Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)

ilustraciones, diagramas

Autores:
González Galindo, Angie Daniela
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85300
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85300
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::576 - Genética y evolución
Biología evolutiva
Tejidos vegetales
Angiospermas
evolutionary biology
plant tissues
angiosperms
Holoparásita endofítica
Factores de transcripción
Meristema apical
Procambium
Transcriptoma
Apical meristem
Endophytic holoparasite
Procambium
Transcription factors
Transcriptome
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8dcf3d0a047bc2815172707b62e3c473
oai_identifier_str oai:repositorio.unal.edu.co:unal/85300
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
dc.title.translated.eng.fl_str_mv Evolution of meristem regulatory genes in the holoparasitic angiosperm Pilostyles boyacensis (Apodanthaceae)
title Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
spellingShingle Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
570 - Biología::576 - Genética y evolución
Biología evolutiva
Tejidos vegetales
Angiospermas
evolutionary biology
plant tissues
angiosperms
Holoparásita endofítica
Factores de transcripción
Meristema apical
Procambium
Transcriptoma
Apical meristem
Endophytic holoparasite
Procambium
Transcription factors
Transcriptome
title_short Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
title_full Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
title_fullStr Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
title_full_unstemmed Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
title_sort Evolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)
dc.creator.fl_str_mv González Galindo, Angie Daniela
dc.contributor.advisor.spa.fl_str_mv González Garavito, Favio Antonio
Pabón Mora, Natalia Lucía
dc.contributor.author.spa.fl_str_mv González Galindo, Angie Daniela
dc.contributor.datacurator.spa.fl_str_mv Alzate, Juan Fernando
dc.contributor.researchgroup.spa.fl_str_mv Evo-Devo en Plantas
dc.contributor.orcid.spa.fl_str_mv http://orcid.org/0000-0002-1772-2152
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001365166
dc.contributor.scopus.spa.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=55816773900
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Angie-Gonzalez-16
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com.co/citations?user=1Yvc6mMAAAAJ&hl=es&oi=ao
dc.subject.ddc.spa.fl_str_mv 570 - Biología::576 - Genética y evolución
topic 570 - Biología::576 - Genética y evolución
Biología evolutiva
Tejidos vegetales
Angiospermas
evolutionary biology
plant tissues
angiosperms
Holoparásita endofítica
Factores de transcripción
Meristema apical
Procambium
Transcriptoma
Apical meristem
Endophytic holoparasite
Procambium
Transcription factors
Transcriptome
dc.subject.agrovoc.spa.fl_str_mv Biología evolutiva
Tejidos vegetales
Angiospermas
dc.subject.agrovoc.eng.fl_str_mv evolutionary biology
plant tissues
angiosperms
dc.subject.proposal.spa.fl_str_mv Holoparásita endofítica
Factores de transcripción
Meristema apical
Procambium
Transcriptoma
dc.subject.proposal.eng.fl_str_mv Apical meristem
Endophytic holoparasite
Procambium
Transcription factors
Transcriptome
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-16
dc.date.accessioned.none.fl_str_mv 2024-01-15T20:28:11Z
dc.date.available.none.fl_str_mv 2024-01-15T20:28:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85300
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85300
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Amaral, M. M. do, & Ceccantini, G. (2011). The endoparasite Pilostyles ulei (Apodanthaceae – Cucurbitales) influences wood structure in three host species of Mimosa. IAWA Journal, 32(1), 1-13. https://doi.org/10.1163/22941932-90000038
Amini, S., Rosli, K., Abu-Bakar, M.-F., Alias, H., Mat-Isa, M.-N., Juhari, M.-A.-A., Haji-Adam, J., Goh, H.-H., & Wan, K.-L. (2019). Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLOS ONE, 14(12), e0226338. https://doi.org/10.1371/journal.pone.0226338
Barkman, T. J., McNeal, J. R., Lim, S.-H., Coat, G., Croom, H. B., Young, N. D., & dePamphilis, C. W. (2007). Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology, 7, 248. https://doi.org/10.1186/1471-2148-7-248
Bellot, S., & Renner, S. S. (2014). The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. PhytoKeys, 36, 41-57. https://doi.org/10.3897/phytokeys.36.7385
Adamowski, M., & Friml, J. (2015). PIN-dependent auxin transport: Action, Regulation, and evolution. The Plant Cell, 27(1), 20–32. https://doi.org/10.1105/tpc.114.134874
Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537-W544. https://doi.org/10.1093/nar/gky379
Amaral, M. M. do. (2007). A estrutura da angiosperma endoparasita Pilostyles ulei (Apodanthaceae): Interface e impacto no lenho de Mimosa spp [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-05112007-095018/
Arias-Agudelo, L. M., González, F., Isaza, J. P., Alzate, J. F., & Pabón-Mora, N. (2019). Plastome reduction and gene content in New World Pilostyles (Apodanthaceae) unveils high similarities to African and Australian congeners. Molecular Phylogenetics and Evolution, 135, 193-202. https://doi.org/10.1016/j.ympev.2019.03.014
Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server issue), W202-208. https://doi.org/10.1093/nar/gkp335
Baskin, J. M., & Baskin, C. C. (2022). Germination and seed/embryo size in holoparasitic flowering plants with “dust seeds” and an undifferentiated embryo. The Botanical Review, 88(1), 1–49. https://doi.org/10.1007/s12229-020-09242-y
Bellot, S., & Renner, S. S. (2013). Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany, 100(6), 1083–1094. https://doi.org/10.3732/ajb.1200627
Bennett, T. (2015). PIN proteins and the evolution of plant development. Trends in Plant Science, 20(8), 498-507. https://doi.org/10.1016/j.tplants.2015.05.005
Bennett, T., & Scheres, B. (2010). Root development two meristems for the price of one? En M. C. Timmermans (Ed.), Plant development (pp. 67-102). Elsevier. https://doi.org/10.1016/S0070-2153(10)91003-X
Blarer, A., Nickrent, D. L., & Endress, P. K. (2004). Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Systematics and Evolution, 245(1), 119-142. https://doi.org/10.1007/s00606-003-0090-2
Bouman, F., & Meijer, W. (1994). Comparative structure of ovules and seeds in Rafflesiaceae. Plant Systematics and Evolution, 193(1-4), 187-212. https://doi.org/10.1007/BF00983550
Brasil, B. de A. (2010). Ciclo de vida, fenologia e anatomia floral de Pilostyles (Apodanthaceae—Rafflesiaceae s.l.): Subsídios para um posicionamento filogenético da família Apodanthaceae [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-10122010-105707/
Bryan, A. C., Obaidi, A., Wierzba, M., & Tax, F. E. (2012). XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 235(1), 111-122. https://doi.org/10.1007/s00425-011-1489-6
Cai, L., Arnold, B. J., Xi, Z., Khost, D. E., Patel, N., Hartmann, C. B., Manickam, S., Sasirat, S., Nikolov, L. A., Mathews, S., Sackton, T. B., & Davis, C. C. (2021). Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology, 31(5), 1002-1011.e9. https://doi.org/10.1016/j.cub.2020.12.045
Cammarata, J., & Scanlon, M. J. (2020). A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. Journal of Plant Research, 133(3), 331–342. https://doi.org/10.1007/s10265-020-01197-w
Capron, A., Chatfield, S., Provart, N., & Berleth, T. (2009). Embryogenesis: Pattern formation from a single cell. The Arabidopsis Book, 7, e0126. https://doi.org/10.1199/tab.0126
Carbonell, A. (2017). Plant ARGONAUTEs: Features, functions, and unknowns. En A. Carbonell (Ed.), Plant Argonaute Proteins (Vol. 1640, pp. 1–21). Springer New York. https://doi.org/10.1007/978-1-4939-7165-7_1
Carpenter, E. J., Matasci, N., Ayyampalayam, S., Wu, S., Sun, J., Yu, J., Jimenez Vieira, F. R., Bowler, C., Dorrell, R. G., Gitzendanner, M. A., Li, L., Du, W., K. Ullrich, K., Wickett, N. J., Barkmann, T. J., Barker, M. S., Leebens-Mack, J. H., & Wong, G. K.-S. (2019). Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience, 8(10), giz126. https://doi.org/10.1093/gigascience/giz126
Cederholm, H. M., Iyer-Pascuzzi, A. S., & Benfey, P. N. (2012). Patterning the primary root in Arabidopsis. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 675-691. https://doi.org/10.1002/wdev.49
Cernac, A., Andre, C., Hoffmann-Benning, S., & Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiology, 141(2), 745–757. https://doi.org/10.1104/pp.106.079574
Chandler, J. W. (2016). Auxin response factors. Plant, Cell & Environment, 39(5), 1014-1028. https://doi.org/10.1111/pce.12662
Chandler, J. W., & Werr, W. (2015). Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 20(5), 291-300. https://doi.org/10.1016/j.tplants.2015.02.003
Chandler, J. W., & Werr, W. (2019). Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. En Current Topics in Developmental Biology (Vol. 131, pp. 545-564). Elsevier. https://doi.org/10.1016/bs.ctdb.2018.11.009
Chang, W., Guo, Y., Zhang, H., Liu, X., & Guo, L. (2020). Same actor in different stages: Genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 8, 89. https://doi.org/10.3389/fevo.2020.00089
Costanzo, E., Trehin, C., & Vandenbussche, M. (2014). The role of WOX genes in flower development. Annals of Botany, 114(7), 1545-1553. https://doi.org/10.1093/aob/mcu123
Cronk, Q. C. B. (2009). Evolution in reverse gear: The molecular basis of loss and reversal. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 259-266. https://doi.org/10.1101/sqb.2009.74.034
Czyzewicz, N., Nikonorova, N., Meyer, M. R., Sandal, P., Shah, S., Vu, L. D., Gevaert, K., Rao, A. G., & De Smet, I. (2016). The growing story of (ARABIDOPSIS) CRINKLY 4. Journal of Experimental Botany, 67(16), 4835–4847. https://doi.org/10.1093/jxb/erw192
Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2019). ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, msz189. https://doi.org/10.1093/molbev/msz189
De Vega, C., Ortiz, P. L., Arista, M., & Talavera, S. (2007). The endophytic system of mediterranean Cytinus (Cytinaceae) Developing on five host Cistaceae species. Annals of Botany, 100(6), 1209–1217. https://doi.org/10.1093/aob/mcm217
Dell, B., Kuo, J., & Burbidge, A. H. (1982). Anatomy of Pilostyles hamiltonii C. A. Gardner (Rafflesiaceae) in stems of Daviesia. Australian Journal of Botany, 30(1), 1-9.
Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. https://doi.org/10.1016/j.pbi.2016.09.003
Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., & Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 8(1), 291. https://doi.org/10.1186/1471-2148-8-291
DeYoung, B. J., & Clark, S. E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2), 895-904. https://doi.org/10.1534/genetics.108.091108
DeYoung, B. J., Bickle, K. L., Schrage, K. J., Muskett, P., Patel, K., & Clark, S. E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis: BAM receptor kinases regulate meristem function. The Plant Journal, 45(1), 1-16. https://doi.org/10.1111/j.1365-313X.2005.02592.x
Du, Q., & Wang, H. (2015). The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signaling & Behavior, 10(10), e1078955. https://doi.org/10.1080/15592324.2015.1078955
El Ouakfaoui, S., Schnell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., & Miki, B. (2010). Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 74(4–5), 313–326. https://doi.org/10.1007/s11103-010-9674-8
El-Showk, S., Taylor-Teeples, M., Helariutta, Y., & Brady, S. M. (2013). Gene regulatory networks during Arabidopsis root vascular development. International Journal of Plant Sciences, 174(7), 1090-1097. https://doi.org/10.1086/671449
Endriss, W. (1902). Monographie von Pilostyles ingae Karst. (Pilostyles ulei SolmsLaub.). Flora, 91, 209-236.
Ernst, A., & Schmid, E. (1913). Über Blüte und Frucht von Rafflesiaceae. Annales du Jardin Botanique de Buitenzorg, 12, 1–58.
Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. https://doi.org/10.1016/S0960-9822(01)00392-X
Fang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-centered view. The Plant Cell, 28(2), 272–285. https://doi.org/10.1105/tpc.15.00920
Finet, C., Berne-Dedieu, A., Scutt, C. P., & Marlétaz, F. (2013). Evolution of the ARF gene family in land plants: Old domains, new tricks. Molecular Biology and Evolution, 30(1), 45-56. https://doi.org/10.1093/molbev/mss220
Fiume, E., & Fletcher, J. C. (2012). Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell, 24(3), 1000-1012. https://doi.org/10.1105/tpc.111.094839
Fletcher, J. C. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409), 1911-1914. https://doi.org/10.1126/science.283.5409.1911
Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: From pluripotency to plant developmental plasticity. Development, 142(13), 2237-2249. https://doi.org/10.1242/dev.117614
González, A. D., Pabón-Mora, N., Alzate, J. F., & González, F. (2020). Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Frontiers in Ecology and Evolution, 8, 209. https://doi.org/10.3389/fevo.2020.00209
González, F., & Pabón-Mora, N. (2014). First reports and generic descriptions of the achlorophyllous holoparasites Apodanthaceae (Cucurbitales) of Colombia. Actualidades Biológicas, 36(101), 123-135.
González, F., & Pabón-Mora, N. (2014). Pilostyles boyacensis a new species of Apodanthaceae (Cucurbitales) from Colombia. Phytotaxa, 178(2), 138. https://doi.org/10.11646/phytotaxa.178.2.5
González, F., & Pabón-Mora, N. (2017). Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. International Journal of Plant Sciences, 178(7), 522-536. https://doi.org/10.1086/692505
Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40 (Database issue), D1178-D1186. https://doi.org/10.1093/nar/gkr944
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883
Groppo, M., Amaral, M. M., & Ceccantini, G. C. T. (2007). Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Boletim de Botânica, 25(1), 81-86. https://doi.org/10.11606/issn.2316-9052.v25i1p81-86
Guyomarc’h, S., Bertrand, C., Delarue, M., & Zhou, D.-X. (2005). Regulation of meristem activity by chromatin remodelling. Trends in Plant Science, 10(7), 332-338. https://doi.org/10.1016/j.tplants.2005.05.003
Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Chapter four—Shoot apical meristem form and function. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 103-140). Academic Press. https://doi.org/10.1016/S0070-2153(10)91004-1
Haecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., & Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development, 131(3), 657-668. https://doi.org/10.1242/dev.00963
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98.
Hall, T. M. T. (2005). Structure and function of Argonaute proteins. Structure, 13(10), 1403–1408. https://doi.org/10.1016/j.str.2005.08.005
Hardtke, C. S., Ckurshumova, W., Vidaurre, D. P., Singh, S. A., Stamatiou, G., Tiwari, S. B., Hagen, G., Guilfoyle, T. J., & Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development (Cambridge, England), 131(5), 1089-1100. https://doi.org/10.1242/dev.00925
Hazak, O., & Hardtke, C. S. (2016). CLAVATA 1-type receptors in plant development. Journal of Experimental Botany, 67(16), 4827-4833. https://doi.org/10.1093/jxb/erw247
Heide-Jørgensen, H. (2008). Parasitic flowering plants. Brill.
Horstman, A., Willemsen, V., Boutilier, K., & Heidstra, R. (2014). AINTEGUMENTA-LIKE proteins: Hubs in a plethora of networks. Trends in Plant Science, 19(3), 146-157. https://doi.org/10.1016/j.tplants.2013.10.010
Hove, C. A. ten, Lu, K.-J., & Weijers, D. (2015). Building a plant: Cell fate specification in the early Arabidopsis embryo. Development, 142(3), 420–430. https://doi.org/10.1242/dev.111500
Johri, B. (1992). Aristolochiales. En B. Johri, K. Ambegaokar, & P. Srivastava, Comparative embryology of angiosperms (Vol. 1, pp. 316-323). Springer. http://www.springer.com/la/book/9783540536338
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285
Kamata, N., Okada, H., Komeda, Y., & Takahashi, T. (2013). Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana. The Plant Journal, 75(3), 430–440. https://doi.org/10.1111/tpj.12211
Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics, 9(1), 451. https://doi.org/10.1186/1471-2164-9-451
Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
Kerstens, M. H. L., Schranz, M. E., & Bouwmeester, K. (2020). Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage‐specific patterns. The Plant Journal, 103(4), 1516–1524. https://doi.org/10.1111/tpj.14843
Khosla, A., Paper, J. M., Boehler, A. P., Bradley, A. M., Neumann, T. R., & Schrick, K. (2014). HD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23. The Plant Cell, 26(5), 2184–2200. https://doi.org/10.1105/tpc.113.120360
Kieffer, M., Stern, Y., Cook, H., Clerici, E., Maulbetsch, C., Laux, T., & Davies, B. (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18(3), 560-573. https://doi.org/10.1105/tpc.105.039107
Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H., & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22), 3911–3920. https://doi.org/10.1242/dev.048199
Kondo, Y., & Fukuda, H. (2015). The TDIF signaling network. Current Opinion in Plant Biology, 28, 106–110. https://doi.org/10.1016/j.pbi.2015.10.002
Korasick, D. A., Westfall, C. S., Lee, S. G., Nanao, M. H., Dumas, R., Hagen, G., Guilfoyle, T. J., Jez, J. M., & Strader, L. C. (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences, 111(14), 5427-5432. https://doi.org/10.1073/pnas.1400074111
Křeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., & Zažímalová, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 10(12), 249. https://doi.org/10.1186/gb-2009-10-12-249
Krizek, B. A., Bantle, A. T., Heflin, J. M., Han, H., Freese, N. H., & Loraine, A. E. (2021). AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany, 72(15), 5478–5493. https://doi.org/10.1093/jxb/erab223
Kuijt, J. (1969). The biology of parasitic flowering plants (Central 582.13/k96b). University of California Press.
Kuijt, J., Bray, D., & Olson, A. R. (1985). Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Canadian Journal of Botany, 63(7), 1231-1240. https://doi.org/10.1139/b85-170
Laux, T., Mayer, K. F., Berger, J., & Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 122(1), 87-96.
Li, H., Shi, Q., Zhang, Z.-B., Zeng, L.-P., Qi, J., & Ma, H. (2016). Evolution of the leucine-rich repeat receptor-like protein kinase gene family: Ancestral copy number and functional divergence of BAM1 and BAM2 in Brassicaceae: Evolution of the LRR-RLK gene family. Journal of Systematics and Evolution, 54(3), 204-218. https://doi.org/10.1111/jse.12206
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.x
Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.x
Maizel, A., Busch, M. A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M., & Weigel, D. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science (New York, N.Y.), 308(5719), 260-263. https://doi.org/10.1126/science.1108229
Matasci, N., Hung, L.-H., Yan, Z., Carpenter, E. J., Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Ayyampalayam, S., Barker, M., Burleigh, J. G., Gitzendanner, M. A., Wafula, E., Der, J. P., dePamphilis, C. W., Roure, B., Philippe, H., Ruhfel, B. R., Miles, N. W., … Wong, G. K.-S. (2014). Data access for the 1,000 Plants (1KP) project. GigaScience, 3, 17. https://doi.org/10.1186/2047-217X-3-17
Matsushima, N., & Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules, 2(2), 288–311. https://doi.org/10.3390/biom2020288
Meijer, W. (1993). Rafflesiaceae. En K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.), Flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families (Vol. 2, pp. 557-562). Springer. http://dx.doi.org/10.1007/978-3-662-02899-5
Meyer, M. R., Lichti, C. F., Townsend, R. R., & Rao, A. G. (2011). Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) Receptor-like Kinase intracellular domain: Insights into conformation, oligomerization, and activity. Biochemistry, 50(12), 2170–2186. https://doi.org/10.1021/bi101935x
Michael, T. P., Ernst, E., Hartwick, N., Chu, P., Bryant, D., Gilbert, S., Ortleb, S., Baggs, E. L., Sree, K. S., Appenroth, K. J., Fuchs, J., Jupe, F., Sandoval, J. P., Krasileva, K. V., Borisjuk, L., Mockler, T. C., Ecker, J. R., Martienssen, R. A., & Lam, E. (2021). Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Research, 31(2), 225-238. https://doi.org/10.1101/gr.266429.120
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1-8. http://dx.doi.org/10.1109/GCE.2010.5676129
Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913
Miyashima, S., Sebastian, J., Lee, J.-Y., & Helariutta, Y. (2013). Stem cell function during plant vascular development. The EMBO Journal, 32(2), 178-193. https://doi.org/10.1038/emboj.2012.301
Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana: RPK2 controls anther development. The Plant Journal, 50(5), 751-766. https://doi.org/10.1111/j.1365-313X.2007.03083.x
Moyroud, E., Kusters, E., Monniaux, M., Koes, R., & Parcy, F. (2010). LEAFY blossoms. Trends in Plant Science, 15(6), 346-352. https://doi.org/10.1016/j.tplants.2010.03.007
Mursidawati, S., & Wicaksono, A. (2021). A preliminary study of in vivo injection of auxin and cytokinin into Rafflesia patma Blume flower buds. Buletin Kebun Raya, 24(2). https://doi.org/10.14203/bkr.v24i2.670
Nakamura, M., Katsumata, H., Abe, M., Yabe, N., Komeda, Y., Yamamoto, K. T., & Takahashi, T. (2006). Characterization of the Class IV Homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiology, 141(4), 1363–1375. https://doi.org/10.1104/pp.106.077388
Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., & Werr, W. (2007). WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development. Molecular Biology and Evolution, 24(11), 2474-2484. https://doi.org/10.1093/molbev/msm182
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
Nickrent, D. L. (2020). Parasitic angiosperms: How often and how many? TAXON, 69(1), 5-27. https://doi.org/10.1002/tax.12195
Nikolov, L. A., Endress, P. K., Sugumaran, M., Sasirat, S., Vessabutr, S., Kramer, E. M., & Davis, C. C. (2013). Developmental origins of the world’s largest flowers, Rafflesiaceae. Proceedings of the National Academy of Sciences, 110(46), 18578-18583. https://doi.org/10.1073/pnas.1310356110
Nikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., & Davis, C. C. (2014). Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Annals of Botany, 114(2), 233-242. https://doi.org/10.1093/aob/mcu114
Nikonorova, N., Vu, L. D., Czyzewicz, N., Gevaert, K., & De Smet, I. (2015). A phylogenetic approach to study the origin and evolution of the CRINKLY4 family. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00880
Nodine, M. D., Yadegari, R., & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental Cell, 12(6), 943-956. https://doi.org/10.1016/j.devcel.2007.04.003
Nole-Wilson, S., Tranby, T. L., & Krizek, B. A. (2005). AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology, 57(5), 613–628. https://doi.org/10.1007/s11103-005-0955-6
Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist, 201(1), 16-30. https://doi.org/10.1111/nph.12444
Ohtani, M., Akiyoshi, N., Takenaka, Y., Sano, R., & Demura, T. (2017). Evolution of plant conducting cells: Perspectives from key regulators of vascular cell differentiation. Journal of Experimental Botany, 68(1), 17-26. https://doi.org/10.1093/jxb/erw473
Ortega-González, P. F., Rios-Carrasco, S., González-Martínez, C. A., Bonilla-Cruz, N., & Vázquez-Santana, S. (2020). Pilostyles maya, a novel species from Mexico and the first cleistogamous species in Apodanthaceae (Cucurbitales). Phytotaxa, 440(4), 255–267. https://doi.org/10.11646/phytotaxa.440.4.1
Pabon-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology, 158(4), 1685-1704. https://doi.org/10.1104/pp.111.192104
Palovaara, J., De Zeeuw, T., & Weijers, D. (2016). Tissue and organ initiation in the plant embryo: A first time for everything. Annual Review of Cell and Developmental Biology, 32(1), 47–75. https://doi.org/10.1146/annurev-cellbio-111315-124929
Palovaara, J., Hallberg, H., Stasolla, C., & Hakman, I. (2010). Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist, 188(1), 122-135. https://doi.org/10.1111/j.1469-8137.2010.03336.x
Palovaara, J., Saiga, S., & Weijers, D. (2013). Transcriptomics approaches in the early Arabidopsis embryo. Trends in Plant Science, 18(9), 514-521. https://doi.org/10.1016/j.tplants.2013.04.011
Pan, L., Lv, S., Yang, N., Lv, Y., Liu, Z., Wu, J., & Wang, G. (2016). The multifunction of CLAVATA2 in plant development and immunity. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01573
Pawełkowicz, M., Pryszcz, L., Skarzyńska, A., Wóycicki, R. K., Posyniak, K., Rymuszka, J., Przybecki, Z., & Pląder, W. (2019). Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reproduction, 32(2), 193-216. https://doi.org/10.1007/s00497-019-00362-z
Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418-D427. https://doi.org/10.1093/nar/gkac993
Pellissari, L. C. O., Teixeira-Costa, L., Ceccantini, G., Tamaio, N., Cardoso, L. J. T., Braga, J. M. A., & Barros, C. F. (2022). Parasitic plant, from inside out: Endophytic development in Lathrophytum peckoltii (Balanophoraceae) in host liana roots from tribe Paullineae (Sapindaceae). Annals of Botany, 129(3), 331–342. https://doi.org/10.1093/aob/mcab148
Peris, C. I. L., Rademacher, E. H., & Weijers, D. (2010). Green beginnings pattern formation in the early plant embryo. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 1-27). Academic Press. https://doi.org/10.1016/S0070-2153(10)91001-6
Petrášek, J., & Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675-2688. https://doi.org/10.1242/dev.030353
Poole, R. L. (2007). The TAIR database. Methods in Molecular Biology (Clifton, N.J.), 406, 179-212. https://doi.org/10.1007/978-1-59745-535-0_8
Prigge, M. J., & Clark, S. E. (2006). Evolution of the class III HD-Zip gene family in land plants. Evolution Development, 8(4), 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.x
Prigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N., & Clark, S. E. (2005). Class III Homeodomain-Leucine Zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell, 17(1), 61-76. https://doi.org/10.1105/tpc.104.026161
Ramamoorthy, R., Phua, E. E.-K., Lim, S.-H., Tan, H. T.-W., & Kumar, P. P. (2013). Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE, 8(6), e67243. https://doi.org/10.1371/journal.pone.0067243
Rambaut, A. (2009). FigTree v1. 4.0: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
Rebocho, A. B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., & Koes, R. (2008). Role of EVERGREEN in the development of the cymose petunia inflorescence. Developmental Cell, 15(3), 437-447. https://doi.org/10.1016/j.devcel.2008.08.007
Rigal, A., Yordanov, Y. S., Perrone, I., Karlberg, A., Tisserant, E., Bellini, C., Busov, V. B., Martin, F., Kohler, A., Bhalerao, R., & Legué, V. (2012). The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology, 160(4), 1996–2006. https://doi.org/10.1104/pp.112.204453
Rodríguez-Leal, D., Castillo-Cobián, A., Rodríguez-Arévalo, I., & Vielle-Calzada, J.-P. (2016). A primary sequence analysis of the ARGONAUTE protein family in plants. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01347
Romera-Branchat, M., Ripoll, J. J., Yanofsky, M. F., & Pelaz, S. (2013). The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. The Plant Journal, 73(1), 37–49. https://doi.org/10.1111/tpj.12010
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029
Roodbarkelari, F., & Groot, E. P. (2017). Regulatory function of homeodomain‐leucine zipper HD‐ZIP family proteins during embryogenesis. New Phytologist, 213(1), 95–104. https://doi.org/10.1111/nph.14132
Rutherford, R. J. (1970). The anatomy and cytology of Pilostyles thurberi Gray (Rafflesiaceae). Aliso, 7(2), 263-288.
Rybel, B. D., Mähönen, A. P., Helariutta, Y., & Weijers, D. (2016). Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 17(1), 30-40. https://doi.org/10.1038/nrm.2015.6
Sakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., Ishikawa, M., Deguchi, H., Rensing, S. A., Werr, W., Murata, T., Hasebe, M., & Laux, T. (2014). WOX13—Like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development, 141(8), 1660–1670. https://doi.org/10.1242/dev.097444
Sato, H. A., & Gonzalez, A. M. (2022). Anatomy, embryology and life cycle of Lophophytum, a root-holoparasitic plant. En A. M. Gonzalez & H. A. Sato (Eds.), Parasitic Plants. IntechOpen. https://doi.org/10.5772/intechopen.99981
Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026
Shimizu, K., Hozumi, A., & Aoki, K. (2018). Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant and Cell Physiology, 59(4), 720–728. https://doi.org/10.1093/pcp/pcx197
Shimizu, N., Ishida, T., Yamada, M., Shigenobu, S., Tabata, R., Kinoshita, A., Yamaguchi, K., Hasebe, M., Mitsumasu, K., & Sawa, S. (2015). BAM 1 and RECEPTOR‐ LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in Arabidopsis root. New Phytologist, 208(4), 1104–1113. https://doi.org/10.1111/nph.13520
Skylar, A., Hong, F., Chory, J., Weigel, D., & Wu, X. (2010). STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development (Cambridge, England), 137(4), 541-549. https://doi.org/10.1242/dev.041426
Sparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. https://doi.org/10.1038/nrg3541
Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771. https://doi.org/10.1080/10635150802429642
Tajima, D., Kaneko, A., Sakamoto, M., Ito, Y., Hue, N. T., Miyazaki, M., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2013). Wrinkled1 (WRI1) Homologs, AP2-Type transcription factors involving master regulation of seed storage oil synthesis in castor bean Ricinus communis. American Journal of Plant Sciences, 04(02), 333–339. https://doi.org/10.4236/ajps.2013.42044
Taylor-Teeples, M., Lanctot, A., & Nemhauser, J. L. (2016). As above, so below: Auxin’s role in lateral organ development. Developmental Biology, 419(1), 156-164. https://doi.org/10.1016/j.ydbio.2016.03.020
Teixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279
Tsuda, K., & Hake, S. (2016). Homeobox transcription factors and the regulation of meristem development and maintenance. En Plant Transcription Factors (pp. 215-228). Elsevier. https://doi.org/10.1016/B978-0-12-800854-6.00014-2
Turchi, L., Baima, S., Morelli, G., & Ruberti, I. (2015). Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany, 66(16), 5043–5053. https://doi.org/10.1093/jxb/erv174
Tvorogova, V. E., & Lutova, L. A. (2018). Genetic regulation of zygotic embryogenesis in Angiosperm plants. Russian Journal of Plant Physiology, 65(1), 1-14. https://doi.org/10.1134/S1021443718010107
van der Graaff, E., Laux, T., & Rensing, S. A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biology, 10(12), 248. https://doi.org/10.1186/gb-2009-10-12-248
Vattimo, I. (1971). Contribuição ao conhecimento da tribo Apodantheae R. Br. Parte I – Conspecto das especies (Rafflesiaceae). Rodriguésia, 26(38), 37-62.
Wang, H., Shao, W., Yan, M., Xu, Y., Liu, S., & Wang, R. (2021). Genome-wide analysis and expression profiling of HD-ZIP III genes in three Brassica species. Diversity, 13(12), 684. https://doi.org/10.3390/d13120684
Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., & Machida, Y. (2004). The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. The Plant Journal, 39(3), 298-308. https://doi.org/10.1111/j.1365-313X.2004.02132.x
Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. https://doi.org/10.1016/0092-8674(92)90295-N
Wernersson, R., & Pedersen, A. G. (2003). RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Research, 31(13), 3537-3539.
Westwood, J. H., Yoder, J. I., Timko, M. P., & dePamphilis, C. W. (2010). The evolution of parasitism in plants. Trends in Plant Science, 15(4), 227-235. https://doi.org/10.1016/j.tplants.2010.01.004
Wils, C. R., & Kaufmann, K. (2017). Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1860(1), 95-105. https://doi.org/10.1016/j.bbagrm.2016.07.014
Wu, C.-C., Li, F.-W., & Kramer, E. M. (2019). Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLOS ONE, 14(10), e0223521. https://doi.org/10.1371/journal.pone.0223521
Wu, Q., Xu, F., & Jackson, D. (2018). All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology, 45, 26-35. https://doi.org/10.1016/j.pbi.2018.04.010
Wu, X., Dabi, T., & Weigel, D. (2005). Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology: CB, 15(5), 436-440. https://doi.org/10.1016/j.cub.2004.12.079
Xu, C., & Shanklin, J. (2016). Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 67(1), 179–206. https://doi.org/10.1146/annurev-arplant-043015-111641
Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B. A., & Wagner, D. (2013). A Molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 24(3), 271-282. https://doi.org/10.1016/j.devcel.2012.12.017
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134
Zalewski, C. S., Floyd, S. K., Furumizu, C., Sakakibara, K., Stevenson, D. W., & Bowman, J. L. (2013). Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution, 30(10), 2347–2365. https://doi.org/10.1093/molbev/mst132
Zhang, H., Xia, R., Meyers, B. C., & Walbot, V. (2015). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Current Opinion in Plant Biology, 27, 84–90. https://doi.org/10.1016/j.pbi.2015.06.011
Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., Zhao, K., Blanca, J., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., K Reddy, U., Ando, K., McCreight, J. D., Schaffer, A. A., Burger, J., Tadmor, Y., … Fei, Z. (2019). Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47(D1), D1128-D1136. https://doi.org/10.1093/nar/gky944
Zhou, X., Guo, Y., Zhao, P., & Sun, M. (2018). Comparative analysis of WUSCHEL-Related Homeobox genes revealed their parent-of-origin and cell type-specific expression pattern during early embryogenesis in Tobacco. Frontiers in Plant Science, 9, 311. https://doi.org/10.3389/fpls.2018.00311
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 207 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85300/4/1032432374.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85300/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85300/6/1032432374.2023.pdf.jpg
bitstream.checksum.fl_str_mv c48d588cf4e11da721c4800c27b412e6
eb34b1cf90b7e1103fc9dfd26be24b4a
b4e280acf02890c8c76a4481f063802f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089467343929344
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Garavito, Favio Antoniof5bf5ac69b7cc78422d66b2048d26435Pabón Mora, Natalia Lucíac86da9c3e1e153c294ec19159e5f0bdbGonzález Galindo, Angie Danieladac15cae784162424ec169fc88b5b24eAlzate, Juan FernandoEvo-Devo en Plantashttp://orcid.org/0000-0002-1772-2152https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001365166https://www.scopus.com/authid/detail.uri?authorId=55816773900https://www.researchgate.net/profile/Angie-Gonzalez-16https://scholar.google.com.co/citations?user=1Yvc6mMAAAAJ&hl=es&oi=ao2024-01-15T20:28:11Z2024-01-15T20:28:11Z2023-11-16https://repositorio.unal.edu.co/handle/unal/85300Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLas especies de Apodanthaceae presentan una morfología excepcional dentro de las angiospermas, ya que son holoparásitas endofíticas, que viven totalmente a expensas de otras plantas con flor, y que han perdido la capacidad de fotosintetizar. Esta condición de parasitismo extremo ha causado la pérdida total de raíces, tallos y hojas, y que el desarrollo vegetativo se reduzca a la formación de un tejido filamentoso poco diferenciado que entra en contacto directo con el tejido vascular del hospedero. La fase no críptica ocurre cuando las flores emergen del tallo hospedero y completan su ciclo de vida al formar frutos y semillas viables. Este estudio evaluó la evolución de los linajes de genes regulatorios de meristemas primarios, embriogénesis temprana y diferenciación de células vasculares en la holoparásita Pilostyles boyacensis (Apodanthaceae). Esto, mediante una búsqueda dirigida de genes homólogos en P. boyacensis a los ya documentados en la especie modelo Arabidopsis thaliana, y finalmente se propone una red genética mínima funcional para el desarrollo vegetativo de en Pilostyles. Se generaron cuatro transcriptomas por RNA-seq para (a) flores; (b) frutos de P. boyacensis; (c) endófito y botones florales jóvenes en tallos de la hospedera Dalea cuatrecasasii (Fabaceae); y (d) tallo no infectado de D. cuatrecasasii. Como resultado, se encontraron genes en 10 de las doce familias de genes evaluadas. En total, se encontró aproximadamente una tercera parte de los genes conocidos en la especie modelo, aunque la mayoría de los pocos que se mantienen en la holoparásita presentaron dominios funcionales conservados. Se infiere que la reducción morfológica vegetativa y embrionaria extrema de Pilostyles está evolutivamente vinculada con la reducción de genes expresados como parte de las redes genéticas asociadas a estos procesos. Se mantienen los módulos de interacción mínimos para el desarrollo del embrión y los factores de transcripción asociados al crecimiento del endófito y a una diferenciación vascular incipiente. Los genes asociados al desarrollo de raíz en otras especies no se encontraron siendo expresados, mientras que los relacionados con el inicio de meristemas florales permanecen. (Texto tomado de la fuente).The species of Apodanthaceae have a unique morphology among angiosperms. They are endophytic holoparasites that thrive exclusively at the expense of other flowering plants and have lost their photosynthetic capacity. The extreme parasitic condition has resulted in a complete loss of roots, shoots, and leaves, leading to a limited vegetative development that forms a filamentous tissue differentiating poorly and directly contacting the host's vascular tissue. The non-cryptic phase commences when flowers emerge from the host stem, eventually producing viable fruits and seeds. This study investigated the evolution of gene lineages regulating primary meristems, early embryogenesis and vascular differentiation in the holoparasitic plant Pilostyles boyacensis (Apodanthaceae). A focused search was conducted to identify homologous genes in P. boyacensis that have been documented in the model species Arabidopsis thaliana. Finally, a minimum functional genetic network for Pilostyles development is proposed. Transcriptomes from four sources were generated through RNA-seq: (a) flowers, (b) fruits of P. boyacensis, (c) endophyte and young flower buds on stems of the host Dalea cuatrecasasii (Fabaceae), and (d) uninfected stems of D. cuatrecasasii. The results of evaluating the twelve families showed genes from ten families. In total, Pilostyles contained only about one-third of the model species' known genes, although most of the few genes that remain in the holoparasite had conserved functional domains. It is inferred that Pilostyles' extreme vegetative and embryonic morphological reduction is evolutionarily linked to a reduction of expressed genes associated with genetic networks of those processes. The minimum interaction modules for embryo development and transcription factors linked to endophytic growth and incipient vascular differentiation remain conserved. No genes related to root development were found expressed, however, genes related to the initiation of floral meristems remain.DoctoradoDoctor en Ciencias - BiologíaBiología evolutiva y del desarrollo en plantasxx, 207 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::576 - Genética y evoluciónBiología evolutivaTejidos vegetalesAngiospermasevolutionary biologyplant tissuesangiospermsHoloparásita endofíticaFactores de transcripciónMeristema apicalProcambiumTranscriptomaApical meristemEndophytic holoparasiteProcambiumTranscription factorsTranscriptomeEvolución de los genes de regulación meristemática de la angiosperma holoparásita Pilostyles boyacensis (Apodanthaceae)Evolution of meristem regulatory genes in the holoparasitic angiosperm Pilostyles boyacensis (Apodanthaceae)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgrosaviaAgrovocAmaral, M. M. do, & Ceccantini, G. (2011). The endoparasite Pilostyles ulei (Apodanthaceae – Cucurbitales) influences wood structure in three host species of Mimosa. IAWA Journal, 32(1), 1-13. https://doi.org/10.1163/22941932-90000038Amini, S., Rosli, K., Abu-Bakar, M.-F., Alias, H., Mat-Isa, M.-N., Juhari, M.-A.-A., Haji-Adam, J., Goh, H.-H., & Wan, K.-L. (2019). Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLOS ONE, 14(12), e0226338. https://doi.org/10.1371/journal.pone.0226338Barkman, T. J., McNeal, J. R., Lim, S.-H., Coat, G., Croom, H. B., Young, N. D., & dePamphilis, C. W. (2007). Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evolutionary Biology, 7, 248. https://doi.org/10.1186/1471-2148-7-248Bellot, S., & Renner, S. S. (2014). The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. PhytoKeys, 36, 41-57. https://doi.org/10.3897/phytokeys.36.7385Adamowski, M., & Friml, J. (2015). PIN-dependent auxin transport: Action, Regulation, and evolution. The Plant Cell, 27(1), 20–32. https://doi.org/10.1105/tpc.114.134874Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Research, 46(W1), W537-W544. https://doi.org/10.1093/nar/gky379Amaral, M. M. do. (2007). A estrutura da angiosperma endoparasita Pilostyles ulei (Apodanthaceae): Interface e impacto no lenho de Mimosa spp [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-05112007-095018/Arias-Agudelo, L. M., González, F., Isaza, J. P., Alzate, J. F., & Pabón-Mora, N. (2019). Plastome reduction and gene content in New World Pilostyles (Apodanthaceae) unveils high similarities to African and Australian congeners. Molecular Phylogenetics and Evolution, 135, 193-202. https://doi.org/10.1016/j.ympev.2019.03.014Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server issue), W202-208. https://doi.org/10.1093/nar/gkp335Baskin, J. M., & Baskin, C. C. (2022). Germination and seed/embryo size in holoparasitic flowering plants with “dust seeds” and an undifferentiated embryo. The Botanical Review, 88(1), 1–49. https://doi.org/10.1007/s12229-020-09242-yBellot, S., & Renner, S. S. (2013). Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. American Journal of Botany, 100(6), 1083–1094. https://doi.org/10.3732/ajb.1200627Bennett, T. (2015). PIN proteins and the evolution of plant development. Trends in Plant Science, 20(8), 498-507. https://doi.org/10.1016/j.tplants.2015.05.005Bennett, T., & Scheres, B. (2010). Root development two meristems for the price of one? En M. C. Timmermans (Ed.), Plant development (pp. 67-102). Elsevier. https://doi.org/10.1016/S0070-2153(10)91003-XBlarer, A., Nickrent, D. L., & Endress, P. K. (2004). Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). Plant Systematics and Evolution, 245(1), 119-142. https://doi.org/10.1007/s00606-003-0090-2Bouman, F., & Meijer, W. (1994). Comparative structure of ovules and seeds in Rafflesiaceae. Plant Systematics and Evolution, 193(1-4), 187-212. https://doi.org/10.1007/BF00983550Brasil, B. de A. (2010). Ciclo de vida, fenologia e anatomia floral de Pilostyles (Apodanthaceae—Rafflesiaceae s.l.): Subsídios para um posicionamento filogenético da família Apodanthaceae [Master thesis, Universidade de São Paulo]. http://www.teses.usp.br/teses/disponiveis/41/41132/tde-10122010-105707/Bryan, A. C., Obaidi, A., Wierzba, M., & Tax, F. E. (2012). XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana. Planta, 235(1), 111-122. https://doi.org/10.1007/s00425-011-1489-6Cai, L., Arnold, B. J., Xi, Z., Khost, D. E., Patel, N., Hartmann, C. B., Manickam, S., Sasirat, S., Nikolov, L. A., Mathews, S., Sackton, T. B., & Davis, C. C. (2021). Deeply altered genome architecture in the endoparasitic flowering plant Sapria himalayana Griff. (Rafflesiaceae). Current Biology, 31(5), 1002-1011.e9. https://doi.org/10.1016/j.cub.2020.12.045Cammarata, J., & Scanlon, M. J. (2020). A functionally informed evolutionary framework for the study of LRR-RLKs during stem cell maintenance. Journal of Plant Research, 133(3), 331–342. https://doi.org/10.1007/s10265-020-01197-wCapron, A., Chatfield, S., Provart, N., & Berleth, T. (2009). Embryogenesis: Pattern formation from a single cell. The Arabidopsis Book, 7, e0126. https://doi.org/10.1199/tab.0126Carbonell, A. (2017). Plant ARGONAUTEs: Features, functions, and unknowns. En A. Carbonell (Ed.), Plant Argonaute Proteins (Vol. 1640, pp. 1–21). Springer New York. https://doi.org/10.1007/978-1-4939-7165-7_1Carpenter, E. J., Matasci, N., Ayyampalayam, S., Wu, S., Sun, J., Yu, J., Jimenez Vieira, F. R., Bowler, C., Dorrell, R. G., Gitzendanner, M. A., Li, L., Du, W., K. Ullrich, K., Wickett, N. J., Barkmann, T. J., Barker, M. S., Leebens-Mack, J. H., & Wong, G. K.-S. (2019). Access to RNA-sequencing data from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). GigaScience, 8(10), giz126. https://doi.org/10.1093/gigascience/giz126Cederholm, H. M., Iyer-Pascuzzi, A. S., & Benfey, P. N. (2012). Patterning the primary root in Arabidopsis. Wiley Interdisciplinary Reviews: Developmental Biology, 1(5), 675-691. https://doi.org/10.1002/wdev.49Cernac, A., Andre, C., Hoffmann-Benning, S., & Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiology, 141(2), 745–757. https://doi.org/10.1104/pp.106.079574Chandler, J. W. (2016). Auxin response factors. Plant, Cell & Environment, 39(5), 1014-1028. https://doi.org/10.1111/pce.12662Chandler, J. W., & Werr, W. (2015). Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science, 20(5), 291-300. https://doi.org/10.1016/j.tplants.2015.02.003Chandler, J. W., & Werr, W. (2019). Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. En Current Topics in Developmental Biology (Vol. 131, pp. 545-564). Elsevier. https://doi.org/10.1016/bs.ctdb.2018.11.009Chang, W., Guo, Y., Zhang, H., Liu, X., & Guo, L. (2020). Same actor in different stages: Genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution, 8, 89. https://doi.org/10.3389/fevo.2020.00089Costanzo, E., Trehin, C., & Vandenbussche, M. (2014). The role of WOX genes in flower development. Annals of Botany, 114(7), 1545-1553. https://doi.org/10.1093/aob/mcu123Cronk, Q. C. B. (2009). Evolution in reverse gear: The molecular basis of loss and reversal. Cold Spring Harbor Symposia on Quantitative Biology, 74(0), 259-266. https://doi.org/10.1101/sqb.2009.74.034Czyzewicz, N., Nikonorova, N., Meyer, M. R., Sandal, P., Shah, S., Vu, L. D., Gevaert, K., Rao, A. G., & De Smet, I. (2016). The growing story of (ARABIDOPSIS) CRINKLY 4. Journal of Experimental Botany, 67(16), 4835–4847. https://doi.org/10.1093/jxb/erw192Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2019). ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, msz189. https://doi.org/10.1093/molbev/msz189De Vega, C., Ortiz, P. L., Arista, M., & Talavera, S. (2007). The endophytic system of mediterranean Cytinus (Cytinaceae) Developing on five host Cistaceae species. Annals of Botany, 100(6), 1209–1217. https://doi.org/10.1093/aob/mcm217Dell, B., Kuo, J., & Burbidge, A. H. (1982). Anatomy of Pilostyles hamiltonii C. A. Gardner (Rafflesiaceae) in stems of Daviesia. Australian Journal of Botany, 30(1), 1-9.Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: An update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. https://doi.org/10.1016/j.pbi.2016.09.003Deveaux, Y., Toffano-Nioche, C., Claisse, G., Thareau, V., Morin, H., Laufs, P., Moreau, H., Kreis, M., & Lecharny, A. (2008). Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 8(1), 291. https://doi.org/10.1186/1471-2148-8-291DeYoung, B. J., & Clark, S. E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2), 895-904. https://doi.org/10.1534/genetics.108.091108DeYoung, B. J., Bickle, K. L., Schrage, K. J., Muskett, P., Patel, K., & Clark, S. E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis: BAM receptor kinases regulate meristem function. The Plant Journal, 45(1), 1-16. https://doi.org/10.1111/j.1365-313X.2005.02592.xDu, Q., & Wang, H. (2015). The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation. Plant Signaling & Behavior, 10(10), e1078955. https://doi.org/10.1080/15592324.2015.1078955El Ouakfaoui, S., Schnell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., & Miki, B. (2010). Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 74(4–5), 313–326. https://doi.org/10.1007/s11103-010-9674-8El-Showk, S., Taylor-Teeples, M., Helariutta, Y., & Brady, S. M. (2013). Gene regulatory networks during Arabidopsis root vascular development. International Journal of Plant Sciences, 174(7), 1090-1097. https://doi.org/10.1086/671449Endriss, W. (1902). Monographie von Pilostyles ingae Karst. (Pilostyles ulei SolmsLaub.). Flora, 91, 209-236.Ernst, A., & Schmid, E. (1913). Über Blüte und Frucht von Rafflesiaceae. Annales du Jardin Botanique de Buitenzorg, 12, 1–58.Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. https://doi.org/10.1016/S0960-9822(01)00392-XFang, X., & Qi, Y. (2016). RNAi in Plants: An Argonaute-centered view. The Plant Cell, 28(2), 272–285. https://doi.org/10.1105/tpc.15.00920Finet, C., Berne-Dedieu, A., Scutt, C. P., & Marlétaz, F. (2013). Evolution of the ARF gene family in land plants: Old domains, new tricks. Molecular Biology and Evolution, 30(1), 45-56. https://doi.org/10.1093/molbev/mss220Fiume, E., & Fletcher, J. C. (2012). Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant Cell, 24(3), 1000-1012. https://doi.org/10.1105/tpc.111.094839Fletcher, J. C. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409), 1911-1914. https://doi.org/10.1126/science.283.5409.1911Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: From pluripotency to plant developmental plasticity. Development, 142(13), 2237-2249. https://doi.org/10.1242/dev.117614González, A. D., Pabón-Mora, N., Alzate, J. F., & González, F. (2020). Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Frontiers in Ecology and Evolution, 8, 209. https://doi.org/10.3389/fevo.2020.00209González, F., & Pabón-Mora, N. (2014). First reports and generic descriptions of the achlorophyllous holoparasites Apodanthaceae (Cucurbitales) of Colombia. Actualidades Biológicas, 36(101), 123-135.González, F., & Pabón-Mora, N. (2014). Pilostyles boyacensis a new species of Apodanthaceae (Cucurbitales) from Colombia. Phytotaxa, 178(2), 138. https://doi.org/10.11646/phytotaxa.178.2.5González, F., & Pabón-Mora, N. (2017). Floral development and morphoanatomy in the holoparasitic Pilostyles boyacensis (Apodanthaceae, Cucurbitales) reveal chimeric half-staminate and half-carpellate flowers. International Journal of Plant Sciences, 178(7), 522-536. https://doi.org/10.1086/692505Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40 (Database issue), D1178-D1186. https://doi.org/10.1093/nar/gkr944Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883Groppo, M., Amaral, M. M., & Ceccantini, G. C. T. (2007). Flora da Serra do Cipó, Minas Gerais: Apodanthaceae (Rafflesiaceae s.l.), e notas sobre a anatomia de Pilostyles. Boletim de Botânica, 25(1), 81-86. https://doi.org/10.11606/issn.2316-9052.v25i1p81-86Guyomarc’h, S., Bertrand, C., Delarue, M., & Zhou, D.-X. (2005). Regulation of meristem activity by chromatin remodelling. Trends in Plant Science, 10(7), 332-338. https://doi.org/10.1016/j.tplants.2005.05.003Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Chapter four—Shoot apical meristem form and function. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 103-140). Academic Press. https://doi.org/10.1016/S0070-2153(10)91004-1Haecker, A., Groß-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., & Laux, T. (2004). Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development, 131(3), 657-668. https://doi.org/10.1242/dev.00963Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser, 41, 95-98.Hall, T. M. T. (2005). Structure and function of Argonaute proteins. Structure, 13(10), 1403–1408. https://doi.org/10.1016/j.str.2005.08.005Hardtke, C. S., Ckurshumova, W., Vidaurre, D. P., Singh, S. A., Stamatiou, G., Tiwari, S. B., Hagen, G., Guilfoyle, T. J., & Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development (Cambridge, England), 131(5), 1089-1100. https://doi.org/10.1242/dev.00925Hazak, O., & Hardtke, C. S. (2016). CLAVATA 1-type receptors in plant development. Journal of Experimental Botany, 67(16), 4827-4833. https://doi.org/10.1093/jxb/erw247Heide-Jørgensen, H. (2008). Parasitic flowering plants. Brill.Horstman, A., Willemsen, V., Boutilier, K., & Heidstra, R. (2014). AINTEGUMENTA-LIKE proteins: Hubs in a plethora of networks. Trends in Plant Science, 19(3), 146-157. https://doi.org/10.1016/j.tplants.2013.10.010Hove, C. A. ten, Lu, K.-J., & Weijers, D. (2015). Building a plant: Cell fate specification in the early Arabidopsis embryo. Development, 142(3), 420–430. https://doi.org/10.1242/dev.111500Johri, B. (1992). Aristolochiales. En B. Johri, K. Ambegaokar, & P. Srivastava, Comparative embryology of angiosperms (Vol. 1, pp. 316-323). Springer. http://www.springer.com/la/book/9783540536338Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285Kamata, N., Okada, H., Komeda, Y., & Takahashi, T. (2013). Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana. The Plant Journal, 75(3), 430–440. https://doi.org/10.1111/tpj.12211Kapoor, M., Arora, R., Lama, T., Nijhawan, A., Khurana, J. P., Tyagi, A. K., & Kapoor, S. (2008). Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics, 9(1), 451. https://doi.org/10.1186/1471-2164-9-451Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053Kerstens, M. H. L., Schranz, M. E., & Bouwmeester, K. (2020). Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage‐specific patterns. The Plant Journal, 103(4), 1516–1524. https://doi.org/10.1111/tpj.14843Khosla, A., Paper, J. M., Boehler, A. P., Bradley, A. M., Neumann, T. R., & Schrick, K. (2014). HD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23. The Plant Cell, 26(5), 2184–2200. https://doi.org/10.1105/tpc.113.120360Kieffer, M., Stern, Y., Cook, H., Clerici, E., Maulbetsch, C., Laux, T., & Davies, B. (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. The Plant Cell, 18(3), 560-573. https://doi.org/10.1105/tpc.105.039107Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H., & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22), 3911–3920. https://doi.org/10.1242/dev.048199Kondo, Y., & Fukuda, H. (2015). The TDIF signaling network. Current Opinion in Plant Biology, 28, 106–110. https://doi.org/10.1016/j.pbi.2015.10.002Korasick, D. A., Westfall, C. S., Lee, S. G., Nanao, M. H., Dumas, R., Hagen, G., Guilfoyle, T. J., Jez, J. M., & Strader, L. C. (2014). Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proceedings of the National Academy of Sciences, 111(14), 5427-5432. https://doi.org/10.1073/pnas.1400074111Křeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., & Zažímalová, E. (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology, 10(12), 249. https://doi.org/10.1186/gb-2009-10-12-249Krizek, B. A., Bantle, A. T., Heflin, J. M., Han, H., Freese, N. H., & Loraine, A. E. (2021). AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany, 72(15), 5478–5493. https://doi.org/10.1093/jxb/erab223Kuijt, J. (1969). The biology of parasitic flowering plants (Central 582.13/k96b). University of California Press.Kuijt, J., Bray, D., & Olson, A. R. (1985). Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). Canadian Journal of Botany, 63(7), 1231-1240. https://doi.org/10.1139/b85-170Laux, T., Mayer, K. F., Berger, J., & Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development (Cambridge, England), 122(1), 87-96.Li, H., Shi, Q., Zhang, Z.-B., Zeng, L.-P., Qi, J., & Ma, H. (2016). Evolution of the leucine-rich repeat receptor-like protein kinase gene family: Ancestral copy number and functional divergence of BAM1 and BAM2 in Brassicaceae: Evolution of the LRR-RLK gene family. Journal of Systematics and Evolution, 54(3), 204-218. https://doi.org/10.1111/jse.12206Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991Maeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.xMaeo, K., Tokuda, T., Ayame, A., Mitsui, N., Kawai, T., Tsukagoshi, H., Ishiguro, S., & Nakamura, K. (2009). An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. The Plant Journal, 60(3), 476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.xMaizel, A., Busch, M. A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M., & Weigel, D. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science (New York, N.Y.), 308(5719), 260-263. https://doi.org/10.1126/science.1108229Matasci, N., Hung, L.-H., Yan, Z., Carpenter, E. J., Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Ayyampalayam, S., Barker, M., Burleigh, J. G., Gitzendanner, M. A., Wafula, E., Der, J. P., dePamphilis, C. W., Roure, B., Philippe, H., Ruhfel, B. R., Miles, N. W., … Wong, G. K.-S. (2014). Data access for the 1,000 Plants (1KP) project. GigaScience, 3, 17. https://doi.org/10.1186/2047-217X-3-17Matsushima, N., & Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules, 2(2), 288–311. https://doi.org/10.3390/biom2020288Meijer, W. (1993). Rafflesiaceae. En K. Kubitzki, J. G. Rohwer, & V. Bittrich (Eds.), Flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families (Vol. 2, pp. 557-562). Springer. http://dx.doi.org/10.1007/978-3-662-02899-5Meyer, M. R., Lichti, C. F., Townsend, R. R., & Rao, A. G. (2011). Identification of in vitro autophosphorylation sites and effects of phosphorylation on the Arabidopsis CRINKLY4 (ACR4) Receptor-like Kinase intracellular domain: Insights into conformation, oligomerization, and activity. Biochemistry, 50(12), 2170–2186. https://doi.org/10.1021/bi101935xMichael, T. P., Ernst, E., Hartwick, N., Chu, P., Bryant, D., Gilbert, S., Ortleb, S., Baggs, E. L., Sree, K. S., Appenroth, K. J., Fuchs, J., Jupe, F., Sandoval, J. P., Krasileva, K. V., Borisjuk, L., Mockler, T. C., Ecker, J. R., Martienssen, R. A., & Lam, E. (2021). Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Research, 31(2), 225-238. https://doi.org/10.1101/gr.266429.120Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1-8. http://dx.doi.org/10.1109/GCE.2010.5676129Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5), 1188–1195. https://doi.org/10.1093/molbev/mst024Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913Miyashima, S., Sebastian, J., Lee, J.-Y., & Helariutta, Y. (2013). Stem cell function during plant vascular development. The EMBO Journal, 32(2), 178-193. https://doi.org/10.1038/emboj.2012.301Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana: RPK2 controls anther development. The Plant Journal, 50(5), 751-766. https://doi.org/10.1111/j.1365-313X.2007.03083.xMoyroud, E., Kusters, E., Monniaux, M., Koes, R., & Parcy, F. (2010). LEAFY blossoms. Trends in Plant Science, 15(6), 346-352. https://doi.org/10.1016/j.tplants.2010.03.007Mursidawati, S., & Wicaksono, A. (2021). A preliminary study of in vivo injection of auxin and cytokinin into Rafflesia patma Blume flower buds. Buletin Kebun Raya, 24(2). https://doi.org/10.14203/bkr.v24i2.670Nakamura, M., Katsumata, H., Abe, M., Yabe, N., Komeda, Y., Yamamoto, K. T., & Takahashi, T. (2006). Characterization of the Class IV Homeodomain-Leucine Zipper gene family in Arabidopsis. Plant Physiology, 141(4), 1363–1375. https://doi.org/10.1104/pp.106.077388Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., & Werr, W. (2007). WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development. Molecular Biology and Evolution, 24(11), 2474-2484. https://doi.org/10.1093/molbev/msm182Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300Nickrent, D. L. (2020). Parasitic angiosperms: How often and how many? TAXON, 69(1), 5-27. https://doi.org/10.1002/tax.12195Nikolov, L. A., Endress, P. K., Sugumaran, M., Sasirat, S., Vessabutr, S., Kramer, E. M., & Davis, C. C. (2013). Developmental origins of the world’s largest flowers, Rafflesiaceae. Proceedings of the National Academy of Sciences, 110(46), 18578-18583. https://doi.org/10.1073/pnas.1310356110Nikolov, L. A., Tomlinson, P. B., Manickam, S., Endress, P. K., Kramer, E. M., & Davis, C. C. (2014). Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world’s largest flowers. Annals of Botany, 114(2), 233-242. https://doi.org/10.1093/aob/mcu114Nikonorova, N., Vu, L. D., Czyzewicz, N., Gevaert, K., & De Smet, I. (2015). A phylogenetic approach to study the origin and evolution of the CRINKLY4 family. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00880Nodine, M. D., Yadegari, R., & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Developmental Cell, 12(6), 943-956. https://doi.org/10.1016/j.devcel.2007.04.003Nole-Wilson, S., Tranby, T. L., & Krizek, B. A. (2005). AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology, 57(5), 613–628. https://doi.org/10.1007/s11103-005-0955-6Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist, 201(1), 16-30. https://doi.org/10.1111/nph.12444Ohtani, M., Akiyoshi, N., Takenaka, Y., Sano, R., & Demura, T. (2017). Evolution of plant conducting cells: Perspectives from key regulators of vascular cell differentiation. Journal of Experimental Botany, 68(1), 17-26. https://doi.org/10.1093/jxb/erw473Ortega-González, P. F., Rios-Carrasco, S., González-Martínez, C. A., Bonilla-Cruz, N., & Vázquez-Santana, S. (2020). Pilostyles maya, a novel species from Mexico and the first cleistogamous species in Apodanthaceae (Cucurbitales). Phytotaxa, 440(4), 255–267. https://doi.org/10.11646/phytotaxa.440.4.1Pabon-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiology, 158(4), 1685-1704. https://doi.org/10.1104/pp.111.192104Palovaara, J., De Zeeuw, T., & Weijers, D. (2016). Tissue and organ initiation in the plant embryo: A first time for everything. Annual Review of Cell and Developmental Biology, 32(1), 47–75. https://doi.org/10.1146/annurev-cellbio-111315-124929Palovaara, J., Hallberg, H., Stasolla, C., & Hakman, I. (2010). Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist, 188(1), 122-135. https://doi.org/10.1111/j.1469-8137.2010.03336.xPalovaara, J., Saiga, S., & Weijers, D. (2013). Transcriptomics approaches in the early Arabidopsis embryo. Trends in Plant Science, 18(9), 514-521. https://doi.org/10.1016/j.tplants.2013.04.011Pan, L., Lv, S., Yang, N., Lv, Y., Liu, Z., Wu, J., & Wang, G. (2016). The multifunction of CLAVATA2 in plant development and immunity. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01573Pawełkowicz, M., Pryszcz, L., Skarzyńska, A., Wóycicki, R. K., Posyniak, K., Rymuszka, J., Przybecki, Z., & Pląder, W. (2019). Comparative transcriptome analysis reveals new molecular pathways for cucumber genes related to sex determination. Plant Reproduction, 32(2), 193-216. https://doi.org/10.1007/s00497-019-00362-zPaysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418-D427. https://doi.org/10.1093/nar/gkac993Pellissari, L. C. O., Teixeira-Costa, L., Ceccantini, G., Tamaio, N., Cardoso, L. J. T., Braga, J. M. A., & Barros, C. F. (2022). Parasitic plant, from inside out: Endophytic development in Lathrophytum peckoltii (Balanophoraceae) in host liana roots from tribe Paullineae (Sapindaceae). Annals of Botany, 129(3), 331–342. https://doi.org/10.1093/aob/mcab148Peris, C. I. L., Rademacher, E. H., & Weijers, D. (2010). Green beginnings pattern formation in the early plant embryo. En M. C. P. Timmermans (Ed.), Current Topics in Developmental Biology (Vol. 91, pp. 1-27). Academic Press. https://doi.org/10.1016/S0070-2153(10)91001-6Petrášek, J., & Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675-2688. https://doi.org/10.1242/dev.030353Poole, R. L. (2007). The TAIR database. Methods in Molecular Biology (Clifton, N.J.), 406, 179-212. https://doi.org/10.1007/978-1-59745-535-0_8Prigge, M. J., & Clark, S. E. (2006). Evolution of the class III HD-Zip gene family in land plants. Evolution Development, 8(4), 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.xPrigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N., & Clark, S. E. (2005). Class III Homeodomain-Leucine Zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell, 17(1), 61-76. https://doi.org/10.1105/tpc.104.026161Ramamoorthy, R., Phua, E. E.-K., Lim, S.-H., Tan, H. T.-W., & Kumar, P. P. (2013). Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae). PLoS ONE, 8(6), e67243. https://doi.org/10.1371/journal.pone.0067243Rambaut, A. (2009). FigTree v1. 4.0: Tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/Rebocho, A. B., Bliek, M., Kusters, E., Castel, R., Procissi, A., Roobeek, I., Souer, E., & Koes, R. (2008). Role of EVERGREEN in the development of the cymose petunia inflorescence. Developmental Cell, 15(3), 437-447. https://doi.org/10.1016/j.devcel.2008.08.007Rigal, A., Yordanov, Y. S., Perrone, I., Karlberg, A., Tisserant, E., Bellini, C., Busov, V. B., Martin, F., Kohler, A., Bhalerao, R., & Legué, V. (2012). The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiology, 160(4), 1996–2006. https://doi.org/10.1104/pp.112.204453Rodríguez-Leal, D., Castillo-Cobián, A., Rodríguez-Arévalo, I., & Vielle-Calzada, J.-P. (2016). A primary sequence analysis of the ARGONAUTE protein family in plants. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01347Romera-Branchat, M., Ripoll, J. J., Yanofsky, M. F., & Pelaz, S. (2013). The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. The Plant Journal, 73(1), 37–49. https://doi.org/10.1111/tpj.12010Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029Roodbarkelari, F., & Groot, E. P. (2017). Regulatory function of homeodomain‐leucine zipper HD‐ZIP family proteins during embryogenesis. New Phytologist, 213(1), 95–104. https://doi.org/10.1111/nph.14132Rutherford, R. J. (1970). The anatomy and cytology of Pilostyles thurberi Gray (Rafflesiaceae). Aliso, 7(2), 263-288.Rybel, B. D., Mähönen, A. P., Helariutta, Y., & Weijers, D. (2016). Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 17(1), 30-40. https://doi.org/10.1038/nrm.2015.6Sakakibara, K., Reisewitz, P., Aoyama, T., Friedrich, T., Ando, S., Sato, Y., Tamada, Y., Nishiyama, T., Hiwatashi, Y., Kurata, T., Ishikawa, M., Deguchi, H., Rensing, S. A., Werr, W., Murata, T., Hasebe, M., & Laux, T. (2014). WOX13—Like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development, 141(8), 1660–1670. https://doi.org/10.1242/dev.097444Sato, H. A., & Gonzalez, A. M. (2022). Anatomy, embryology and life cycle of Lophophytum, a root-holoparasitic plant. En A. M. Gonzalez & H. A. Sato (Eds.), Parasitic Plants. IntechOpen. https://doi.org/10.5772/intechopen.99981Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6), 863–864. https://doi.org/10.1093/bioinformatics/btr026Shimizu, K., Hozumi, A., & Aoki, K. (2018). Organization of vascular cells in the haustorium of the parasitic flowering plant Cuscuta japonica. Plant and Cell Physiology, 59(4), 720–728. https://doi.org/10.1093/pcp/pcx197Shimizu, N., Ishida, T., Yamada, M., Shigenobu, S., Tabata, R., Kinoshita, A., Yamaguchi, K., Hasebe, M., Mitsumasu, K., & Sawa, S. (2015). BAM 1 and RECEPTOR‐ LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide‐triggered growth inhibition in Arabidopsis root. New Phytologist, 208(4), 1104–1113. https://doi.org/10.1111/nph.13520Skylar, A., Hong, F., Chory, J., Weigel, D., & Wu, X. (2010). STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development (Cambridge, England), 137(4), 541-549. https://doi.org/10.1242/dev.041426Sparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. https://doi.org/10.1038/nrg3541Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771. https://doi.org/10.1080/10635150802429642Tajima, D., Kaneko, A., Sakamoto, M., Ito, Y., Hue, N. T., Miyazaki, M., Ishibashi, Y., Yuasa, T., & Iwaya-Inoue, M. (2013). Wrinkled1 (WRI1) Homologs, AP2-Type transcription factors involving master regulation of seed storage oil synthesis in castor bean Ricinus communis. American Journal of Plant Sciences, 04(02), 333–339. https://doi.org/10.4236/ajps.2013.42044Taylor-Teeples, M., Lanctot, A., & Nemhauser, J. L. (2016). As above, so below: Auxin’s role in lateral organ development. Developmental Biology, 419(1), 156-164. https://doi.org/10.1016/j.ydbio.2016.03.020Teixeira-Costa, L., & Davis, C. C. (2021). Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187(1), 32–51. https://doi.org/10.1093/plphys/kiab279Tsuda, K., & Hake, S. (2016). Homeobox transcription factors and the regulation of meristem development and maintenance. En Plant Transcription Factors (pp. 215-228). Elsevier. https://doi.org/10.1016/B978-0-12-800854-6.00014-2Turchi, L., Baima, S., Morelli, G., & Ruberti, I. (2015). Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. Journal of Experimental Botany, 66(16), 5043–5053. https://doi.org/10.1093/jxb/erv174Tvorogova, V. E., & Lutova, L. A. (2018). Genetic regulation of zygotic embryogenesis in Angiosperm plants. Russian Journal of Plant Physiology, 65(1), 1-14. https://doi.org/10.1134/S1021443718010107van der Graaff, E., Laux, T., & Rensing, S. A. (2009). The WUS homeobox-containing (WOX) protein family. Genome Biology, 10(12), 248. https://doi.org/10.1186/gb-2009-10-12-248Vattimo, I. (1971). Contribuição ao conhecimento da tribo Apodantheae R. Br. Parte I – Conspecto das especies (Rafflesiaceae). Rodriguésia, 26(38), 37-62.Wang, H., Shao, W., Yan, M., Xu, Y., Liu, S., & Wang, R. (2021). Genome-wide analysis and expression profiling of HD-ZIP III genes in three Brassica species. Diversity, 13(12), 684. https://doi.org/10.3390/d13120684Watanabe, M., Tanaka, H., Watanabe, D., Machida, C., & Machida, Y. (2004). The ACR4 receptor-like kinase is required for surface formation of epidermis-related tissues in Arabidopsis thaliana. The Plant Journal, 39(3), 298-308. https://doi.org/10.1111/j.1365-313X.2004.02132.xWeigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. https://doi.org/10.1016/0092-8674(92)90295-NWernersson, R., & Pedersen, A. G. (2003). RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Research, 31(13), 3537-3539.Westwood, J. H., Yoder, J. I., Timko, M. P., & dePamphilis, C. W. (2010). The evolution of parasitism in plants. Trends in Plant Science, 15(4), 227-235. https://doi.org/10.1016/j.tplants.2010.01.004Wils, C. R., & Kaufmann, K. (2017). Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1860(1), 95-105. https://doi.org/10.1016/j.bbagrm.2016.07.014Wu, C.-C., Li, F.-W., & Kramer, E. M. (2019). Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLOS ONE, 14(10), e0223521. https://doi.org/10.1371/journal.pone.0223521Wu, Q., Xu, F., & Jackson, D. (2018). All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology, 45, 26-35. https://doi.org/10.1016/j.pbi.2018.04.010Wu, X., Dabi, T., & Weigel, D. (2005). Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology: CB, 15(5), 436-440. https://doi.org/10.1016/j.cub.2004.12.079Xu, C., & Shanklin, J. (2016). Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology, 67(1), 179–206. https://doi.org/10.1146/annurev-arplant-043015-111641Yamaguchi, N., Wu, M.-F., Winter, C. M., Berns, M. C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B. A., & Wagner, D. (2013). A Molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell, 24(3), 271-282. https://doi.org/10.1016/j.devcel.2012.12.017Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. https://doi.org/10.1186/1471-2105-13-134Zalewski, C. S., Floyd, S. K., Furumizu, C., Sakakibara, K., Stevenson, D. W., & Bowman, J. L. (2013). Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution, 30(10), 2347–2365. https://doi.org/10.1093/molbev/mst132Zhang, H., Xia, R., Meyers, B. C., & Walbot, V. (2015). Evolution, functions, and mysteries of plant ARGONAUTE proteins. Current Opinion in Plant Biology, 27, 84–90. https://doi.org/10.1016/j.pbi.2015.06.011Zheng, Y., Wu, S., Bai, Y., Sun, H., Jiao, C., Guo, S., Zhao, K., Blanca, J., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., K Reddy, U., Ando, K., McCreight, J. D., Schaffer, A. A., Burger, J., Tadmor, Y., … Fei, Z. (2019). Cucurbit Genomics Database (CuGenDB): A central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47(D1), D1128-D1136. https://doi.org/10.1093/nar/gky944Zhou, X., Guo, Y., Zhao, P., & Sun, M. (2018). Comparative analysis of WUSCHEL-Related Homeobox genes revealed their parent-of-origin and cell type-specific expression pattern during early embryogenesis in Tobacco. Frontiers in Plant Science, 9, 311. https://doi.org/10.3389/fpls.2018.00311Genómica y transcriptómica comparada de Pilostyles boyacensis (Apodanthaceae), una extraordinaria planta con flor holoparásita de bosques secos de ColombiaEvolución de los genes asociados a embriogénesis temprana de la endoparásita Pilostyles boyacensis (Apodanthaceae)Vicerrectoría de Investigaciones Universidad Nacional de ColombiaFacultad de Ciencias sede Bogotá de la Universidad Nacional de ColombiaEstudiantesInvestigadoresORIGINAL1032432374.2023.pdf1032432374.2023.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf27244320https://repositorio.unal.edu.co/bitstream/unal/85300/4/1032432374.2023.pdfc48d588cf4e11da721c4800c27b412e6MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85300/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1032432374.2023.pdf.jpg1032432374.2023.pdf.jpgGenerated Thumbnailimage/jpeg8754https://repositorio.unal.edu.co/bitstream/unal/85300/6/1032432374.2023.pdf.jpgb4e280acf02890c8c76a4481f063802fMD56unal/85300oai:repositorio.unal.edu.co:unal/853002024-08-20 23:10:12.688Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=