, pp. 42–49, 2016, doi: 10.1016/j.ijrmhm.2016.02.001.[55] H. L. Wang, L. Y. Liu, Y. Dou, W. Z. Zhang, and W. F. Jiang, “Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy,” Appl Surf Sci, vol. 286, pp. 319–327, 2013, doi: 10.1016/j.apsusc.2013.09.079.[56] G. O. Mallory and J. B. Hajdu, Electroless Plating: Fundamentals and Aplications. Orlando: American Electroplaters and Surface Finishers Society, 1990.[57] D. R. Dhakal, G. Gyawali, Y. K. Kshetri, J. H. Choi, and S. W. Lee, “Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating,” Surf Coat Technol, vol. 381, no. November 2019, p. 125135, 2020, doi: 10.1016/j.surfcoat.2019.125135.[58] Y. Jin et al., “Structural and phase transformation behaviour of electroless Ni-W-Cr-P alloy coatings on stainless steel,” Inorganic Materials, vol. 46, no. 6, pp. 631–638, 2010, doi: 10.1134/S0020168510060130.[59] E. Valova et al., “Electroless deposited Ni-Re-P, Ni-W-P and Ni-Re-W-P alloys,” J Appl Electrochem, vol. 31, no. 12, pp. 1367–1372, 2001, doi: 10.1023/A:1013862729960.[60] S. Tian, W. Sun, Y. Liu, Y. Jia, and Y. Xiao, “Effect of Na2WO4 Concentration on the Microstructure and Corrosion Behavior of Ni-W-P Ternary Alloy Coatings,” Materials Research, vol. 24, no. 4, 2021, doi: 10.1590/1980-5373-mr-2020-0580.[61] N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths,” J Electrochem Soc, vol. 119, p. 1009, 1972.[62] P. Liu and Y. Zhu, “Interaction Between Fine Diamond Particles in Electroless Nickel Solutions,” J Dispers Sci Technol, vol. 36, no. 8, pp. 1170–1177, 2015, doi: 10.1080/01932691.2014.960525.[63] V. Krishnakumar and R. Elansezhian, “Dispersion stability of zinc oxide nanoparticles in an electroless bath with various surfactants,” Mater Today Proc, no. xxxx, pp. 1–5, 2021, doi: 10.1016/j.matpr.2021.05.467.[64] P. Liu, Y. Zhu, G. Zhong, X. Zhao, S. Wang, and S. Yang, “Influence of inorganic coating over diamond particles on interaction force and dispersability in electroless solution,” Powder Technol, vol. 342, pp. 899–906, 2019, doi: 10.1016/j.powtec.2018.10.059.[65] S. Kundu, S. K. Das, and P. Sahoo, “Friction and wear behavior of electroless Ni-P-W coating exposed to elevated temperature,” Surfaces and Interfaces, vol. 14, no. December 2018, pp. 192–207, 2019, doi: 10.1016/j.surfin.2018.12.007.[66] D. Ahmadkhaniha, F. Eriksson, P. Leisner, and C. Zanella, “Effect of SiC particle size and heat-treatment on microhardness and corrosion resistance of NiP electrodeposited coatings,” J Alloys Compd, vol. 769, pp. 1080–1087, 2018, doi: https://doi.org/10.1016/j.jallcom.2018.08.013.[67] C. Falton, Iron casting handbook. Iron Casting Society, 1981.[68] S. K. Allen, C. S. Barrett, A. O. Benscoter, and M. B. Bever, ASM Handbook Volume 9 Metallography and Microstructures, vol. 2. 2001. doi: 10.1016/S0026-0576(03)90166-8.[69] G. Castro, “Fundiciones,” Facultad de Ingeniería Universidad de Buenos Aires, Buenos Aires, 2009.[70] K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, and M. J. S. Hashmi, “Surface melting of nodular cast iron by Nd-YAG laser and TIG,” J Mater Process Technol, vol. 170, no. 1–2, pp. 127–132, 2005, doi: 10.1016/j.jmatprotec.2005.04.108.[71] K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis, “Microstructure and erosion resistance enhancement of nodular cast iron by laser melting,” Wear, vol. 266, no. 9–10, pp. 925–933, 2009, doi: 10.1016/j.wear.2008.12.015.[72] H. Yan, A. Wang, Z. Xiong, K. Xu, and Z. Huang, “Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying,” Appl Surf Sci, vol. 256, no. 23, pp. 7001–7009, 2010, doi: 10.1016/j.apsusc.2010.05.015.[73] F. J. Rodríguez, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Evaluación de propiedades elásticas de la fundición nodular empleando micromecánica computacional,” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 31, no. 2, pp. 91–105, 2015, doi: 10.1016/j.rimni.2014.01.003.[74] J. M. Velez Restrepo, “Austemperado de la fundición nodular: fundamentos y tecnología,” Universidad Nacional de Colombia sede Medellín, 2001.[75] H. Sierra Restrepo and J. Ortega González, “Temperatura de transición de la fundición nodular austemperada no aleada,” Revista Universidad EAFIT, vol. 40, no. 134, pp. 80–89, 2004.[76] ASTM, Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, pp. 4–9. doi: 10.1520/A0897.[77] B. Wang, G. C. Barber, F. Qiu, Q. Zou, and H. Yang, “A review: Phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons,” Journal of Materials Research and Technology, vol. 9, no. 1, pp. 1054–1069, 2020, doi: 10.1016/j.jmrt.2019.10.074.[78] Standard Specification for Austempered Ductile Iron Castings, vol. 83. 1999, p. 8.[79] M. Bahmani, R. Elliott, and N. Varahram, “Austempered ductile iron: a competitive alternative for forged induction-hardened steel crankshafts,” International Journal of Cast Metals Research, vol. 9, no. 5, pp. 249–257, Jan. 1997, doi: 10.1080/13640461.1997.11819666.[80] J. Lefevre and K. L. Hayrynen, “Austempered materials for powertrain applications,” J Mater Eng Perform, vol. 22, no. 7, pp. 1914–1922, 2013, doi: 10.1007/s11665-013-0557-4.[81] L. H. Larumbe, E. H. Delgado, M. Alvarez-Vera, and P. P. Villanueva, “Forming process using austempered ductile iron (ADI) in an automotive Pitman arm,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 1–4, pp. 569–575, 2017, doi: 10.1007/s00170-016-9771-1.[82] Y. Du, X. Gao, X. Wang, X. Wang, Y. Ge, and B. Jiang, “Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures,” Wear, vol. 456–457, no. April, p. 203396, 2020, doi: 10.1016/j.wear.2020.203396.[83] R. Upadhyaya, K. K. Singh, R. Kumar, and M. S. Chandran, “Study on the Effect of Austempering Temperature on the Structure-Properties of Thin Wall Austempered Ductile Iron,” Mater Today Proc, vol. 5, no. 5, pp. 13472–13477, 2018, doi: 10.1016/j.matpr.2018.02.342.[84] J. R. Keough, “Austempered Ductile Iron (ADI) – A Green Alternative,” American Foundry Society, vol. 119, no. 11–126, pp. 591–599, 2011.[85] C. H. Hsu, K. L. Chen, and J. H. Lu, “Effects of electroless nickel interlayer on surface properties of CrN arc-coated austempered ductile iron,” Surf Coat Technol, vol. 203, no. 5–7, pp. 868–871, 2008, doi: 10.1016/j.surfcoat.2008.05.031.[86] C. H. Hsu, K. H. Huang, Y. T. Chen, and W. Y. Ho, “The effect of electroless Ni-P interlayer on corrosion behavior of TiN-coated austempered ductile iron,” Thin Solid Films, vol. 529, pp. 34–38, 2013, doi: 10.1016/j.tsf.2012.05.050.[87] O. O. Ige, O. J. Olawale, K. M. Oluwasegun, S. Aribo, B. A. Obadele, and P. A. Olubambi, “Corrosion Behaviour of Austempered Ductile Iron Produced by Forced Air Quenching Method in a Simulated Mine Water,” Procedia Manuf, vol. 7, pp. 579–583, 2017, doi: 10.1016/j.promfg.2016.12.084.[88] M. Pooja, V. Vijeesh, A. O. Surendranathan, K. R. Udupa, and K. G. Samuel, “Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry,” International Journal of Engineering, Science and Technology, vol. 8, no. 3, p. 7, 2016, doi: 10.4314/ijest.v8i3.2.[89] A. D. Sosa, C. S. Rosales, R. E. Boeri, and S. N. Simison, “Corrosion mechanisms in ADI parts,” International Journal of Cast Metals Research, vol. 29, no. 1–2, pp. 106–111, 2016, doi: 10.1080/13640461.2015.1106784.[90] C. E. Arroyave, “La corrosión de las economías,” EL TIEMPO, pp. 1–6, 1991.[91] L. Pereira, M. R. Belle, W. M. Pasini, and V. K. de Barcellos, “Determination of the process window of Austemper treatment to obtain ADI through neural network simulation,” pp. 1547–1553, 2018, doi: 10.5151/1516-392x-31701.[92] J. F. Janowak and R. B. Gundlach, “Development of a ductile iron for a commercial Austempering,” Trans Am Foundrymen’s Soc, vol. 91, p. 377, 1983.[93] D. Moore, T. N. Rouns, and K. B. Roundman, “Structure and properties of Austempered ductile iron,” Trans Am Foundrymen’s Soc, vol. 93, p. 705, 1985.[94] S. Sarkar, R. K. Baranwal, C. Biswas, G. Majumdar, and J. Haider, “Optimization of process parameters for electroless Ni-Co-P coating deposition to maximize micro-hardness,” Mater Res Express, vol. 6, no. 4, 2019, doi: 10.1088/2053-1591/aafc47.[95] F. E. Mariani, G. S. Takeya, A. N. Lombardi, C. A. Picone, and L. C. Casteletti, “Wear and corrosion resistance of Nb-V carbide layers produced in vermicular cast iron using TRD treatments,” Surf Coat Technol, vol. 397, p. 126050, 2020, doi: 10.1016/j.surfcoat.2020.126050.[96] M. Peet and H. K. D. H. Bhadeshia, “https://www.factsage.com/,” Department of Materials Science and Metallurgy.[97] N. Ortiz, G. Agredo, A. Barba, J. J. Olaya, R. Valdez, and R. González, “Estudio Microestructural de Fundiciones Nodulares Sometidas a Tratamiento de Austempering.”[98] Z. H. Huang, Y. J. Zhou, and T. T. Nguyen, “Study of nickel matrix composite coatings deposited from electroless plating bath loaded with TiB 2 , ZrB 2 and TiC particles for improved wear and corrosion resistance,” Surf Coat Technol, vol. 364, no. August 2018, pp. 323–329, 2019, doi: 10.1016/j.surfcoat.2019.01.060.[99] M. Czagány and P. Baumli, “Effect of surfactants on the behavior of the Ni-P bath and on the formation of electroless Ni-P-TiC composite coatings,” Surf Coat Technol, vol. 361, no. November 2018, pp. 42–49, 2019, doi: 10.1016/j.surfcoat.2019.01.046.[100] A. Sharma and A. K. Singh, “Electroless Ni-P and Ni-P-Al2O3 nanocomposite coatings and their corrosion and wear resistance,” J Mater Eng Perform, vol. 22, no. 1, pp. 176–183, 2013, doi: 10.1007/s11665-012-0224-1.[101] H. Macías, “Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo,” 2020.[102] J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016, pp. 81–124.[103] W. Conshohocken, “G99 Standard Test Method for Wear Testing with a Pin-on-Disk,” in ASTM, vol. v, pp. 1–5.[104] M. Hanief and M. S. Charoo, “Archard ’ s wear law revisited to measure accurate wear coefficient considering actual sliding velocity,” Mater Today Proc, vol. 47, pp. 5598–5600, 2021.[105] H. Ju, S. He, L. Yu, I. Asempah, and J. Xu, “The improvement of oxidation resistance , mechanical and tribological properties of W 2 N films by doping silicon,” Surf Coat Technol, vol. 317, pp. 158–165, 2017.[106] ASM Metals, Handbook Volume 13, Corrosion. 1992.[107] U. P. Morales, E. V. López, and C. O. Otálora, “Aspectos básicos en la interpretación de diagramas de impedancia electroquímica,” Revista de ingeniería DYNA, vol. 162, pp. 13–19, 2010.[108] ASTM International, “Standard Specification for Ductile Iron Castings,” Current, vol. 83, no. Reapproved. pp. 4–9, 2019. doi: 10.1520/A0842-11A.2.[109] J. Zhang, N. Zhang, M. Zhang, D. Zeng, Q. Song, and L. Lu, “Microstructure and mechanical properties of austempered ductile iron with different strength grades,” Material Letters, vol. 119, pp. 47–50, 2014, doi: http://dx.doi.org/10.1016/j.matlet.2013.12.086.[110] A. Ramalho and J. C. Miranda, “Friction and wear of electroless NiP and NiP + PTFE coatings,” Wear, vol. 259, no. 7–12, pp. 828–834, 2005, doi: 10.1016/j.wear.2005.02.052.[111] C. Hernández, H. Francisco, and U. Ordoñes, “Rolling contact fatigue wear of nitriding austempered ductile rolling contact fatigue wear of nitriding austempered ductile iron ( ADI ) -ADI discs,” Conference: Congresso Brasileiro de Engenharia Mecânica, no. November 2001, p. 9, 2001.[112] G. T. Sudha, B. Stalin, B. Ravichandran, and M. Balasubramanian, “Mechanical Properties, Characterization and Wear Behavior of Powder Metallurgy Composites - A Review,” Mater Today Proc, 2020.[113] Z. hou LI, Z. yong CHEN, S. sha LIU, F. ZHENG, and A. gan DAI, “Corrosion and wear properties of electroless Ni-P plating layer on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 4, pp. 819–824, 2008, doi: 10.1016/S1003-6326(08)60142-9.[114] T. S. N. Sankara Narayanan, I. Baskaran, K. Krishnaveni, and S. Parthiban, “Deposition of electroless Ni-P graded coatings and evaluation of their corrosion resistance,” Surf Coat Technol, vol. 200, no. 11, pp. 3438–3445, 2006, doi: 10.1016/j.surfcoat.2004.10.014.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82975/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC.pdfSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC.pdfTesis de Maestría en Ingenieria - Materiales y Procesosapplication/pdf4916593https://repositorio.unal.edu.co/bitstream/unal/82975/2/S%c3%adntesis%20y%20caracterizaci%c3%b3n%20de%20recubrimientos%20compuestos%20de%20Ni-P-VC.pdf6beed8fe361338fba81d11b57dec58beMD52THUMBNAILSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC.pdf.jpgSíntesis y caracterización de recubrimientos compuestos de Ni-P-VC.pdf.jpgGenerated Thumbnailimage/jpeg5660https://repositorio.unal.edu.co/bitstream/unal/82975/3/S%c3%adntesis%20y%20caracterizaci%c3%b3n%20de%20recubrimientos%20compuestos%20de%20Ni-P-VC.pdf.jpg503cbdfd3038f3e2a755c7341957fa77MD53unal/82975oai:repositorio.unal.edu.co:unal/829752023-08-13 23:04:24.557Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |