Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021
ilustraciones, gráficas, tablas
- Autores:
-
Peña Mejia, Yerson Gerardo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80981
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Virus del SRAS
COVID-19
Infecciones por coronavirus
SARS Virus
Coronavirus Infections
Coinfección bacteriana
infección bacteriana secundaria
Coronavirus
Bacterial coinfection
bacterial secondary infection
SARS-CoV-2
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8d9ba5ad8ddfc9774c8f7cade2d304c5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80981 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
dc.title.translated.eng.fl_str_mv |
Infections associated with COVID-19 in hospitalized patients. 2021 |
title |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
spellingShingle |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 610 - Medicina y salud::616 - Enfermedades Virus del SRAS COVID-19 Infecciones por coronavirus SARS Virus Coronavirus Infections Coinfección bacteriana infección bacteriana secundaria Coronavirus Bacterial coinfection bacterial secondary infection SARS-CoV-2 |
title_short |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
title_full |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
title_fullStr |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
title_full_unstemmed |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
title_sort |
Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
dc.creator.fl_str_mv |
Peña Mejia, Yerson Gerardo |
dc.contributor.advisor.none.fl_str_mv |
Saavedra Trujillo, Carlos Humberto |
dc.contributor.author.none.fl_str_mv |
Peña Mejia, Yerson Gerardo |
dc.contributor.datacurator.none.fl_str_mv |
Enciso Olivera Leonardo Jose |
dc.contributor.projectmember.none.fl_str_mv |
García Moncayo Andrea Lorena |
dc.contributor.researcher.none.fl_str_mv |
Peña Mejia Zaira Alejandra |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Virus del SRAS COVID-19 Infecciones por coronavirus SARS Virus Coronavirus Infections Coinfección bacteriana infección bacteriana secundaria Coronavirus Bacterial coinfection bacterial secondary infection SARS-CoV-2 |
dc.subject.decs.spa.fl_str_mv |
Virus del SRAS COVID-19 Infecciones por coronavirus |
dc.subject.decs.eng.fl_str_mv |
SARS Virus Coronavirus Infections |
dc.subject.proposal.spa.fl_str_mv |
Coinfección bacteriana infección bacteriana secundaria Coronavirus |
dc.subject.proposal.eng.fl_str_mv |
Bacterial coinfection bacterial secondary infection SARS-CoV-2 |
description |
ilustraciones, gráficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-14T21:33:44Z |
dc.date.available.none.fl_str_mv |
2022-02-14T21:33:44Z |
dc.date.issued.none.fl_str_mv |
2022-02-10 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Especialidad Médica |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80981 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80981 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Rodriguez-Morales A, Bonilla-Aldana D, Tiwari R, Sah R, Rabaan A, Dhama K. COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. Journal of Pure and Applied Microbiology [Internet]. 2020;14(1):05-12. Available from: https://doi.org/10.22207/JPAM.14.1.02 2. Zhou, P., Yang, XL., Wang, XG. et al. Un brote de neumonía asociado con un nuevo coronavirus de probable origen en murciélagos. Nature 579, 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-7 3. Rojas DJPM, Loría DMQ, Sánchez DMG, Chinchilla DAS. SARS CoV-2, manifestaciones clínicas y consideraciones en el abordaje diagnóstico de COVID- 19. Rev Auspiciada Por El Hosp Dr Rafael Ángel Calderón Guard. 2020;86(629). Disponible en: http://revistamedicacr.com/index.php/rmcr/article/view/287 4. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085-6.doi: 10.1001 / jama.2020.6266 5. Xing Q, Li G, Xing Y, Chen T, Li W, Ni W, et al. Precautions are Needed for COVID-19 Patients with Coinfection of Common Respiratory Pathogens. medRXiv. 2020, http://dx.doi.org/10.1101/2020.02.29.20027698 6. Rubin R. What Happens When COVID-19 Collides With Flu Season? JAMA. 2020;324(10):923-925. doi: 10.1001 / jama.2020.15260 7. Aguilera-Calzadilla Y, Diaz-Morales Y, Ortiz-Díaz L, Gonzalez--Martínez O, Lovelle-Enríquez O, Sánchez-Álvarez M. Infecciones bacterianas asociadas a la COVID-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar. 2020; 49 (3). Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/793 8. Rodríguez-Morales, Álvarez Moreno, Saavedra Trujillo. Consenso Colombiano SARS-CoV-2/COVID-19. Asociación Colombiana de Infectología (ACIN) 2021, Tercera edición. Pag:17-18 9. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–70. 10. MacIntyre CR, Chughtai AA, Barnes M, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis 2018; 18: 637 11. Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest 2011;139:555e62. 12. Rice TW, Rubinson L, Uyeki TM, Vaughn FL, John BB, Miller RR, et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med 2012;40:1487e98 13. Shah NS, Greenberg JA, McNulty MC, Gregg KS, Riddell J, Mangino JE, et al.Bacterial and viral co-infections complicating severe influenza: incidence and impact among 507 US patients, 2013e14. J Clin Virol 2016;80:12e9. 14. Johns Hopkins, University of Medicine. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. 2021 [citado 7 de febrero de 2021]. Disponible en: https://coronavirus.jhu.edu/map.html 15. Instituto Nacional de Salud Colombia. Noticias coronavirus-casos [Internet]. COVID-19 en Colombia. 2021 [citado 7 de enero de 2021]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx 16. Rivero V, Alberto J, Ledezma R, Carlos J, Pacheco H, Iván, et al. La salud de las personas adultas mayores durante la pandemia de COVID-19. J Negat No Posit Results. 2020;726-39. https://dx.doi.org/10.19230/jonnpr.3772. 17. King A, Lefkowitz E, Adams M, Carstens E. Virus Taxonomy; 9th Report of the International Committee on Taxonomy of Viruses. 1st ed. San Diego, EEUU: Elsevier; 2012. 18. Fehr A, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H, Bickerton E. Coronaviruses: Methods and Protocols. New York, NY: Springer New York; 2015. 19. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613-620. 20. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology. 2020;17(6):621-630. Available from: https://doi.org/10.1038/s41423-020-0458-z. 21. Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.Available from:https://doi.org/10.1126/science.abb2507. 22. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections. 2020;9(1):382-385. 23. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. Available from: https://doi.org/10.1038/s41586-020-2180-5. 24. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-574. 25. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. Available from: https://doi.org/10.1038/s41586-020-2179-y. 26. B.J. Langford et al. Bacterial co-infection and secondary infection in patients with COVID19: a living rapid review and meta-analysis. Clinical Microbiology and Infection (2020). doi.org/10.1016/j.cmi.2020.07.016 27. Wu CP et al. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Cleveland Clinic Journal of Medicine. 2020, 87 (11) 659-663; DOI: https://doi.org/10.3949/ccjm.87a.ccc015 28. Song W, Jia X, Zhang X, Ling Y, Yi Z. Co-infection in COVID-19, a cohort study. J Infect. 2021;82(3):414-51. https://doi.org/10.1016/j.jinf.2020.10.006 29. Griffiths, EC, Pedersen, AB, Fenton, A. y Petchey, OL (2011). Naturaleza y consecuencias de la coinfección en humanos. The Journal of Infection , 63 (3), 200-206. https://doi.org/10.1016/j.jinf.2011.06.005 30. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H ali abraham, Jeda AS, et al. Bacterial co‐infections with SARS‐CoV‐2. Iubmb Life. 2020;10.1002/iub.2356. https://doi.org/10.1002/iub.2356 31. Fattorini, L., Creti, R., Palma, C., Pantosti, A., Unit of Antibiotic Resistance and Special Pathogens, & Unit of Antibiotic Resistance and Special Pathogens of the Department of Infectious Diseases, Istituto Superiore di Sanità, Rome (2020). Bacterial coinfections in COVID-19: an underestimated adversary. Annali dell'Istituto superiore di sanita, 56(3), 359–364. https://doi.org/10.4415/ANN_20_03_14 32. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus research, 285, 198005. https://doi.org/10.1016/j.virusres.2020.198005. 33. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3 34. Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. The Journal of infection, 81(2), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046. 35. De Francesco MA, Poiesi C, Gargiulo F, Bonfanti C, Pollara P, Fiorentini S, et al. Co-infection of chlamydia pneumoniae and mycoplasma pneumoniae with SARS-CoV-2 is associated with more severe features. J Infect. abril de 2021;82(4):e4-7. https://doi.org/10.1016/j.jinf.2021.01.009. 36. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8.. https://doi .org/10.1164/rccm.202002-0445OC. 37. Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P, Dubert M, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care.2020;10:119. PMC7475952. 38. Garcia-Vidal C et al., Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study, Clinical Microbiology and Infection, https://doi.org/10.1016/j.cmi.2020.07.041. 39. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2021 DOI: 10.1056/NEJMoa2116044. 40. Mahase E. Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical research ed.). 2021; 375, n2713. https://doi.org/10.1136/bmj.n2713 41. Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clinical Microbiology and Infection. 2021; 27(4), 646-647. https://doi.org/10.1016/j.cmi.2020.09.055. 42. Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. :1-2. doi: 10.1017 / ice.2020.381). 43. Zavala-Flores E, Salcedo-Matienzo J. Medicación prehospitalaria en pacientes con COVID-19 de un hospital público de Lima-Perú. Acta Med Perurana. 2020; 37(3), 393 - 395. https://doi.org/10.35663/amp.2020.373.1277. 44. Peckham H, de Gruijter N, Raine C, Radziszewska A, Ciurtin C, Wedderburn L et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications. 2020;11(1).doi.org/10.1038/s41467-020-19741-6. 45. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Características, evolución clínica y factores asociados a la mortalidad en UCI de los pacientes críticos infectados por SARS-CoV-2 en España: estudio prospectivo, de cohorte y multicéntrico. Rev Esp Anestesiol Reanim. 2020;67(8):425-37. DOI: org/10.1016/j.redar.2020.07.003 46. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2021). Decreasing mortality rates in ICU during the COVID-19 pandemic. Anaesthesia, 76 Suppl 3, 10. https://doi.org/10.1111/anae.15230. 47. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2020). Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia, 75(10), 1340–1349. https://doi.org/10.1111/anae.15201. 48. Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the emerging literature. Pipetius Quah1 , Andrew Li1 and Jason Phua1,2 https://doi.org/10.1186/s13054-020-03006-1. 49. Algarín-Lara, E. Guevara-Romero, E. Osorio-Rodríguez et al., Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia, Acta Colombiana de Cuidado Intensivo, https://doi.org/10.1016/j.acci.2021.07.002. 50. Saavedra C, López V, Linares P, Romero P, Solórzano C, Mora J, et al. Prevalencia de factores de riesgo para infección por Klebsiella pneumoniae resistente a carbapenémicos en adultos en un Hospital de cuarto nivel, Bogotá D.C. REC. 2018; 24: 13-9. 51. Giovanetti Y, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Medicina& Laboratorio 2017; 23:387-398-http://docs.bvsalud.org/biblioref/2018/05/883698/resistencia-bacteriana.pdf 52. Gómez-González JF, Sánchez-Duque JA. Perfil microbiológico y resistencia bacteriana en una unidad de cuidados intensivos de Pereira, Colombia, 2015. MÉD. UIS. 2018;31(2):9-15. Páginas. DOI: 10.18273/revmed.v31n2-2018001. 53. Furukawa D, Graber CJ. Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin Infect Dis. 2021 May 18;72(10):e542-e544. doi: 10.1093/cid/ciaa1273. PMID: 32857832; PMCID: PMC7665318. 54. Huttner BD, Catho G, Pano-Pardo JR, Pulcini C, Schouten J. COVID-19: don't neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020 Jul;26(7):808-810. doi: 10.1016/j.cmi.2020.04.024. Epub 2020 Apr 30. PMID: 32360446; PMCID: PMC7190532. 55. Yam ELY. COVID-19 will further exacerbate global antimicrobial resistance. J Travel Med. 2020 Sep 26;27(6):taaa098. doi: 10.1093/jtm/taaa098. PMID: 32539142; PMCID: PMC7313869. 56. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2013;368(23):2159-68.DOI: org/10.1056/nejmoa1214103. 57. Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76(6):448-54. PMID: 20473258. 58. Maes M, Higginson E, Pereira-Dias J, Curran MD, Parmar S, Khokhar F, et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit Care. 2021;25(1):25. DOI: org/10.1186/s13054-021-03460-5. 59. Luyt C-E, Bouadma L, Morris AC, Dhanani JA, Kollef M, Lipman J, et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020;1-16. DOI:10.1016/j.immuni.2017.06.021. 60. Roquilly A, McWilliam HEG, Jacqueline C, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity. 2017;47(1):135-147.e5. doi:10.1016/j.immuni.2017.06.021. 61. Ayzac L, Girard R, Baboi L, Beuret P, Rabilloud M, Richard JC, et al. Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med. 2016;42(5):871-8. DOI:org/10.1007/s00134-015-4167-5. 62. Arulkumaran N, Routledge M, Schlebusch S, Lipman J, Conway Morris A. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46(2):225-35. DOI: org/10.1007/s00134-020-05929-3. 63. Alvarez Castaño VH, Guavita Cuta L, Ayala DA, Torres AL. VIGILANCIA DEMOGRÁFICA DE LA MORTALIDAD POR COVID-19 EN COLOMBIA 2020 [Internet]. Bogotá, D.C, Colombia: Ministerio de Salud; 2021 [citado 1 de enero de 2022] p. 1-31. (Infografía COVID-19). Reporte No.53. Disponible en: www.minsalud.gov.co%2Fsites%2Frid%2FLists%2FBibliotecaDigital%2FRIDE%2FVS%2FED%2FVSP%2Fvigilancia-demografica-mortalidad-covid-19-colombia2020.pdf&clen=7347860 |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2022 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 49 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Especialidad en Medicina Interna |
dc.publisher.department.spa.fl_str_mv |
Departamento de Medicina Interna |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80981/6/10223678990.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/80981/8/license.txt https://repositorio.unal.edu.co/bitstream/unal/80981/9/10223678990.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
54e8d2d62ba1132e4605a42c1e06fdcc 8153f7789df02f0a4c9e079953658ab2 eb2c6e5606db2beef87ca7d3e665bc91 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089383857356800 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Saavedra Trujillo, Carlos Humberto08c609ca0fa0817e557a78e527acaa4fPeña Mejia, Yerson Gerardo54a9088d58ecbacd2d20196feff079c7Enciso Olivera Leonardo JoseGarcía Moncayo Andrea LorenaPeña Mejia Zaira Alejandra2022-02-14T21:33:44Z2022-02-14T21:33:44Z2022-02-10https://repositorio.unal.edu.co/handle/unal/80981Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasInfecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021. Objetivos Investigar la prevalencia de coinfección y/o infección secundaria en pacientes hospitalizados con coronavirus 2 (SARS-CoV-2) y síndrome respiratorio agudo severo confirmado. Métodos Se realizó un estudio observacional retrospectivo de pacientes hospitalizados con SARS-CoV-2 confirmado por PCR y antígeno (marzo-2020 a marzo 2021). En el Hospital Universitario Nacional de Colombia (HUN) se recibieron en total 3793 casos presuntivos IRA Grave por COVID-19(SARS CoV-2) de los cuales 1206 (32%) se confirmaron positivos, 1189 (31%) fueron negativos y 1398 (36%) no tenían datos completos por lo que fueron excluidos; de los anteriores cumplieron criterios de inclusión 952 pacientes se hizo un muestreo probabilístico por conveniencia con una muestra representativa de 161 pacientes, se analizaron los datos demográficos, microbiológicos y los resultados clínicos de los pacientes. Resultado Se incluyeron 952 pacientes hospitalizados con diagnostico confirmado de COVID-19 en hospitalización general y/o UCI durante el periodo de marzo 2020 a marzo 2021, se documentaron 389 casos de infección bacteriana secundaria (IBS) confirmadas, en la UCI 318 (40.77%) mientras que en Hospitalización General 71(41.52%); de los aislamientos que se interpretaron como procesos infecciosos encontramos en primer lugar enterobacterias con más frecuencia K.pneumoniae (n:193), E.coli (n:105), entre otras; en segundo lugar los bacilos gramnegativos no fermentadores P.aeruginosa (n:80); en tercer lugar S. aureus (n: 58). El 42.2% de los aislamientos eran multiresistentes con prevalencia betalactamasas tipo AMPc (13%).La mortalidad general fue del 26.7%. Conclusiones Encontramos alta prevalencia de IBS 40.8% en los pacientes con COVID-19 y se presentó de manera igual en pacientes críticamente enfermos hospitalización en UCI que en los no críticamente enfermos en hospitalización general con COVID-19; se documentaron 43.75 % de neumonías asociadas a la ventilación mecánica (NAV), así como también se evidenciaron 29.17% de bacteriemias asociadas a dispositivo, un dato que supone una estrecha relación de dispositivos invasivos con la presentación eventos infecciosos y mortalidad, sin embargo el diagnóstico de IBS no tuvo influencia en la supervivencia de los pacientes. Palabras llave: Coinfección bacteriana, infección bacteriana secundaria; Coronavirus, SARS-CoV-2. (Texto tomado de la fuente)Infections associated with COVID-19 in hospitalized patients. 2021. Objectives: To investigate the prevalence of coinfection and/or secondary infection in patients hospitalized with confirmed coronavirus 2 (SARS-CoV-2) and severe acute respiratory syndrome. Methods: A retrospective observational study of hospitalized patients with SARS-CoV-2 confirmed by PCR and antigen was conducted (March-2020 to March 2021). In the National University Hospital of Colombia (HUN) a total of 3,793 presumptive cases of Severe ARI due to COVID-19 (SARS CoV-2) were received, of which 1,206 (32%) were confirmed positive, 1,189 (31%) were negative, and 1,398 (36%) did not have complete data so they were excluded; Of the above, 952 patients met the inclusion criteria. A probabilistic convenience sampling was carried out with a representative sample of 161 patients. The demographic, microbiological and clinical results of the patients were analyzed. Results: 952 hospitalized patients with a confirmed diagnosis of COVID-19 in general hospitalization and/or ICU were included during the period from March 2020 to March 2021, 389 cases of confirmed secondary bacterial infection (SBI) were documented, in the ICU 318 (40.77% ) while in General Hospitalization 71 (41.52%); Of the isolates that were interpreted as infectious processes, we first found Enterobacteriaceae, most frequently K.pneumoniae (n:193), E.coli (n:105), among others; in second place the non-fermenting gram-negative bacilli P.aeruginosa (n:80); in third place S. aureus (n: 58). 42.2% of the isolates were multiresistant with a prevalence of cAMP-type beta-lactamases (13%). Overall mortality was 26.7%. Conclusions: We found high prevalence of IBS 40.8% in patients with COVID-19 and it was presented in the same way in critically ill patients hospitalized in the ICU as in non-critically ill patients in general hospitalization with COVID-19; 43.75% of pneumonia associated with mechanical ventilation (NAV) were documented, as well as 29.17% of device-associated bacteremia, a fact that implies a close relationship of invasive devices with the presentation of infectious events and mortality, however the diagnosis of IBS had no influence on patient survival. Keywords: Bacterial coinfection, bacterial secondary infection; Coronavirus, SARS-CoV-2.Especialidades MédicasEspecialista en Medicina Internaxviii, 49 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Especialidad en Medicina InternaDepartamento de Medicina InternaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesVirus del SRASCOVID-19Infecciones por coronavirusSARS VirusCoronavirus InfectionsCoinfección bacterianainfección bacteriana secundariaCoronavirusBacterial coinfectionbacterial secondary infectionSARS-CoV-2Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021Infections associated with COVID-19 in hospitalized patients. 2021Trabajo de grado - Especialidad Médicainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Rodriguez-Morales A, Bonilla-Aldana D, Tiwari R, Sah R, Rabaan A, Dhama K. COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. Journal of Pure and Applied Microbiology [Internet]. 2020;14(1):05-12. Available from: https://doi.org/10.22207/JPAM.14.1.022. Zhou, P., Yang, XL., Wang, XG. et al. Un brote de neumonía asociado con un nuevo coronavirus de probable origen en murciélagos. Nature 579, 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-73. Rojas DJPM, Loría DMQ, Sánchez DMG, Chinchilla DAS. SARS CoV-2, manifestaciones clínicas y consideraciones en el abordaje diagnóstico de COVID- 19. Rev Auspiciada Por El Hosp Dr Rafael Ángel Calderón Guard. 2020;86(629). Disponible en: http://revistamedicacr.com/index.php/rmcr/article/view/2874. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085-6.doi: 10.1001 / jama.2020.62665. Xing Q, Li G, Xing Y, Chen T, Li W, Ni W, et al. Precautions are Needed for COVID-19 Patients with Coinfection of Common Respiratory Pathogens. medRXiv. 2020, http://dx.doi.org/10.1101/2020.02.29.200276986. Rubin R. What Happens When COVID-19 Collides With Flu Season? JAMA. 2020;324(10):923-925. doi: 10.1001 / jama.2020.152607. Aguilera-Calzadilla Y, Diaz-Morales Y, Ortiz-Díaz L, Gonzalez--Martínez O, Lovelle-Enríquez O, Sánchez-Álvarez M. Infecciones bacterianas asociadas a la COVID-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar. 2020; 49 (3). Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/7938. Rodríguez-Morales, Álvarez Moreno, Saavedra Trujillo. Consenso Colombiano SARS-CoV-2/COVID-19. Asociación Colombiana de Infectología (ACIN) 2021, Tercera edición. Pag:17-189. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–70.10. MacIntyre CR, Chughtai AA, Barnes M, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis 2018; 18: 63711. Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest 2011;139:555e62.12. Rice TW, Rubinson L, Uyeki TM, Vaughn FL, John BB, Miller RR, et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med 2012;40:1487e9813. Shah NS, Greenberg JA, McNulty MC, Gregg KS, Riddell J, Mangino JE, et al.Bacterial and viral co-infections complicating severe influenza: incidence and impact among 507 US patients, 2013e14. J Clin Virol 2016;80:12e9.14. Johns Hopkins, University of Medicine. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. 2021 [citado 7 de febrero de 2021]. Disponible en: https://coronavirus.jhu.edu/map.html15. Instituto Nacional de Salud Colombia. Noticias coronavirus-casos [Internet]. COVID-19 en Colombia. 2021 [citado 7 de enero de 2021]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx16. Rivero V, Alberto J, Ledezma R, Carlos J, Pacheco H, Iván, et al. La salud de las personas adultas mayores durante la pandemia de COVID-19. J Negat No Posit Results. 2020;726-39. https://dx.doi.org/10.19230/jonnpr.3772.17. King A, Lefkowitz E, Adams M, Carstens E. Virus Taxonomy; 9th Report of the International Committee on Taxonomy of Viruses. 1st ed. San Diego, EEUU: Elsevier; 2012.18. Fehr A, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H, Bickerton E. Coronaviruses: Methods and Protocols. New York, NY: Springer New York; 2015.19. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613-620.20. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology. 2020;17(6):621-630. Available from: https://doi.org/10.1038/s41423-020-0458-z.21. Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.Available from:https://doi.org/10.1126/science.abb2507.22. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections. 2020;9(1):382-385.23. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. Available from: https://doi.org/10.1038/s41586-020-2180-5.24. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-574.25. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. Available from: https://doi.org/10.1038/s41586-020-2179-y.26. B.J. Langford et al. Bacterial co-infection and secondary infection in patients with COVID19: a living rapid review and meta-analysis. Clinical Microbiology and Infection (2020). doi.org/10.1016/j.cmi.2020.07.01627. Wu CP et al. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Cleveland Clinic Journal of Medicine. 2020, 87 (11) 659-663; DOI: https://doi.org/10.3949/ccjm.87a.ccc01528. Song W, Jia X, Zhang X, Ling Y, Yi Z. Co-infection in COVID-19, a cohort study. J Infect. 2021;82(3):414-51. https://doi.org/10.1016/j.jinf.2020.10.00629. Griffiths, EC, Pedersen, AB, Fenton, A. y Petchey, OL (2011). Naturaleza y consecuencias de la coinfección en humanos. The Journal of Infection , 63 (3), 200-206. https://doi.org/10.1016/j.jinf.2011.06.00530. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H ali abraham, Jeda AS, et al. Bacterial co‐infections with SARS‐CoV‐2. Iubmb Life. 2020;10.1002/iub.2356. https://doi.org/10.1002/iub.235631. Fattorini, L., Creti, R., Palma, C., Pantosti, A., Unit of Antibiotic Resistance and Special Pathogens, & Unit of Antibiotic Resistance and Special Pathogens of the Department of Infectious Diseases, Istituto Superiore di Sanità, Rome (2020). Bacterial coinfections in COVID-19: an underestimated adversary. Annali dell'Istituto superiore di sanita, 56(3), 359–364. https://doi.org/10.4415/ANN_20_03_1432. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus research, 285, 198005. https://doi.org/10.1016/j.virusres.2020.198005.33. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-334. Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. The Journal of infection, 81(2), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046.35. De Francesco MA, Poiesi C, Gargiulo F, Bonfanti C, Pollara P, Fiorentini S, et al. Co-infection of chlamydia pneumoniae and mycoplasma pneumoniae with SARS-CoV-2 is associated with more severe features. J Infect. abril de 2021;82(4):e4-7. https://doi.org/10.1016/j.jinf.2021.01.009.36. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8.. https://doi .org/10.1164/rccm.202002-0445OC.37. Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P, Dubert M, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care.2020;10:119. PMC7475952.38. Garcia-Vidal C et al., Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study, Clinical Microbiology and Infection, https://doi.org/10.1016/j.cmi.2020.07.041.39. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2021 DOI: 10.1056/NEJMoa2116044.40. Mahase E. Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical research ed.). 2021; 375, n2713. https://doi.org/10.1136/bmj.n271341. Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clinical Microbiology and Infection. 2021; 27(4), 646-647. https://doi.org/10.1016/j.cmi.2020.09.055.42. Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. :1-2. doi: 10.1017 / ice.2020.381).43. Zavala-Flores E, Salcedo-Matienzo J. Medicación prehospitalaria en pacientes con COVID-19 de un hospital público de Lima-Perú. Acta Med Perurana. 2020; 37(3), 393 - 395. https://doi.org/10.35663/amp.2020.373.1277.44. Peckham H, de Gruijter N, Raine C, Radziszewska A, Ciurtin C, Wedderburn L et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications. 2020;11(1).doi.org/10.1038/s41467-020-19741-6.45. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Características, evolución clínica y factores asociados a la mortalidad en UCI de los pacientes críticos infectados por SARS-CoV-2 en España: estudio prospectivo, de cohorte y multicéntrico. Rev Esp Anestesiol Reanim. 2020;67(8):425-37. DOI: org/10.1016/j.redar.2020.07.00346. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2021). Decreasing mortality rates in ICU during the COVID-19 pandemic. Anaesthesia, 76 Suppl 3, 10. https://doi.org/10.1111/anae.15230.47. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2020). Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia, 75(10), 1340–1349. https://doi.org/10.1111/anae.15201.48. Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the emerging literature. Pipetius Quah1 , Andrew Li1 and Jason Phua1,2 https://doi.org/10.1186/s13054-020-03006-1.49. Algarín-Lara, E. Guevara-Romero, E. Osorio-Rodríguez et al., Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia, Acta Colombiana de Cuidado Intensivo, https://doi.org/10.1016/j.acci.2021.07.002.50. Saavedra C, López V, Linares P, Romero P, Solórzano C, Mora J, et al. Prevalencia de factores de riesgo para infección por Klebsiella pneumoniae resistente a carbapenémicos en adultos en un Hospital de cuarto nivel, Bogotá D.C. REC. 2018; 24: 13-9.51. Giovanetti Y, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Medicina& Laboratorio 2017; 23:387-398-http://docs.bvsalud.org/biblioref/2018/05/883698/resistencia-bacteriana.pdf52. Gómez-González JF, Sánchez-Duque JA. Perfil microbiológico y resistencia bacteriana en una unidad de cuidados intensivos de Pereira, Colombia, 2015. MÉD. UIS. 2018;31(2):9-15. Páginas. DOI: 10.18273/revmed.v31n2-2018001.53. Furukawa D, Graber CJ. Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin Infect Dis. 2021 May 18;72(10):e542-e544. doi: 10.1093/cid/ciaa1273. PMID: 32857832; PMCID: PMC7665318.54. Huttner BD, Catho G, Pano-Pardo JR, Pulcini C, Schouten J. COVID-19: don't neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020 Jul;26(7):808-810. doi: 10.1016/j.cmi.2020.04.024. Epub 2020 Apr 30. PMID: 32360446; PMCID: PMC7190532.55. Yam ELY. COVID-19 will further exacerbate global antimicrobial resistance. J Travel Med. 2020 Sep 26;27(6):taaa098. doi: 10.1093/jtm/taaa098. PMID: 32539142; PMCID: PMC7313869.56. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2013;368(23):2159-68.DOI: org/10.1056/nejmoa1214103.57. Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76(6):448-54. PMID: 20473258.58. Maes M, Higginson E, Pereira-Dias J, Curran MD, Parmar S, Khokhar F, et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit Care. 2021;25(1):25. DOI: org/10.1186/s13054-021-03460-5.59. Luyt C-E, Bouadma L, Morris AC, Dhanani JA, Kollef M, Lipman J, et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020;1-16. DOI:10.1016/j.immuni.2017.06.021.60. Roquilly A, McWilliam HEG, Jacqueline C, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity. 2017;47(1):135-147.e5. doi:10.1016/j.immuni.2017.06.021.61. Ayzac L, Girard R, Baboi L, Beuret P, Rabilloud M, Richard JC, et al. Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med. 2016;42(5):871-8. DOI:org/10.1007/s00134-015-4167-5.62. Arulkumaran N, Routledge M, Schlebusch S, Lipman J, Conway Morris A. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46(2):225-35. DOI: org/10.1007/s00134-020-05929-3.63. Alvarez Castaño VH, Guavita Cuta L, Ayala DA, Torres AL. VIGILANCIA DEMOGRÁFICA DE LA MORTALIDAD POR COVID-19 EN COLOMBIA 2020 [Internet]. Bogotá, D.C, Colombia: Ministerio de Salud; 2021 [citado 1 de enero de 2022] p. 1-31. (Infografía COVID-19). Reporte No.53. Disponible en: www.minsalud.gov.co%2Fsites%2Frid%2FLists%2FBibliotecaDigital%2FRIDE%2FVS%2FED%2FVSP%2Fvigilancia-demografica-mortalidad-covid-19-colombia2020.pdf&clen=7347860EstudiantesInvestigadoresPúblico generalORIGINAL10223678990.2022.pdf10223678990.2022.pdfTesis de Especialidad en Medicina Internaapplication/pdf939176https://repositorio.unal.edu.co/bitstream/unal/80981/6/10223678990.2022.pdf54e8d2d62ba1132e4605a42c1e06fdccMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80981/8/license.txt8153f7789df02f0a4c9e079953658ab2MD58THUMBNAIL10223678990.2022.pdf.jpg10223678990.2022.pdf.jpgGenerated Thumbnailimage/jpeg4226https://repositorio.unal.edu.co/bitstream/unal/80981/9/10223678990.2022.pdf.jpgeb2c6e5606db2beef87ca7d3e665bc91MD59unal/80981oai:repositorio.unal.edu.co:unal/809812023-08-01 23:03:41.897Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |