Biobased plasticizer from agroindustrial residual streams

ilustraciones, fotografías, graficas

Autores:
Nájera Losada, Laura Nathalia
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83816
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83816
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
PRODUCTOS DE RESIDUOS
INDUSTRIAS DE PLASTICOS
Waste products
Plastics industry and trade
Esterificación
Acidos grasos
Destilado desodorizado de aceite de soya
Isobutanol
Epoxidación
Esteres de isobutilo epoxidados
Cinética
Plastificante
PVC
Esterification
Fatty acids
Soybean oil deodorizer distillate
Isobutanol
Epoxidation
Epoxidized isobutyl esters
Kinetics
Plasticizer
PVC
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8d8b35fbf2983c48ef66b59807d8fcaa
oai_identifier_str oai:repositorio.unal.edu.co:unal/83816
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Biobased plasticizer from agroindustrial residual streams
dc.title.translated.spa.fl_str_mv Plastificante biobasado obtenido a partir de corrientes residuales agroindustriales
title Biobased plasticizer from agroindustrial residual streams
spellingShingle Biobased plasticizer from agroindustrial residual streams
660 - Ingeniería química
PRODUCTOS DE RESIDUOS
INDUSTRIAS DE PLASTICOS
Waste products
Plastics industry and trade
Esterificación
Acidos grasos
Destilado desodorizado de aceite de soya
Isobutanol
Epoxidación
Esteres de isobutilo epoxidados
Cinética
Plastificante
PVC
Esterification
Fatty acids
Soybean oil deodorizer distillate
Isobutanol
Epoxidation
Epoxidized isobutyl esters
Kinetics
Plasticizer
PVC
title_short Biobased plasticizer from agroindustrial residual streams
title_full Biobased plasticizer from agroindustrial residual streams
title_fullStr Biobased plasticizer from agroindustrial residual streams
title_full_unstemmed Biobased plasticizer from agroindustrial residual streams
title_sort Biobased plasticizer from agroindustrial residual streams
dc.creator.fl_str_mv Nájera Losada, Laura Nathalia
dc.contributor.advisor.none.fl_str_mv Orjuela Londoño, Alvaro
Narvaez Rincon, Paulo Cesar
dc.contributor.author.none.fl_str_mv Nájera Losada, Laura Nathalia
dc.contributor.researchgroup.spa.fl_str_mv Grupo de investigación en procesos químicos y bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
PRODUCTOS DE RESIDUOS
INDUSTRIAS DE PLASTICOS
Waste products
Plastics industry and trade
Esterificación
Acidos grasos
Destilado desodorizado de aceite de soya
Isobutanol
Epoxidación
Esteres de isobutilo epoxidados
Cinética
Plastificante
PVC
Esterification
Fatty acids
Soybean oil deodorizer distillate
Isobutanol
Epoxidation
Epoxidized isobutyl esters
Kinetics
Plasticizer
PVC
dc.subject.lemb.spa.fl_str_mv PRODUCTOS DE RESIDUOS
INDUSTRIAS DE PLASTICOS
dc.subject.lemb.eng.fl_str_mv Waste products
Plastics industry and trade
dc.subject.proposal.spa.fl_str_mv Esterificación
Acidos grasos
Destilado desodorizado de aceite de soya
Isobutanol
Epoxidación
Esteres de isobutilo epoxidados
Cinética
Plastificante
PVC
dc.subject.proposal.eng.fl_str_mv Esterification
Fatty acids
Soybean oil deodorizer distillate
Isobutanol
Epoxidation
Epoxidized isobutyl esters
Kinetics
Plasticizer
PVC
description ilustraciones, fotografías, graficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-17T20:30:32Z
dc.date.available.none.fl_str_mv 2023-05-17T20:30:32Z
dc.date.issued.none.fl_str_mv 2023-05-17
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83816
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83816
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv A. D. Godwin, “PLASTICIZERS,” in Applied Polymer Science: 21st Century, C. D. Craver and C. E. B. T.-A. P. S. 21st C. Carraher, Eds. Oxford: Pergamon, 2000, pp. 157–175.
E. Langer, K. Bortel, S. Waskiewicz, and M. Lenartowicz-Klik, “Research Trends in Plasticizer Production,” Plast. Deriv. from Post-Consumer PET, pp. 101–126, 2020, doi: 10.1016/b978-0-323-46200-6.00004-0.
S. G. Patrick, Practical Guide to Polyvinyl Chloride. United Kingdom: Rapra Technology Limited, 2005.
T. Zheng et al., “Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate,” J. Clean. Prod., vol. 186, pp. 1021–1030, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.175.
Fedepalma, “Anuario Estadístico 2019 - Principales cifras de la agroindustria de la palma de aceite en Colombia,” 2019.
S. Madbouly, C. Zhang, and M. Kessler, Bio-Based Plant oil polymers and composites. Miami USA: Matthew Deans, 2016.
C. Echim, R. Verhé, W. Greyt, and C. Stevens, “Production of biodiesel from side-stream refining products,” Energy Environ. Sci. - ENERGY Env. SCI, vol. 2, Nov. 2009, doi: 10.1039/b905925c.
L. A. Rincón, J. G. Cadavid, and A. Orjuela, “Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia,” Waste Manag., vol. 88, pp. 200–210, 2019, doi: https://doi.org/10.1016/j.wasman.2019.03.042.
J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, no. 10, pp. 1097–1107, 2005, doi: https://doi.org/10.1016/j.fuproc.2004.11.005.
I. M. Atadashi, M. K. Aroua, A. R. Abdul Aziz, and N. M. N. Sulaiman, “The effects of catalysts in biodiesel production: A review,” J. Ind. Eng. Chem., vol. 19, no. 1, pp. 14–26, 2013, doi: https://doi.org/10.1016/j.jiec.2012.07.009.
J. M. Marchetti and A. F. Errazu, “Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides,” Biomass and Bioenergy, vol. 32, no. 9, pp. 892–895, 2008, doi: https://doi.org/10.1016/j.biombioe.2008.01.001.
Y. Watanabe et al., “Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase,” J. Mol. Catal. B Enzym., vol. 44, no. 3, pp. 99–105, 2007, doi: https://doi.org/10.1016/j.molcatb.2006.09.007
S. Gunawan and Y. Ju, “Vegetable Oil Deodorizer Distillate: Characterization, Utilization and Analysis,” Sep. Purif. Rev., vol. 38, no. 3, pp. 207–241, Jul. 2009, doi: 10.1080/15422110903095151.
H. K. Woodfield and J. L. Harwood, “Oilseed Crops: Linseed, Rapeseed, Soybean, and Sunflower,” B. Thomas, B. G. Murray, and D. J. B. T.-E. of A. P. S. (Second E. Murphy, Eds. Oxford: Academic Press, 2017, pp. 34–38.
E. Alencar, L. Faroni, L. Peternelli, M. Silva, and A. Costa, “Influence of soybean storage conditions on crude oil quality,” Rev. Bras. Eng. Agrícola e Ambient., vol. 14, pp. 303–308, Mar. 2010, doi: 10.1590/S1415-43662010000300010.
S. Khatoon, R. G. Raja Rajan, and A. G. Gopala Krishna, “Physicochemical Characteristics and Composition of Indian Soybean Oil Deodorizer Distillate and the Recovery of Phytosterols,” J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 321–326, 2010, doi: 10.1007/s11746-009-1499-8.
C. Benites, V. O. Concha, S. Reis, and A. Oliveira, Physiochemical Characterization of Soybean Oil Deodorizer Distillate, vol. 17. 2009.
J. Summers and C. Daniels, “Plasticizers,” in PVC HandBook, Hanser, 2005, pp. 173–193.
R. Wilcox, “Outlook 17: US plasticizers face shortages, new capacity,” 2016. [Online]. Available: https://www.icis.com/explore/resources/news/2016/12/28/10064206/outlook-17-us-plasticizers-face-shortages-new-capacity/.
M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, “Natural-based plasticizers and biopolymer films: A review,” Eur. Polym. J., vol. 47, no. 3, pp. 254–263, 2011, doi: https://doi.org/10.1016/j.eurpolymj.2010.12.011.
Cefic group, “European Plasticisers,” Bruselas, Bélgica, 2017.
The European Chemical Industry Council, “Plasticisers - Information Center.” https://www.plasticisers.org/plasticisers/ (accessed Aug. 30, 2020).
J. Murphy, Additives for Plastics Handbook, Second edi. New York: Elsevier, 2003
H. Benecke, B. Vijaydendran, and J. Elhard, “US 2002/0013396 A1,” 2002.
R. Lundsgaard, “Migration of plasticisers from PVC and other polymers,” 2010.
L. Bernard, R. Cueff, C. Breysse, B. Décaudin, and V. Sautou, “Migrability of PVC plasticizers from medical devices into a simulant of infused solutions,” Int. J. Pharm., vol. 485, no. 1, pp. 341–347, 2015, doi: https://doi.org/10.1016/j.ijpharm.2015.03.030
M. Rahman and C. S. Brazel, “The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges,” Prog. Polym. Sci., vol. 29, no. 12, pp. 1223–1248, 2004, doi: https://doi.org/10.1016/j.progpolymsci.2004.10.001.
A. H. Suzuki, B. G. Botelho, L. S. Oliveira, and A. S. Franca, “Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films,” Eur. Polym. J., vol. 99, pp. 142–149, 2018, doi: https://doi.org/10.1016/j.eurpolymj.2017.12.014.
LII (Legal Information Institute), “16 CFR § 1307.3 - Prohibition of children’s toys and child care articles containing specified phthalates.,” 2018. https://www.law.cornell.edu/cfr/text/16/1307.3.
SGS, “Accessing the Market: European Union Phthalate Regulations | SGS,” Apr. 09, 2019. https://www.sgs.com/en/news/2019/04/accessing-the-market-european-union-phthalate-regulations (accessed Jun. 16, 2020).
IHS Markit Customer Care, Chemical Economics Handbook. 2018.
S&P Global, “Plasticizers - Chemical Economics Handbook,” Commodity Insights, 2020. https://www.spglobal.com/commodityinsights/en/ci/products/plasticizers-chemical-economics-handbook.html.
P. Jia, H. Xia, K. Tang, and Y. Zhou, “Plasticizers derived from biomass resources: A short review,” Polymers (Basel)., vol. 10, no. 12, 2018, doi: 10.3390/polym10121303.
The Business ResearchCompany, “Plasticizers Market 2022 - By Product Type (Phthalates Plasticizers, Non-Phthalates Plasticizers),” 2020. https://www.thebusinessresearchcompany.com/report/plasticizers-market-global-market.
ResearchAndMarkets, “Global Bio Plasticizers Market Opportunity Report 2020-2030 Featuring DuPont, DOW Chemical, PolyOne, Evonik Among Others,” 2020. https://www.globenewswire.com/news-release/2020/12/03/2139125/0/en/Global-Bio-Plasticizers-Market-Opportunity-Report-2020-2030-Featuring-DuPont-DOW-Chemical-PolyOne-Evonik-Among-Others.html.
V. Thakur, M. Thakur, and M. Kessler, Handbook of Composites from Renewable Materials. Miami USA, 2017.
K. Dutta, S. Das, and P. P. Kundu, “Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions,” Int. Polym. Process., vol. 29, no. 4, pp. 495–506, Aug. 2014, doi: 10.3139/217.2922.
Grand View Research, “Bio Plasticizers Market Analysis By Product Type (Citrates, Castor Oil, ESBO, Succinic Acid), By Application (Packaging, Consumer Goods, Automotive, Construction, Textiles), And Segment Forecasts, 2020 - 2025,” 2020. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/bio-plasticizers-market.
B. I. Chaudhary, C. L. Liotta, J. M. Cogen, and M. B. T.-R. M. in M. S. and M. E. Gilbert, “Plasticized PVC,” Elsevier, 2016.
M. Bocqué, C. Voirin, V. Lapinte, S. Caillol, and J.-J. Robin, “Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties,” J. Polym. Sci. Part A Polym. Chem., vol. 54, no. 1, pp. 11–33, Jan. 2016, doi: 10.1002/pola.27917.
O. Suárez, “Producción y Modelamiento de Gliceril ésteres como plastificantes para el PVC,” Universidad Nacional de Colombia, 2011.
P. Jia, M. Zhang, L. Hu, and Y. Zhou, “Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material,” Korean J. Chem. Eng., vol. 33, no. 3, pp. 1080–1087, 2016, doi: 10.1007/s11814-015-0213-9.
Y. Yang, Z. Xiong, L. Zhang, Z. Tang, R. Zhang, and J. Zhu, “Isosorbide dioctoate as a ‘green’ plasticizer for poly(lactic acid),” Mater. Des., vol. 91, pp. 262–268, 2016, doi: https://doi.org/10.1016/j.matdes.2015.11.065.
B. Yin and M. Hakkarainen, “Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC,” J. Appl. Polym. Sci., vol. 119, no. 4, pp. 2400–2407, Feb. 2011, doi: 10.1002/app.32913
D.-L. Cai, X. Yue, B. Hao, and P.-C. Ma, “A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil,” J. Clean. Prod., vol. 274, p. 122781, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122781.
S. Kandula, L. Stolp, M. Grass, B. Woldt, and D. Kodali, “Functionalization of Soy Fatty Acid Alkyl Esters as Bioplasticizers,” Saint Paul, Minnesota, 2004.
P. Frenkel and S. Mckeown, “US9321901B2,” 2016.
G. Feng, Y. Ma, M. Zhang, P. Jia, C. Liu, and Y. Zhou, “Synthesis of Bio-base Plasticizer Using Waste Cooking Oil and Its Performance Testing in Soft Poly(vinyl chloride) Films,” J. Bioresour. Bioprod., vol. 4, no. 2, pp. 99–110, 2019, doi: https://doi.org/10.21967/jbb.v4i2.214.
P. Jia, M. Zhang, L. Hu, F. Song, G. Feng, and Y. Zhou, “A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester,” Sci. Rep., vol. 8, no. 1, p. 1589, 2018, doi: 10.1038/s41598-018-19958-y.
J. Spekreijse, T. Lammens, C. Parisi, T. Ronzon, and M. Vis, Insights into the European market for bio-based chemicals, vol. 19, no. October. 2019.
Index Mundi, “Soybean Oil Futures End of Day Settlement Price,” 2020. https://www.indexmundi.com/commodities/?commodity=soybean-oil&months=12 (accessed Mar. 03, 2020).
Echemi, “Epoxidized Soybean Oil Price Analysis.” .
Greenea, “Greenea Market Analysis,” 2020. https://www.greenea.com/en/market-analysis/.
USDA, “Oilseeds: World Markets and Trade,” EEUU, 2020.
ICIS, “Plasticizers prices, markets & analysis,” 2019. https://www.icis.com/explore/commodities/chemicals/plasticizers/ (accessed Jan. 20, 2021).
Alibaba, “Soybean deodorizer distillate oil FOB Reference Price.” https://www.alibaba.com/product-detail/Soybean-deodorizer-distillate-oil_1600078593352.html?spm=a2700.7724857.normal_offer.d_image.79965073IJgoEB (accessed Jun. 07, 2021).
L. A. Rincón, “Reutilzación de aceites de cocina usados en la producción de aceites epoxidados,” Universidad Nacional de Colombia, 2018.
Michel Biron, Industrial Applications of Renewable Plastics. .
Y. Wei, G. Li, Q. Lv, C. Cheng, and H. Guo, “Epoxidation of Methyl Oleate and Unsaturated Fatty Acid Methyl Esters Obtained from Vegetable Source over Ti-Containing Silica Catalysts,” Ind. Eng. Chem. Res., vol. 57, no. 48, pp. 16284–16294, Dec. 2018, doi: 10.1021/acs.iecr.8b04155.
L. Ramírez, “Modelo Cinético para la reacción de epoxidación aceite vegetal usado,” Universidad Nacional de colombia, 2020.
DANE - Departamento Administrativo Nacional de Estadística, “Encuesta Anual Manufacturera (EAM).”
D. Alperstein, D. Knani, A. Goichman, and M. Narkis, “Determination of plasticizers efficiency for nylon by molecular modeling,” Polym. Bull., vol. 68, no. 7, pp. 1977–1988, 2012, doi: 10.1007/s00289-012-0705-2.
Specialchem, “Adhesives Ingredients,” Selecting Plasticizers for Adhesives and Sealants. https://adhesives.specialchem.com/selection-guide/plasticizers-selection-for-adhesives-and-sealants.
A. A. Hassan, A. Abbas, T. Rasheed, M. Bilal, H. M. N. Iqbal, and S. Wang, “Development, influencing parameters and interactions of bioplasticizers: An environmentally friendlier alternative to petro industry-based sources,” Sci. Total Environ., vol. 682, pp. 394–404, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.140.
F. D. Martínez, “Producción de ésteres de poliglicerol y evaluación de diferentes formulaciones como plastificante de PVC,” Universidad Nacional de Colombia, 2010.
G. Wypych, Handbook of Plasticizers, 3rd ed. ChemTec Publishing, 2017.
D. Krevelen and K. Nijenhuis, “Chapter 7- Cohesive properties and and solubility,” in Properties of Polymers, 4th editio., Elsevier, 2009.
Y.-H. Ju, N. N. F. Sari, A. W. Go, M.-J. Wang, R. C. Agapay, and A. Ayucitra, “Preparation of Epoxidized Fatty Acid Ethyl Ester from Tung Oil as a Bio-lubricant Base-Stock,” Waste and Biomass Valorization, vol. 11, no. 8, pp. 4145–4155, 2020, doi: 10.1007/s12649-019-00749-z.
D. A. G. Aranda, R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Letters, vol. 122, no. 1, pp. 20–25, 2008, doi: 10.1007/s10562-007-9318-z.
P. Kuester, F; Rhodes, “High Oxirane Fatty Esters,” 3377304, 1968.
M. Canakci and J. Gerpen, “Biodiesel production from oils and fats with high FFAs,” Trans. ASAE, vol. 44, Jan. 2001, doi: 10.13031/2013.7010.
V. B. Borugadda and V. V Goud, “Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application,” J. Clean. Prod., vol. 112, pp. 4515–4524, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.06.046.
J. Brinks, K. Malins, V. Kampars, J. Prilucka, and L. Apseniece, “Optimization of rapeseed oil fatty acid esterification with methanol in the presence of sulfuric acid,” Polish J. Chem. Technol., vol. 15, no. 4, pp. 54–59, doi: https://doi.org/10.2478/pjct-2013-0068.
H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, and B. Liang, “Production of biodiesel from Jatropha curcas L. oil,” Comput. Chem. Eng., vol. 33, no. 5, pp. 1091–1096, 2009, doi: https://doi.org/10.1016/j.compchemeng.2008.09.012
J. Cárdenas, A. Orjuela, D. L. Sánchez, P. C. Narváez, B. Katryniok, and J. Clark, “Pre-treatment of used cooking oils for the production of green chemicals: A review,” J. Clean. Prod., vol. 289, p. 125129, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125129.
F. Galli, S. Nucci, C. Pirola, and C. L. Bianchi, “Epoxy methyl soyate as bio-plasticizer: Two different preparation strategies,” Chem. Eng. Trans., vol. 37, pp. 601–606, 2014, doi: 10.3303/CET1437101.
V. V Goud, N. C. Pradhan, and A. V Patwardhan, “Epoxidation of karanja (Pongamia glabra) oil by H2O2,” J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 635–640, 2006, doi: 10.1007/s11746-006-1250-7.
M. Kurańska and M. Niemiec, “Cleaner Production of Epoxidized Cooking Oil Using A Heterogeneous Catalyst,” Catalysts, vol. 10, Oct. 2020, doi: 10.3390/catal10111261.
A. Campanella, C. Fontanini, and M. Baltanas, “High yield epoxidation of fatty acid methyl esters with performic acid generated in situ,” Chem. Eng. J., vol. 144, pp. 466–475, Nov. 2008, doi: 10.1016/j.cej.2008.07.016.
V. B. Borugadda and V. V Goud, “Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst,” Energy Procedia, vol. 54, pp. 75–84, 2014, doi: https://doi.org/10.1016/j.egypro.2014.07.249.
Z. S. Petrović, A. Zlatanić, C. C. Lava, and S. Sinadinović-Fišer, “Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions,” Eur. J. Lipid Sci. Technol., vol. 104, no. 5, pp. 293–299, May 2002, doi: https://doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W.
T. Vlček and Z. S. Petrović, “Optimization of the chemoenzymatic epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 83, no. 3, pp. 247–252, 2006, doi: 10.1007/s11746-006-1200-4.
R. Turco, C. Pischetola, R. Tesser, S. Andini, and M. Di Serio, “New findings on soybean and methylester epoxidation with alumina as the catalyst,” RSC Adv., vol. 6, no. 38, pp. 31647–31652, 2016, doi: 10.1039/C6RA01780K.
B. Rangarajan, A. Havey, E. A. Grulke, and P. D. Culnan, “Kinetic parameters of a two-phase model forin situ epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1161–1169, 1995, doi: 10.1007/BF02540983.
S. Dinda, A. V Patwardhan, V. V Goud, and N. C. Pradhan, “Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids,” Bioresour. Technol., vol. 99, no. 9, pp. 3737–3744, 2008, doi: https://doi.org/10.1016/j.biortech.2007.07.015.
A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils with solvated acetic acid using cation-exchange resins,” Eur. J. Lipid Sci. Technol., vol. 106, no. 8, pp. 524–530, Aug. 2004, doi: https://doi.org/10.1002/ejlt.200400965.
Z. Wu et al., “Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid-autocatalyzed reaction system,” Can. J. Chem. Eng., vol. 94, no. 8, pp. 1576–1582, Aug. 2016, doi: https://doi.org/10.1002/cjce.22526.
P. G. Nihul, S. T. Mhaske, and V. V Shertukde, “Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC),” Iran. Polym. J., vol. 23, no. 8, pp. 599–608, 2014, doi: 10.1007/s13726-014-0254-7.
A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: II. Reactivity with solvated acetic and peracetic acids,” Lat. Am. Appl. Res., vol. 35, pp. 211–216, Jul. 2005.
X. Zhao, T. Zhang, Y. Zhou, and D. Liu, “Preparation of peracetic acid from hydrogen peroxide: Part I: Kinetics for peracetic acid synthesis and hydrolysis,” J. Mol. Catal. A Chem., vol. 271, no. 1, pp. 246–252, 2007, doi: https://doi.org/10.1016/j.molcata.2007.03.012.
P. T. Wai, P. Jiang, Y. Shen, P. Zhang, Q. Gu, and Y. Leng, “Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products,” RSC Adv., vol. 9, no. 65, pp. 38119–38136, 2019, doi: 10.1039/C9RA05943A.
M. Mushtaq et al., “Epoxidation of methyl esters derived from Jatropha oil: An optimization study,” Grasas y Aceites, vol. 64, pp. 103–114, Mar. 2013, doi: 10.3989/gya.084612.
R. J. Gall and F. P. Greenspan, “A Modified Peracid Process for Making Epoxy Compounds from Unsaturated Fatty Acid Esters,” Ind. Eng. Chem., vol. 47, no. 1, pp. 147–148, Jan. 1955, doi: 10.1021/ie50541a045.
M. Kurańska, H. Beneš, A. Prociak, O. Trhlíková, Z. Walterová, and W. Stochlińska, “Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts,” J. Clean. Prod., vol. 236, p. 117615, Jul. 2019, doi: 10.1016/j.jclepro.2019.117615.
Y. Bai, J. Wang, D. Liu, and X. Zhao, “Conversion of fatty acid methyl ester to epoxy plasticizer by auto-catalyzed in situ formation of performic acid: Kinetic modeling and application of the model,” J. Clean. Prod., vol. 259, p. 120791, Mar. 2020, doi: 10.1016/j.jclepro.2020.120791.
A. Ghosh-Dastidar, S. Kaujalgikar, and B. Chaudhary, “US 9499681 B2,” 2016.
M. Mushtaq, I. Tan, C. Devi, S. Majidaie, M. Nadeem, and S. Lee, “Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil,” 2011 Natl. Postgrad. Conf. - Energy Sustain. Explor. Innov. Minds, NPC 2011, Sep. 2011, doi: 10.1109/NatPC.2011.6136253.
E. Milchert, A. Smagowicz, and G. Lewandowski, “Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid,” J. Chem. Technol. Biotechnol., vol. 85, no. 8, pp. 1099–1107, Aug. 2010, doi: https://doi.org/10.1002/jctb.2405.
Á. Osuna and A. Boyaca, “Two-phase kinetic model for epoxidation of soybean oil,” Ing. e Investig., vol. 30, pp. 188–196, Aug. 2010.
L. H. Gan, S. H. Goh, and K. S. Ooi, “Kinetic studies of epoxidation and oxirane cleavage of palm olein methyl esters,” J. Am. Oil Chem. Soc., vol. 69, no. 4, pp. 347–351, 1992, doi: 10.1007/BF02636065.
Icontec, “NTC 2366. Plasticos. Aceites Vegetales Epoxidados de Soya y Linaza,” 2019.
Arkema, “Arkema Products.” https://www.arkema.com/global/en/search/?qc=search&q=vikoflex.
PETROM, “plsgreen.” https://plsgreen.com.br/en/specifications/.
IEA Bioenergy, “Bio-Based Chemicals,” 2020
IEA Bioenergy, “Bio-based Chemicals, Value Added Products from Biorefineries,” 2013.
A. Liquide, “Biopropilenglicol, Tecnología alternativa para la producción de propilenglicol,” 2021. https://www.engineering-airliquide.com/es/biopropilenglicol.
Arkema, “Oleris® Bio-Based 2-Octanol,” 2020. https://www.arkema.com/global/en/products/product-finder/product/technicalpolymers/oleris/oleris-2-Octanol/.
R. Jamarani, H. Erythropel, J. Nicell, R. Leask, and M. Maric, “How Green is Your Plasticizer?,” Polymers (Basel)., vol. 10, p. 834, Jul. 2018, doi: 10.3390/polym10080834.
P. Walters, D. F. Cadogan, and C. J. Howick, Plasticizers. 2020.
E. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int. J. Thermophys., vol. 29, no. 2, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.
B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, Properties of Gases and Liquids, Fifth Edition. New York: McGraw-Hill Education, 2001.
Charles M.Hansen, Hansen Solubility Parameters Second edition: A User’s Handbook, no. October 2013. 2007.
D. W. Krevelen and K. Nijenhuis, “Cohesive Properties and Solubility,” in Properties of Polymers, 2009, pp. 189–227.
Polymer Properties Database, “Hansen Solubility Sphere,” 2015. http://polymerdatabase.com/polymer physics/Hansen Solubility Sphere.html (accessed Feb. 23, 2021).
J. Burke, “Part 6 - Three Component Parameters,” 1984. https://cool.culturalheritage.org/byauth/burke/solpar/solpar6.html (accessed May 23, 2021).
L. Mascia, Y. Kouparitsas, D. Nocita, and X. Bao, “Antiplasticization of Polymer Materials: Structural Aspects and Effects on Mechanical and Diffusion-Controlled Properties,” Polymers , vol. 12, no. 4. 2020, doi: 10.3390/polym12040769.
ExxonMobil Petroleum Chemical B.V.B.A, “Submission of information on DIDP CAS#68515-49-1, EC#271-091-4 as an alternative to DEHP,” 2014.
Roderick Parkes, JRC Technical Reports: Practical guidelines on the application of migration modelling for the estimation of specific migration, no. 10. 2015.
D. Schowope and R. Goydan, Methods for Estimating the Migration of Aditives and Impurities from Polymeric Materials. Washington D.C: U.S Environmental Protection Agency, 1990.
E. H. Immergut and H. F. Mark, “Principles of Plasticization,” in <bold>Plasticization</bold> and Plasticizer Processes, vol. 48, AMERICAN CHEMICAL SOCIETY, 1965, p. 1.
J. Bicerano, Prediction of polymer properties, 3rd Editio., vol. 31, no. 02. EEUU: Marcel Dekker, Inc, 2002.
C. Camacho-Zuñiga and F. A. Ruiz-Treviño, “A New Group Contribution Scheme To Estimate the Glass Transition Temperature for Polymers and Diluents,” Ind. Eng. Chem. Res., vol. 42, no. 7, pp. 1530–1534, Apr. 2003, doi: 10.1021/ie0205389.
C. L. Ihemaguba and K. Marossy, “Combined thermal analysis of fluid plasticizers,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 195–201, 2022, doi: 10.1007/s10973-020-10315-8.
C. A. Angell, J. M. Sare, and E. J. Sare, “Glass transition temperatures for simple molecular liquids and their binary solutions,” J. Phys. Chem., vol. 82, no. 24, pp. 2622–2629, Nov. 1978, doi: 10.1021/j100513a016.
W. A. Lee, “Calculation of the glass transition temperatures of polymers. Part I. Homopolymers and copolymers with alkyl side chains,” J. Polym. Sci. Part A-2 Polym. Phys., vol. 8, no. 4, pp. 555–570, Apr. 1970, doi: https://doi.org/10.1002/pol.1970.160080407.
E. Gustafsson, T. M. Bowden, and A. R. Rennie, “Interactions of amphiphiles with plasticisers used in polymers: Understanding the basis of health and environmental challenges,” Adv. Colloid Interface Sci., vol. 277, p. 102109, 2020, doi: https://doi.org/10.1016/j.cis.2020.102109.
US EPA - United States Environmental Protection Agency, “EPI Suite TM v4.11 -Estimation Program Interface.” Washington D.C, 2021.
I. Cousins and D. Mackay, “Correlating the physical–chemical properties of phthalate esters using the `three solubility’ approach,” Chemosphere, vol. 41, no. 9, pp. 1389–1399, 2000, doi: https://doi.org/10.1016/S0045-6535(00)00005-9.
A. Wypch, Databook of Plasticizers. Elsevier, 2017.
CAS, “Sci Finder,” 2022. https://scifinder-n.cas.org.
N. RAO, S. KAUJALGIKAR, B. CHAUD-HARY, S. BHIDE, S. MORYE, and S. AGASHE, “WO 2014/061026 Al,” 2014.
A. Ghosh-Dastidar, R. Eaton, A. ADAM-CZYK, B. Bell, and R. Campabell, “WO2013/003225 A2,” 2013.
L. G. Krauskopf, “Plasticizer structure/performance relationships,” J. Vinyl Technol., vol. 15, no. 3, pp. 140–147, Sep. 1993, doi: https://doi.org/10.1002/vnl.730150306.
ISO, “ISO 660 Animal and vegetable fats and oils — Determination of acid value and acidity,” 2020.
ISO, “ISO 3961 Animal and vegetable fats and oils — Determination of iodine value,” p. 12, 2018.
ISO, “ISO 3657 Animal and vegetable fats and oils — Determination of saponification value,” p. 10, 2020.
ISO, “ISO 3960 Animal and vegetable fats and oils — Determination of peroxide value — Iodometric (visual) endpoint determination,” p. 10, 2017.
ISO, “ISO 3596 Animal and vegetable fats and oils — Determination of unsaponifiable matter — Method using diethyl ether extraction,” p. 8, 2000.
ASTM, “ASTM D2500 Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels,” p. 10, 2000.
AMD OIL SALES, “Soybean oil, RBD (organic).” https://www.amdoilsales.com/products/soybean-oil-organic-rbd/ (accessed Nov. 15, 2022).
H. Ngo, R. Latona, K. M. Wagner, A. Nuñez, R. Ashby, and R. O. Dunn, “Synthesis and low temperature characterization of iso-oleic ester derivatives,” Eur. J. Lipid Sci. Technol., vol. 118, no. 12, pp. 1915–1925, Dec. 2016, doi: https://doi.org/10.1002/ejlt.201500468.
L. A. García-Zapateiro, J. M. Franco, C. Valencia, M. A. Delgado, and C. Gallegos, “Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils,” J. Ind. Eng. Chem., vol. 19, no. 4, pp. 1289–1298, 2013, doi: https://doi.org/10.1016/j.jiec.2012.12.030.
International Union of Pure and Applied Chemistry, Solubility data series - Alcohols with water. 1984.
V. R. Dhanuka, V. C. Malshe, and S. B. Chandalia, “Kinetics of the liquid phase esterification of carboxylic acids with alcohols in the presence of acid catalysts: Re-interpretation of published data,” Chem. Eng. Sci., vol. 32, no. 5, pp. 551–556, 1977, doi: https://doi.org/10.1016/0009-2509(77)87013-9.
S. Goto, T. Tagawa, and Y. Fukuta, “Kinetics of the reaction of sulfuric acid with isobutyl alcohol,” Int. J. Chem. Kinet., vol. 21, no. 8, pp. 729–732, Aug. 1989, doi: https://doi.org/10.1002/kin.550210811.
F. A. Zaher and H. M. Soliman, “Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols,” Egypt. J. Pet., vol. 24, no. 4, pp. 439–443, 2015, doi: https://doi.org/10.1016/j.ejpe.2015.10.007.
W. Waskitoaji, E. Triwulandari, and A. Haryono, “Synthesis of Plasticizers Derived from Palm Oil and Their Application in Polyvinyl Chloride,” Procedia Chem., vol. 4, pp. 313–321, 2012, doi: https://doi.org/10.1016/j.proche.2012.06.044.
S. Silviana, D. Anggoro, and A. Kumoro, “Kinetics study of waste cooking oil epoxidation with peroxyacetic acid using acid catalysts,” Rasayan J. Chem., vol. 12, pp. 1369–1374, Jan. 2019, doi: 10.31788/RJC.2019.1235190.
W. F. Bohórquez, A. Orjuela, P. C. N. Rincón, J. G. Cadavid, and J. A. García-Nunez, “Experimental optimization during epoxidation of a high-oleic palm oil using a simplex algorithm,” Ind. Crops Prod., vol. 187, p. 115321, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.115321.
M. Jankovic, S. Sinadinovic-Fiser, O. Govedarica, J. Pavličević, and J. Budinski-Simendic, “Kinetics of soybean oil epoxidation with peracetic acid formed In Situ in the presence of an ion exchange resin: Pseudo-homogeneous model,” Chem. Ind. Chem. Eng. Q., vol. 23, pp. 97–111, Apr. 2017, doi: 10.2298/CICEQ150702014J.
G. V Olivieri, J. V. J. de Quadros, and R. Giudici, “Epoxidation Reaction of Soybean Oil: Experimental Study and Comprehensive Kinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 42, pp. 18808–18823, Oct. 2020, doi: 10.1021/acs.iecr.0c03847.
S. Leveneur, J. Zheng, B. Taouk, F. Burel, J. Wärnå, and T. Salmi, “Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1449–1458, 2014, doi: https://doi.org/10.1016/j.jtice.2014.01.015.
M. Schwaab, L. Livia, and J. Pinto, “Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations,” Chem. Eng. Sci., 2008.
K. Bakthavatchalam, S. Beyene, B. Ayalew, and S. Pilla, “Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin,” Sci. Rep., vol. 9, Jun. 2019, doi: 10.1038/s41598-019-45458-8.
J. La Scala and R. P. Wool, “Effect of FA composition on epoxidation kinetics of TAG,” J. Am. Oil Chem. Soc., vol. 79, no. 4, pp. 373–378, 2002, doi: 10.1007/s11746-002-0491-9.
L. M. Ramírez, J. G. Cadavid, A. Orjuela, M. F. Gutiérrez, and W. F. Bohórquez, “Epoxidation of used cooking oils: Kinetic modeling and reaction optimization,” Chem. Eng. Process. - Process Intensif., vol. 176, p. 108963, 2022, doi: https://doi.org/10.1016/j.cep.2022.108963.
LG-VINA Chem, “DOP Plasticizer Data sheet.” http://aytaco.ir/wp-content/uploads/2019/01/DOP-LG.pdf.
V. Borugadda and V. Goud, “Synthesis of Waste Cooking Oil Epoxide as a Bio-Lubricant Base Stock: Characterization and Optimization Study,” J. Bioprocess Eng. Biorefinery, vol. 3, pp. 57–72, Mar. 2014, doi: 10.1166/jbeb.2014.1077.
V. B. Borugadda and V. V Goud, “Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil,” Energy Sci. Eng., vol. 3, no. 4, pp. 371–383, Jul. 2015, doi: https://doi.org/10.1002/ese3.77.
S. Satapathy and A. Palanisamy, “Mechanical and barrier properties of polyvinyl chloride plasticized with dioctyl phthalate, epoxidized soybean oil, and epoxidized cardanol,” J. Vinyl Addit. Technol., vol. 27, no. 3, pp. 599–611, Aug. 2021, doi: https://doi.org/10.1002/vnl.21831.
M. Gilbert, “8 - Poly(vinyl chloride)(PVC)-based nanocomposites,” in Woodhead Publishing Series in Composites Science and Engineering, F. B. T.-A. in P. N. Gao, Ed. Woodhead Publishing, 2012, pp. 216–237.
A. Lindström and M. Hakkarainen, “Environmentally friendly plasticizers for poly(vinyl chloride)—Improved mechanical properties and compatibility by using branched poly(butylene adipate) as a polymeric plasticizer,” J. Appl. Polym. Sci., vol. 100, no. 3, pp. 2180–2188, May 2006, doi: https://doi.org/10.1002/app.23633.
ASTM, “ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting,” p. 12, 2018.
ISO, “ISO 2528 Sheet materials — Determination of water vapour transmission rate (WVTR) — Gravimetric (dish) method,” p. 15, 2017.
ASTM, “ASTM D1239 Standard Test Method for Resistance of Plastic Films to Extraction by Chemicals,” 2017.
ISO, “ISO 176 Plastics - Determination of loss of plasticizers - Activated carbon method,” p. 4, 2005
M. Altenhofen da Silva, M. G. Adeodato Vieira, A. C. Gomes Maçumoto, and M. M. Beppu, “Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid,” Polym. Test., vol. 30, no. 5, pp. 478–484, 2011, doi: https://doi.org/10.1016/j.polymertesting.2011.03.008.
W. V. Titow, PVC Plastics Properties, Processing and Applications. Essex, England: ElsevierApplied Science, 1990.
O. Fenollar Gimeno, “Utilización de plastificantes naturales para la obtención de PVC flexible de bajo impacto medioambiental,” Universidad Politecnica de Valencia, 2011.
A. Carbonell-Verdu, M. D. Samper, D. Garcia-Garcia, L. Sanchez-Nacher, and R. Balart, “Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid),” Ind. Crops Prod., vol. 104, pp. 278–286, 2017, doi: https://doi.org/10.1016/j.indcrop.2017.04.050.
A. Carbonell-Verdu, D. Garcia-Sanoguera, A. Jordá-Vilaplana, L. Sanchez-Nacher, and R. Balart, “A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil,” J. Appl. Polym. Sci., vol. 133, no. 27, Jul. 2016, doi: https://doi.org/10.1002/app.43642.
V. K. Haugaard and G. Mortensen, “11 - Biobased food packaging,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, B. Mattsson and U. B. T.-E.-F. F. P. Sonesson, Eds. Woodhead Publishing, 2003, pp. 180–204.
Y. Wang et al., “Antibacterial poly(butylene succinate-co-terephthalate)/titanium dioxide/copper oxide nanocomposites films for food packaging applications,” Food Packag. Shelf Life, vol. 34, p. 101004, 2022, doi: https://doi.org/10.1016/j.fpsl.2022.101004.
K. Subramanian, K. S. Vadivu, L. Subramaniyam, and M. D. Kumar, “Synthesis, characterization, and analysis of bioplasticizer derived from Hibiscus rosa-sinensis leaves and cinnamon bark for poly (vinyl chloride) films,” Ind. Crops Prod., vol. 182, p. 114933, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.114933.
SHIMADZU, “Spectrophotometric Analysis No. A421,” Tokyo, Japan, 2021.
M. Pandey, G. Joshi, A. Mukherjee, and P. Thomas, “Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites,” Polym. Int., Jun. 2016.
Alibaba, “DIDP diisodecyl phthalate.” https://www.alibaba.com/showroom/didp-diisodecyl-phthalate.html (accessed Jan. 21, 2021).
Alibaba, “DBP dibutyl phthalate.” https://www.alibaba.com/showroom/dibutyl-phthalate-price.html (accessed Jan. 20, 2021).
ICIS, “ICIS Chemical Prices-B.” https://www.icis.com/explore/resources/news/2000/12/11/128127/chemical-prices-b/ (accessed Jan. 20, 2021).
ICIS, “Asia methanol higher on potential Saudi Arabia supply issues,” 2019. https://www.icis.com/explore/resources/news/2019/09/17/10418063/asia-methanol-higher-on-potential-saudi-arabia-supply-issues (accessed Jan. 20, 2021).
ICIS, “US spot fuel ethanol prices mixed amid varying demand,” 2020. https://www.icis.com/explore/resources/news/2020/07/15/10530504/us-spot-fuel-ethanol-prices-mixed-amid-varying-demand (accessed Jan. 20, 2021).
Alibaba, “Propyl alcohol price.” https://www.alibaba.com/showroom/propyl-alcohol.html (accessed Jan. 20, 2021).
ICIS, “Southeast Asia IPA prices hit six-year high, market warns of peak,” 2020. https://www.icis.com/explore/resources/news/2020/04/06/10493861/southeast-asia-ipa-prices-hit-six-year-high-market-warns-of-peak (accessed Jan. 20, 2021).
ICIS, “Asia oxo-alcohols face weak demand; deep-sea cargo influx,” 2019. https://www.icis.com/explore/resources/news/2019/12/09/10451591/asia-oxo-alcohols-face-weak-demand-deep-sea-cargo-influx (accessed Jan. 20, 2021).
ECHEMI, “Isobutyl Alcohol Price Analysis,” 2020. https://www.echemi.com/productsInformation/pd1804281021-isobutyl-alcohol.html (accessed Jan. 20, 2021).
Alibaba, “Isoamyl Alcohol price.” https://www.alibaba.com/product-detail/Best-selling-chemicals-Isoamyl-Alcohol-Cas_1600110577919.html?spm=a2700.7724857.normal_offer.d_title.dbc874a8QIsZfQ (accessed Jan. 20, 2021).
Made in China, “High Pure Capryl Alcohol C8h18o Octanol.” https://hailijia888.en.made-in-china.com/product/oKIxSrkvZcUH/China-CAS-111-87-5-High-Pure-Capryl-Alcohol-C8h18o-Octanol.html (accessed Jan. 20, 2021)
ICIS, “Asia MEG nears six-month highs on regional output cuts, US shutdowns,” 2020. Asia MEG nears six-month highs on regional output cuts, US shutdowns (accessed Jan. 20, 2021).
Alibaba, “Propylene glycol price.” https://www.alibaba.com/product-detail/Propylene-Glycol-Propylene-Glycol-Price_62329752387.html?spm=a2700.7735675.normal_offer.d_image.4a384f2aFpeMcy&s=p (accessed Jan. 20, 2021).
ICIS, “Asia BDO market faces year-end lull, weak downstream PBT demand,” 2019. https://www.icis.com/explore/resources/news/2019/11/07/10440781/asia-bdo-market-faces-year-end-lull-weak-downstream-pbt-demand (accessed Jan. 20, 2021).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 143 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83816/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83816/2/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20-%20Ingenier%c3%ada%20Qu%c3%admica
https://repositorio.unal.edu.co/bitstream/unal/83816/3/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20-%20Ingenier%c3%ada%20Qu%c3%admica.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
080d5338021f85b8b04360a183a6718d
0aa4527949888cdd2be62f737b0568fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089670964805632
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela Londoño, Alvaroa583c5015d0fe88a7d62aa2891228b13600Narvaez Rincon, Paulo Cesar22477493aa08b1516693b84f069835dc600Nájera Losada, Laura Nathaliadd3407c306fa0864f64d82f74398351fGrupo de investigación en procesos químicos y bioquímicos2023-05-17T20:30:32Z2023-05-17T20:30:32Z2023-05-17https://repositorio.unal.edu.co/handle/unal/83816Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasBiobased plasticizer from agro-industrial residual streams Soybean Oil Deodorizer Distillate (SODD) is a valuable agro-industrial waste stream that can be used as feedstock for a wide range of oleochemicals. In this regard, this work evaluates the production of biobased green plasticizers from SODD. A potential oleochemical plasticizer was selected through a computer-aided product design method that performed a screening of potential candidate molecules by assessing different criteria associated to their plasticizing performance. The selected criteria were compatibility, efficiency, permanence, toxicity, and cost, which were predicted for the potential molecule candidates using group contribution methods and empirical correlations. As a result of the screening method, epoxidized isobutyl esters were found to be the most promising plasticizers for polymers such as PVC. Subsequently, isobutyl fatty ester epoxides were produced experimentally using a two-step reaction process: esterification and epoxidation. Additionally, a kinetic model of the epoxidation of isobutyl esters was obtained and the influence of reaction conditions on selectivity, efficiency, and yield was studied. As a result, the best operating conditions for the synthesis of epoxidized isobutyl fatty esters were determined. Finally, the performance of the assessed epoxides as plasticizers for PVC was evaluated in terms of mechanical, optical, rheological, and barrier properties. These epoxides exhibited exceptional mechanical performance and thermal stability compared to traditional petrochemical plasticizers (i.e. phthalates). However, in terms of overall performance, they cannot be considered as general-purpose plasticizers and are expected to be used in specific applications.El destilado del desodorizado de aceite de soya (SODD) es un residuo agroindustrial que se puede utilizar como materia prima para obtener un amplio espectro de productos oleoquímicos. En esta dirección, se realizó inicialmente la selección de un derivado oleoquímico con potencial plastificante mediante un método de diseño de producto asistido por computador. Este método permitió realizar una selección entre moléculas potencialmente útiles mediante la evaluación de diferentes criterios asociados con su desempeño como plastificante. Los criterios seleccionados fueron compatibilidad, eficiencia, permanencia, toxicidad y costo. Estos criterios se predijeron para las moléculas candidatas utilizando métodos de contribución de grupo y correlaciones empíricas. Como resultado del método de selección, se encontró que los ésteres de isobutilo epoxidados pueden ser plastificantes promisorios para polímeros como el PVC. Posteriormente, los epóxidos de ésteres grasos de isobutilo se produjeron experimentalmente utilizando un proceso de reacción de dos pasos: esterificación y epoxidación. Además, se obtuvo un modelo cinético de epoxidación de ésteres de isobutilo y se estudió la influencia de las condiciones de reacción sobre la selectividad, la eficiencia y el rendimiento. Como resultado, se obtuvieron las mejores condiciones de operación para la síntesis de ésteres grasos de isobutilo epoxidados. Finalmente, se evaluó el desempeño de los epóxidos isobutílicos como plastificantes para PVC en términos de propiedades mecánicas, ópticas, reológicas y de barrera. Estos epóxidos mostraron un rendimiento mecánico y una estabilidad térmica excepcional en comparación con los plastificantes petroquímicos tradicionales (es decir, los ftalatos). No obstante, en cuanto a su desempeño general, no pueden ser considerados como plastificantes de uso general y se espera que puedan ser utilizados en aplicaciones específicas. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Ingeniería QuímicaOleochemical processesxvii, 143 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería químicaPRODUCTOS DE RESIDUOSINDUSTRIAS DE PLASTICOSWaste productsPlastics industry and tradeEsterificaciónAcidos grasosDestilado desodorizado de aceite de soyaIsobutanolEpoxidaciónEsteres de isobutilo epoxidadosCinéticaPlastificantePVCEsterificationFatty acidsSoybean oil deodorizer distillateIsobutanolEpoxidationEpoxidized isobutyl estersKineticsPlasticizerPVCBiobased plasticizer from agroindustrial residual streamsPlastificante biobasado obtenido a partir de corrientes residuales agroindustrialesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA. D. Godwin, “PLASTICIZERS,” in Applied Polymer Science: 21st Century, C. D. Craver and C. E. B. T.-A. P. S. 21st C. Carraher, Eds. Oxford: Pergamon, 2000, pp. 157–175.E. Langer, K. Bortel, S. Waskiewicz, and M. Lenartowicz-Klik, “Research Trends in Plasticizer Production,” Plast. Deriv. from Post-Consumer PET, pp. 101–126, 2020, doi: 10.1016/b978-0-323-46200-6.00004-0.S. G. Patrick, Practical Guide to Polyvinyl Chloride. United Kingdom: Rapra Technology Limited, 2005.T. Zheng et al., “Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate,” J. Clean. Prod., vol. 186, pp. 1021–1030, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.175.Fedepalma, “Anuario Estadístico 2019 - Principales cifras de la agroindustria de la palma de aceite en Colombia,” 2019.S. Madbouly, C. Zhang, and M. Kessler, Bio-Based Plant oil polymers and composites. Miami USA: Matthew Deans, 2016.C. Echim, R. Verhé, W. Greyt, and C. Stevens, “Production of biodiesel from side-stream refining products,” Energy Environ. Sci. - ENERGY Env. SCI, vol. 2, Nov. 2009, doi: 10.1039/b905925c.L. A. Rincón, J. G. Cadavid, and A. Orjuela, “Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia,” Waste Manag., vol. 88, pp. 200–210, 2019, doi: https://doi.org/10.1016/j.wasman.2019.03.042.J. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, no. 10, pp. 1097–1107, 2005, doi: https://doi.org/10.1016/j.fuproc.2004.11.005.I. M. Atadashi, M. K. Aroua, A. R. Abdul Aziz, and N. M. N. Sulaiman, “The effects of catalysts in biodiesel production: A review,” J. Ind. Eng. Chem., vol. 19, no. 1, pp. 14–26, 2013, doi: https://doi.org/10.1016/j.jiec.2012.07.009.J. M. Marchetti and A. F. Errazu, “Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides,” Biomass and Bioenergy, vol. 32, no. 9, pp. 892–895, 2008, doi: https://doi.org/10.1016/j.biombioe.2008.01.001.Y. Watanabe et al., “Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase,” J. Mol. Catal. B Enzym., vol. 44, no. 3, pp. 99–105, 2007, doi: https://doi.org/10.1016/j.molcatb.2006.09.007S. Gunawan and Y. Ju, “Vegetable Oil Deodorizer Distillate: Characterization, Utilization and Analysis,” Sep. Purif. Rev., vol. 38, no. 3, pp. 207–241, Jul. 2009, doi: 10.1080/15422110903095151.H. K. Woodfield and J. L. Harwood, “Oilseed Crops: Linseed, Rapeseed, Soybean, and Sunflower,” B. Thomas, B. G. Murray, and D. J. B. T.-E. of A. P. S. (Second E. Murphy, Eds. Oxford: Academic Press, 2017, pp. 34–38.E. Alencar, L. Faroni, L. Peternelli, M. Silva, and A. Costa, “Influence of soybean storage conditions on crude oil quality,” Rev. Bras. Eng. Agrícola e Ambient., vol. 14, pp. 303–308, Mar. 2010, doi: 10.1590/S1415-43662010000300010.S. Khatoon, R. G. Raja Rajan, and A. G. Gopala Krishna, “Physicochemical Characteristics and Composition of Indian Soybean Oil Deodorizer Distillate and the Recovery of Phytosterols,” J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 321–326, 2010, doi: 10.1007/s11746-009-1499-8.C. Benites, V. O. Concha, S. Reis, and A. Oliveira, Physiochemical Characterization of Soybean Oil Deodorizer Distillate, vol. 17. 2009.J. Summers and C. Daniels, “Plasticizers,” in PVC HandBook, Hanser, 2005, pp. 173–193.R. Wilcox, “Outlook 17: US plasticizers face shortages, new capacity,” 2016. [Online]. Available: https://www.icis.com/explore/resources/news/2016/12/28/10064206/outlook-17-us-plasticizers-face-shortages-new-capacity/.M. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, “Natural-based plasticizers and biopolymer films: A review,” Eur. Polym. J., vol. 47, no. 3, pp. 254–263, 2011, doi: https://doi.org/10.1016/j.eurpolymj.2010.12.011.Cefic group, “European Plasticisers,” Bruselas, Bélgica, 2017.The European Chemical Industry Council, “Plasticisers - Information Center.” https://www.plasticisers.org/plasticisers/ (accessed Aug. 30, 2020).J. Murphy, Additives for Plastics Handbook, Second edi. New York: Elsevier, 2003H. Benecke, B. Vijaydendran, and J. Elhard, “US 2002/0013396 A1,” 2002.R. Lundsgaard, “Migration of plasticisers from PVC and other polymers,” 2010.L. Bernard, R. Cueff, C. Breysse, B. Décaudin, and V. Sautou, “Migrability of PVC plasticizers from medical devices into a simulant of infused solutions,” Int. J. Pharm., vol. 485, no. 1, pp. 341–347, 2015, doi: https://doi.org/10.1016/j.ijpharm.2015.03.030M. Rahman and C. S. Brazel, “The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges,” Prog. Polym. Sci., vol. 29, no. 12, pp. 1223–1248, 2004, doi: https://doi.org/10.1016/j.progpolymsci.2004.10.001.A. H. Suzuki, B. G. Botelho, L. S. Oliveira, and A. S. Franca, “Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films,” Eur. Polym. J., vol. 99, pp. 142–149, 2018, doi: https://doi.org/10.1016/j.eurpolymj.2017.12.014.LII (Legal Information Institute), “16 CFR § 1307.3 - Prohibition of children’s toys and child care articles containing specified phthalates.,” 2018. https://www.law.cornell.edu/cfr/text/16/1307.3.SGS, “Accessing the Market: European Union Phthalate Regulations | SGS,” Apr. 09, 2019. https://www.sgs.com/en/news/2019/04/accessing-the-market-european-union-phthalate-regulations (accessed Jun. 16, 2020).IHS Markit Customer Care, Chemical Economics Handbook. 2018.S&P Global, “Plasticizers - Chemical Economics Handbook,” Commodity Insights, 2020. https://www.spglobal.com/commodityinsights/en/ci/products/plasticizers-chemical-economics-handbook.html.P. Jia, H. Xia, K. Tang, and Y. Zhou, “Plasticizers derived from biomass resources: A short review,” Polymers (Basel)., vol. 10, no. 12, 2018, doi: 10.3390/polym10121303.The Business ResearchCompany, “Plasticizers Market 2022 - By Product Type (Phthalates Plasticizers, Non-Phthalates Plasticizers),” 2020. https://www.thebusinessresearchcompany.com/report/plasticizers-market-global-market.ResearchAndMarkets, “Global Bio Plasticizers Market Opportunity Report 2020-2030 Featuring DuPont, DOW Chemical, PolyOne, Evonik Among Others,” 2020. https://www.globenewswire.com/news-release/2020/12/03/2139125/0/en/Global-Bio-Plasticizers-Market-Opportunity-Report-2020-2030-Featuring-DuPont-DOW-Chemical-PolyOne-Evonik-Among-Others.html.V. Thakur, M. Thakur, and M. Kessler, Handbook of Composites from Renewable Materials. Miami USA, 2017.K. Dutta, S. Das, and P. P. Kundu, “Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions,” Int. Polym. Process., vol. 29, no. 4, pp. 495–506, Aug. 2014, doi: 10.3139/217.2922.Grand View Research, “Bio Plasticizers Market Analysis By Product Type (Citrates, Castor Oil, ESBO, Succinic Acid), By Application (Packaging, Consumer Goods, Automotive, Construction, Textiles), And Segment Forecasts, 2020 - 2025,” 2020. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/bio-plasticizers-market.B. I. Chaudhary, C. L. Liotta, J. M. Cogen, and M. B. T.-R. M. in M. S. and M. E. Gilbert, “Plasticized PVC,” Elsevier, 2016.M. Bocqué, C. Voirin, V. Lapinte, S. Caillol, and J.-J. Robin, “Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties,” J. Polym. Sci. Part A Polym. Chem., vol. 54, no. 1, pp. 11–33, Jan. 2016, doi: 10.1002/pola.27917.O. Suárez, “Producción y Modelamiento de Gliceril ésteres como plastificantes para el PVC,” Universidad Nacional de Colombia, 2011.P. Jia, M. Zhang, L. Hu, and Y. Zhou, “Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material,” Korean J. Chem. Eng., vol. 33, no. 3, pp. 1080–1087, 2016, doi: 10.1007/s11814-015-0213-9.Y. Yang, Z. Xiong, L. Zhang, Z. Tang, R. Zhang, and J. Zhu, “Isosorbide dioctoate as a ‘green’ plasticizer for poly(lactic acid),” Mater. Des., vol. 91, pp. 262–268, 2016, doi: https://doi.org/10.1016/j.matdes.2015.11.065.B. Yin and M. Hakkarainen, “Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC,” J. Appl. Polym. Sci., vol. 119, no. 4, pp. 2400–2407, Feb. 2011, doi: 10.1002/app.32913D.-L. Cai, X. Yue, B. Hao, and P.-C. Ma, “A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil,” J. Clean. Prod., vol. 274, p. 122781, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122781.S. Kandula, L. Stolp, M. Grass, B. Woldt, and D. Kodali, “Functionalization of Soy Fatty Acid Alkyl Esters as Bioplasticizers,” Saint Paul, Minnesota, 2004.P. Frenkel and S. Mckeown, “US9321901B2,” 2016.G. Feng, Y. Ma, M. Zhang, P. Jia, C. Liu, and Y. Zhou, “Synthesis of Bio-base Plasticizer Using Waste Cooking Oil and Its Performance Testing in Soft Poly(vinyl chloride) Films,” J. Bioresour. Bioprod., vol. 4, no. 2, pp. 99–110, 2019, doi: https://doi.org/10.21967/jbb.v4i2.214.P. Jia, M. Zhang, L. Hu, F. Song, G. Feng, and Y. Zhou, “A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester,” Sci. Rep., vol. 8, no. 1, p. 1589, 2018, doi: 10.1038/s41598-018-19958-y.J. Spekreijse, T. Lammens, C. Parisi, T. Ronzon, and M. Vis, Insights into the European market for bio-based chemicals, vol. 19, no. October. 2019.Index Mundi, “Soybean Oil Futures End of Day Settlement Price,” 2020. https://www.indexmundi.com/commodities/?commodity=soybean-oil&months=12 (accessed Mar. 03, 2020).Echemi, “Epoxidized Soybean Oil Price Analysis.” .Greenea, “Greenea Market Analysis,” 2020. https://www.greenea.com/en/market-analysis/.USDA, “Oilseeds: World Markets and Trade,” EEUU, 2020.ICIS, “Plasticizers prices, markets & analysis,” 2019. https://www.icis.com/explore/commodities/chemicals/plasticizers/ (accessed Jan. 20, 2021).Alibaba, “Soybean deodorizer distillate oil FOB Reference Price.” https://www.alibaba.com/product-detail/Soybean-deodorizer-distillate-oil_1600078593352.html?spm=a2700.7724857.normal_offer.d_image.79965073IJgoEB (accessed Jun. 07, 2021).L. A. Rincón, “Reutilzación de aceites de cocina usados en la producción de aceites epoxidados,” Universidad Nacional de Colombia, 2018.Michel Biron, Industrial Applications of Renewable Plastics. .Y. Wei, G. Li, Q. Lv, C. Cheng, and H. Guo, “Epoxidation of Methyl Oleate and Unsaturated Fatty Acid Methyl Esters Obtained from Vegetable Source over Ti-Containing Silica Catalysts,” Ind. Eng. Chem. Res., vol. 57, no. 48, pp. 16284–16294, Dec. 2018, doi: 10.1021/acs.iecr.8b04155.L. Ramírez, “Modelo Cinético para la reacción de epoxidación aceite vegetal usado,” Universidad Nacional de colombia, 2020.DANE - Departamento Administrativo Nacional de Estadística, “Encuesta Anual Manufacturera (EAM).”D. Alperstein, D. Knani, A. Goichman, and M. Narkis, “Determination of plasticizers efficiency for nylon by molecular modeling,” Polym. Bull., vol. 68, no. 7, pp. 1977–1988, 2012, doi: 10.1007/s00289-012-0705-2.Specialchem, “Adhesives Ingredients,” Selecting Plasticizers for Adhesives and Sealants. https://adhesives.specialchem.com/selection-guide/plasticizers-selection-for-adhesives-and-sealants.A. A. Hassan, A. Abbas, T. Rasheed, M. Bilal, H. M. N. Iqbal, and S. Wang, “Development, influencing parameters and interactions of bioplasticizers: An environmentally friendlier alternative to petro industry-based sources,” Sci. Total Environ., vol. 682, pp. 394–404, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.140.F. D. Martínez, “Producción de ésteres de poliglicerol y evaluación de diferentes formulaciones como plastificante de PVC,” Universidad Nacional de Colombia, 2010.G. Wypych, Handbook of Plasticizers, 3rd ed. ChemTec Publishing, 2017.D. Krevelen and K. Nijenhuis, “Chapter 7- Cohesive properties and and solubility,” in Properties of Polymers, 4th editio., Elsevier, 2009.Y.-H. Ju, N. N. F. Sari, A. W. Go, M.-J. Wang, R. C. Agapay, and A. Ayucitra, “Preparation of Epoxidized Fatty Acid Ethyl Ester from Tung Oil as a Bio-lubricant Base-Stock,” Waste and Biomass Valorization, vol. 11, no. 8, pp. 4145–4155, 2020, doi: 10.1007/s12649-019-00749-z.D. A. G. Aranda, R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Letters, vol. 122, no. 1, pp. 20–25, 2008, doi: 10.1007/s10562-007-9318-z.P. Kuester, F; Rhodes, “High Oxirane Fatty Esters,” 3377304, 1968.M. Canakci and J. Gerpen, “Biodiesel production from oils and fats with high FFAs,” Trans. ASAE, vol. 44, Jan. 2001, doi: 10.13031/2013.7010.V. B. Borugadda and V. V Goud, “Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application,” J. Clean. Prod., vol. 112, pp. 4515–4524, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.06.046.J. Brinks, K. Malins, V. Kampars, J. Prilucka, and L. Apseniece, “Optimization of rapeseed oil fatty acid esterification with methanol in the presence of sulfuric acid,” Polish J. Chem. Technol., vol. 15, no. 4, pp. 54–59, doi: https://doi.org/10.2478/pjct-2013-0068.H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, and B. Liang, “Production of biodiesel from Jatropha curcas L. oil,” Comput. Chem. Eng., vol. 33, no. 5, pp. 1091–1096, 2009, doi: https://doi.org/10.1016/j.compchemeng.2008.09.012J. Cárdenas, A. Orjuela, D. L. Sánchez, P. C. Narváez, B. Katryniok, and J. Clark, “Pre-treatment of used cooking oils for the production of green chemicals: A review,” J. Clean. Prod., vol. 289, p. 125129, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125129.F. Galli, S. Nucci, C. Pirola, and C. L. Bianchi, “Epoxy methyl soyate as bio-plasticizer: Two different preparation strategies,” Chem. Eng. Trans., vol. 37, pp. 601–606, 2014, doi: 10.3303/CET1437101.V. V Goud, N. C. Pradhan, and A. V Patwardhan, “Epoxidation of karanja (Pongamia glabra) oil by H2O2,” J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 635–640, 2006, doi: 10.1007/s11746-006-1250-7.M. Kurańska and M. Niemiec, “Cleaner Production of Epoxidized Cooking Oil Using A Heterogeneous Catalyst,” Catalysts, vol. 10, Oct. 2020, doi: 10.3390/catal10111261.A. Campanella, C. Fontanini, and M. Baltanas, “High yield epoxidation of fatty acid methyl esters with performic acid generated in situ,” Chem. Eng. J., vol. 144, pp. 466–475, Nov. 2008, doi: 10.1016/j.cej.2008.07.016.V. B. Borugadda and V. V Goud, “Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst,” Energy Procedia, vol. 54, pp. 75–84, 2014, doi: https://doi.org/10.1016/j.egypro.2014.07.249.Z. S. Petrović, A. Zlatanić, C. C. Lava, and S. Sinadinović-Fišer, “Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions,” Eur. J. Lipid Sci. Technol., vol. 104, no. 5, pp. 293–299, May 2002, doi: https://doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W.T. Vlček and Z. S. Petrović, “Optimization of the chemoenzymatic epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 83, no. 3, pp. 247–252, 2006, doi: 10.1007/s11746-006-1200-4.R. Turco, C. Pischetola, R. Tesser, S. Andini, and M. Di Serio, “New findings on soybean and methylester epoxidation with alumina as the catalyst,” RSC Adv., vol. 6, no. 38, pp. 31647–31652, 2016, doi: 10.1039/C6RA01780K.B. Rangarajan, A. Havey, E. A. Grulke, and P. D. Culnan, “Kinetic parameters of a two-phase model forin situ epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1161–1169, 1995, doi: 10.1007/BF02540983.S. Dinda, A. V Patwardhan, V. V Goud, and N. C. Pradhan, “Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids,” Bioresour. Technol., vol. 99, no. 9, pp. 3737–3744, 2008, doi: https://doi.org/10.1016/j.biortech.2007.07.015.A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils with solvated acetic acid using cation-exchange resins,” Eur. J. Lipid Sci. Technol., vol. 106, no. 8, pp. 524–530, Aug. 2004, doi: https://doi.org/10.1002/ejlt.200400965.Z. Wu et al., “Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid-autocatalyzed reaction system,” Can. J. Chem. Eng., vol. 94, no. 8, pp. 1576–1582, Aug. 2016, doi: https://doi.org/10.1002/cjce.22526.P. G. Nihul, S. T. Mhaske, and V. V Shertukde, “Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC),” Iran. Polym. J., vol. 23, no. 8, pp. 599–608, 2014, doi: 10.1007/s13726-014-0254-7.A. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: II. Reactivity with solvated acetic and peracetic acids,” Lat. Am. Appl. Res., vol. 35, pp. 211–216, Jul. 2005.X. Zhao, T. Zhang, Y. Zhou, and D. Liu, “Preparation of peracetic acid from hydrogen peroxide: Part I: Kinetics for peracetic acid synthesis and hydrolysis,” J. Mol. Catal. A Chem., vol. 271, no. 1, pp. 246–252, 2007, doi: https://doi.org/10.1016/j.molcata.2007.03.012.P. T. Wai, P. Jiang, Y. Shen, P. Zhang, Q. Gu, and Y. Leng, “Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products,” RSC Adv., vol. 9, no. 65, pp. 38119–38136, 2019, doi: 10.1039/C9RA05943A.M. Mushtaq et al., “Epoxidation of methyl esters derived from Jatropha oil: An optimization study,” Grasas y Aceites, vol. 64, pp. 103–114, Mar. 2013, doi: 10.3989/gya.084612.R. J. Gall and F. P. Greenspan, “A Modified Peracid Process for Making Epoxy Compounds from Unsaturated Fatty Acid Esters,” Ind. Eng. Chem., vol. 47, no. 1, pp. 147–148, Jan. 1955, doi: 10.1021/ie50541a045.M. Kurańska, H. Beneš, A. Prociak, O. Trhlíková, Z. Walterová, and W. Stochlińska, “Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts,” J. Clean. Prod., vol. 236, p. 117615, Jul. 2019, doi: 10.1016/j.jclepro.2019.117615.Y. Bai, J. Wang, D. Liu, and X. Zhao, “Conversion of fatty acid methyl ester to epoxy plasticizer by auto-catalyzed in situ formation of performic acid: Kinetic modeling and application of the model,” J. Clean. Prod., vol. 259, p. 120791, Mar. 2020, doi: 10.1016/j.jclepro.2020.120791.A. Ghosh-Dastidar, S. Kaujalgikar, and B. Chaudhary, “US 9499681 B2,” 2016.M. Mushtaq, I. Tan, C. Devi, S. Majidaie, M. Nadeem, and S. Lee, “Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil,” 2011 Natl. Postgrad. Conf. - Energy Sustain. Explor. Innov. Minds, NPC 2011, Sep. 2011, doi: 10.1109/NatPC.2011.6136253.E. Milchert, A. Smagowicz, and G. Lewandowski, “Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid,” J. Chem. Technol. Biotechnol., vol. 85, no. 8, pp. 1099–1107, Aug. 2010, doi: https://doi.org/10.1002/jctb.2405.Á. Osuna and A. Boyaca, “Two-phase kinetic model for epoxidation of soybean oil,” Ing. e Investig., vol. 30, pp. 188–196, Aug. 2010.L. H. Gan, S. H. Goh, and K. S. Ooi, “Kinetic studies of epoxidation and oxirane cleavage of palm olein methyl esters,” J. Am. Oil Chem. Soc., vol. 69, no. 4, pp. 347–351, 1992, doi: 10.1007/BF02636065.Icontec, “NTC 2366. Plasticos. Aceites Vegetales Epoxidados de Soya y Linaza,” 2019.Arkema, “Arkema Products.” https://www.arkema.com/global/en/search/?qc=search&q=vikoflex.PETROM, “plsgreen.” https://plsgreen.com.br/en/specifications/.IEA Bioenergy, “Bio-Based Chemicals,” 2020IEA Bioenergy, “Bio-based Chemicals, Value Added Products from Biorefineries,” 2013.A. Liquide, “Biopropilenglicol, Tecnología alternativa para la producción de propilenglicol,” 2021. https://www.engineering-airliquide.com/es/biopropilenglicol.Arkema, “Oleris® Bio-Based 2-Octanol,” 2020. https://www.arkema.com/global/en/products/product-finder/product/technicalpolymers/oleris/oleris-2-Octanol/.R. Jamarani, H. Erythropel, J. Nicell, R. Leask, and M. Maric, “How Green is Your Plasticizer?,” Polymers (Basel)., vol. 10, p. 834, Jul. 2018, doi: 10.3390/polym10080834.P. Walters, D. F. Cadogan, and C. J. Howick, Plasticizers. 2020.E. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int. J. Thermophys., vol. 29, no. 2, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, Properties of Gases and Liquids, Fifth Edition. New York: McGraw-Hill Education, 2001.Charles M.Hansen, Hansen Solubility Parameters Second edition: A User’s Handbook, no. October 2013. 2007.D. W. Krevelen and K. Nijenhuis, “Cohesive Properties and Solubility,” in Properties of Polymers, 2009, pp. 189–227.Polymer Properties Database, “Hansen Solubility Sphere,” 2015. http://polymerdatabase.com/polymer physics/Hansen Solubility Sphere.html (accessed Feb. 23, 2021).J. Burke, “Part 6 - Three Component Parameters,” 1984. https://cool.culturalheritage.org/byauth/burke/solpar/solpar6.html (accessed May 23, 2021).L. Mascia, Y. Kouparitsas, D. Nocita, and X. Bao, “Antiplasticization of Polymer Materials: Structural Aspects and Effects on Mechanical and Diffusion-Controlled Properties,” Polymers , vol. 12, no. 4. 2020, doi: 10.3390/polym12040769.ExxonMobil Petroleum Chemical B.V.B.A, “Submission of information on DIDP CAS#68515-49-1, EC#271-091-4 as an alternative to DEHP,” 2014.Roderick Parkes, JRC Technical Reports: Practical guidelines on the application of migration modelling for the estimation of specific migration, no. 10. 2015.D. Schowope and R. Goydan, Methods for Estimating the Migration of Aditives and Impurities from Polymeric Materials. Washington D.C: U.S Environmental Protection Agency, 1990.E. H. Immergut and H. F. Mark, “Principles of Plasticization,” in <bold>Plasticization</bold> and Plasticizer Processes, vol. 48, AMERICAN CHEMICAL SOCIETY, 1965, p. 1.J. Bicerano, Prediction of polymer properties, 3rd Editio., vol. 31, no. 02. EEUU: Marcel Dekker, Inc, 2002.C. Camacho-Zuñiga and F. A. Ruiz-Treviño, “A New Group Contribution Scheme To Estimate the Glass Transition Temperature for Polymers and Diluents,” Ind. Eng. Chem. Res., vol. 42, no. 7, pp. 1530–1534, Apr. 2003, doi: 10.1021/ie0205389.C. L. Ihemaguba and K. Marossy, “Combined thermal analysis of fluid plasticizers,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 195–201, 2022, doi: 10.1007/s10973-020-10315-8.C. A. Angell, J. M. Sare, and E. J. Sare, “Glass transition temperatures for simple molecular liquids and their binary solutions,” J. Phys. Chem., vol. 82, no. 24, pp. 2622–2629, Nov. 1978, doi: 10.1021/j100513a016.W. A. Lee, “Calculation of the glass transition temperatures of polymers. Part I. Homopolymers and copolymers with alkyl side chains,” J. Polym. Sci. Part A-2 Polym. Phys., vol. 8, no. 4, pp. 555–570, Apr. 1970, doi: https://doi.org/10.1002/pol.1970.160080407.E. Gustafsson, T. M. Bowden, and A. R. Rennie, “Interactions of amphiphiles with plasticisers used in polymers: Understanding the basis of health and environmental challenges,” Adv. Colloid Interface Sci., vol. 277, p. 102109, 2020, doi: https://doi.org/10.1016/j.cis.2020.102109.US EPA - United States Environmental Protection Agency, “EPI Suite TM v4.11 -Estimation Program Interface.” Washington D.C, 2021.I. Cousins and D. Mackay, “Correlating the physical–chemical properties of phthalate esters using the `three solubility’ approach,” Chemosphere, vol. 41, no. 9, pp. 1389–1399, 2000, doi: https://doi.org/10.1016/S0045-6535(00)00005-9.A. Wypch, Databook of Plasticizers. Elsevier, 2017.CAS, “Sci Finder,” 2022. https://scifinder-n.cas.org.N. RAO, S. KAUJALGIKAR, B. CHAUD-HARY, S. BHIDE, S. MORYE, and S. AGASHE, “WO 2014/061026 Al,” 2014.A. Ghosh-Dastidar, R. Eaton, A. ADAM-CZYK, B. Bell, and R. Campabell, “WO2013/003225 A2,” 2013.L. G. Krauskopf, “Plasticizer structure/performance relationships,” J. Vinyl Technol., vol. 15, no. 3, pp. 140–147, Sep. 1993, doi: https://doi.org/10.1002/vnl.730150306.ISO, “ISO 660 Animal and vegetable fats and oils — Determination of acid value and acidity,” 2020.ISO, “ISO 3961 Animal and vegetable fats and oils — Determination of iodine value,” p. 12, 2018.ISO, “ISO 3657 Animal and vegetable fats and oils — Determination of saponification value,” p. 10, 2020.ISO, “ISO 3960 Animal and vegetable fats and oils — Determination of peroxide value — Iodometric (visual) endpoint determination,” p. 10, 2017.ISO, “ISO 3596 Animal and vegetable fats and oils — Determination of unsaponifiable matter — Method using diethyl ether extraction,” p. 8, 2000.ASTM, “ASTM D2500 Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels,” p. 10, 2000.AMD OIL SALES, “Soybean oil, RBD (organic).” https://www.amdoilsales.com/products/soybean-oil-organic-rbd/ (accessed Nov. 15, 2022).H. Ngo, R. Latona, K. M. Wagner, A. Nuñez, R. Ashby, and R. O. Dunn, “Synthesis and low temperature characterization of iso-oleic ester derivatives,” Eur. J. Lipid Sci. Technol., vol. 118, no. 12, pp. 1915–1925, Dec. 2016, doi: https://doi.org/10.1002/ejlt.201500468.L. A. García-Zapateiro, J. M. Franco, C. Valencia, M. A. Delgado, and C. Gallegos, “Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils,” J. Ind. Eng. Chem., vol. 19, no. 4, pp. 1289–1298, 2013, doi: https://doi.org/10.1016/j.jiec.2012.12.030.International Union of Pure and Applied Chemistry, Solubility data series - Alcohols with water. 1984.V. R. Dhanuka, V. C. Malshe, and S. B. Chandalia, “Kinetics of the liquid phase esterification of carboxylic acids with alcohols in the presence of acid catalysts: Re-interpretation of published data,” Chem. Eng. Sci., vol. 32, no. 5, pp. 551–556, 1977, doi: https://doi.org/10.1016/0009-2509(77)87013-9.S. Goto, T. Tagawa, and Y. Fukuta, “Kinetics of the reaction of sulfuric acid with isobutyl alcohol,” Int. J. Chem. Kinet., vol. 21, no. 8, pp. 729–732, Aug. 1989, doi: https://doi.org/10.1002/kin.550210811.F. A. Zaher and H. M. Soliman, “Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols,” Egypt. J. Pet., vol. 24, no. 4, pp. 439–443, 2015, doi: https://doi.org/10.1016/j.ejpe.2015.10.007.W. Waskitoaji, E. Triwulandari, and A. Haryono, “Synthesis of Plasticizers Derived from Palm Oil and Their Application in Polyvinyl Chloride,” Procedia Chem., vol. 4, pp. 313–321, 2012, doi: https://doi.org/10.1016/j.proche.2012.06.044.S. Silviana, D. Anggoro, and A. Kumoro, “Kinetics study of waste cooking oil epoxidation with peroxyacetic acid using acid catalysts,” Rasayan J. Chem., vol. 12, pp. 1369–1374, Jan. 2019, doi: 10.31788/RJC.2019.1235190.W. F. Bohórquez, A. Orjuela, P. C. N. Rincón, J. G. Cadavid, and J. A. García-Nunez, “Experimental optimization during epoxidation of a high-oleic palm oil using a simplex algorithm,” Ind. Crops Prod., vol. 187, p. 115321, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.115321.M. Jankovic, S. Sinadinovic-Fiser, O. Govedarica, J. Pavličević, and J. Budinski-Simendic, “Kinetics of soybean oil epoxidation with peracetic acid formed In Situ in the presence of an ion exchange resin: Pseudo-homogeneous model,” Chem. Ind. Chem. Eng. Q., vol. 23, pp. 97–111, Apr. 2017, doi: 10.2298/CICEQ150702014J.G. V Olivieri, J. V. J. de Quadros, and R. Giudici, “Epoxidation Reaction of Soybean Oil: Experimental Study and Comprehensive Kinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 42, pp. 18808–18823, Oct. 2020, doi: 10.1021/acs.iecr.0c03847.S. Leveneur, J. Zheng, B. Taouk, F. Burel, J. Wärnå, and T. Salmi, “Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1449–1458, 2014, doi: https://doi.org/10.1016/j.jtice.2014.01.015.M. Schwaab, L. Livia, and J. Pinto, “Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations,” Chem. Eng. Sci., 2008.K. Bakthavatchalam, S. Beyene, B. Ayalew, and S. Pilla, “Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin,” Sci. Rep., vol. 9, Jun. 2019, doi: 10.1038/s41598-019-45458-8.J. La Scala and R. P. Wool, “Effect of FA composition on epoxidation kinetics of TAG,” J. Am. Oil Chem. Soc., vol. 79, no. 4, pp. 373–378, 2002, doi: 10.1007/s11746-002-0491-9.L. M. Ramírez, J. G. Cadavid, A. Orjuela, M. F. Gutiérrez, and W. F. Bohórquez, “Epoxidation of used cooking oils: Kinetic modeling and reaction optimization,” Chem. Eng. Process. - Process Intensif., vol. 176, p. 108963, 2022, doi: https://doi.org/10.1016/j.cep.2022.108963.LG-VINA Chem, “DOP Plasticizer Data sheet.” http://aytaco.ir/wp-content/uploads/2019/01/DOP-LG.pdf.V. Borugadda and V. Goud, “Synthesis of Waste Cooking Oil Epoxide as a Bio-Lubricant Base Stock: Characterization and Optimization Study,” J. Bioprocess Eng. Biorefinery, vol. 3, pp. 57–72, Mar. 2014, doi: 10.1166/jbeb.2014.1077.V. B. Borugadda and V. V Goud, “Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil,” Energy Sci. Eng., vol. 3, no. 4, pp. 371–383, Jul. 2015, doi: https://doi.org/10.1002/ese3.77.S. Satapathy and A. Palanisamy, “Mechanical and barrier properties of polyvinyl chloride plasticized with dioctyl phthalate, epoxidized soybean oil, and epoxidized cardanol,” J. Vinyl Addit. Technol., vol. 27, no. 3, pp. 599–611, Aug. 2021, doi: https://doi.org/10.1002/vnl.21831.M. Gilbert, “8 - Poly(vinyl chloride)(PVC)-based nanocomposites,” in Woodhead Publishing Series in Composites Science and Engineering, F. B. T.-A. in P. N. Gao, Ed. Woodhead Publishing, 2012, pp. 216–237.A. Lindström and M. Hakkarainen, “Environmentally friendly plasticizers for poly(vinyl chloride)—Improved mechanical properties and compatibility by using branched poly(butylene adipate) as a polymeric plasticizer,” J. Appl. Polym. Sci., vol. 100, no. 3, pp. 2180–2188, May 2006, doi: https://doi.org/10.1002/app.23633.ASTM, “ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting,” p. 12, 2018.ISO, “ISO 2528 Sheet materials — Determination of water vapour transmission rate (WVTR) — Gravimetric (dish) method,” p. 15, 2017.ASTM, “ASTM D1239 Standard Test Method for Resistance of Plastic Films to Extraction by Chemicals,” 2017.ISO, “ISO 176 Plastics - Determination of loss of plasticizers - Activated carbon method,” p. 4, 2005M. Altenhofen da Silva, M. G. Adeodato Vieira, A. C. Gomes Maçumoto, and M. M. Beppu, “Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid,” Polym. Test., vol. 30, no. 5, pp. 478–484, 2011, doi: https://doi.org/10.1016/j.polymertesting.2011.03.008.W. V. Titow, PVC Plastics Properties, Processing and Applications. Essex, England: ElsevierApplied Science, 1990.O. Fenollar Gimeno, “Utilización de plastificantes naturales para la obtención de PVC flexible de bajo impacto medioambiental,” Universidad Politecnica de Valencia, 2011.A. Carbonell-Verdu, M. D. Samper, D. Garcia-Garcia, L. Sanchez-Nacher, and R. Balart, “Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid),” Ind. Crops Prod., vol. 104, pp. 278–286, 2017, doi: https://doi.org/10.1016/j.indcrop.2017.04.050.A. Carbonell-Verdu, D. Garcia-Sanoguera, A. Jordá-Vilaplana, L. Sanchez-Nacher, and R. Balart, “A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil,” J. Appl. Polym. Sci., vol. 133, no. 27, Jul. 2016, doi: https://doi.org/10.1002/app.43642.V. K. Haugaard and G. Mortensen, “11 - Biobased food packaging,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, B. Mattsson and U. B. T.-E.-F. F. P. Sonesson, Eds. Woodhead Publishing, 2003, pp. 180–204.Y. Wang et al., “Antibacterial poly(butylene succinate-co-terephthalate)/titanium dioxide/copper oxide nanocomposites films for food packaging applications,” Food Packag. Shelf Life, vol. 34, p. 101004, 2022, doi: https://doi.org/10.1016/j.fpsl.2022.101004.K. Subramanian, K. S. Vadivu, L. Subramaniyam, and M. D. Kumar, “Synthesis, characterization, and analysis of bioplasticizer derived from Hibiscus rosa-sinensis leaves and cinnamon bark for poly (vinyl chloride) films,” Ind. Crops Prod., vol. 182, p. 114933, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.114933.SHIMADZU, “Spectrophotometric Analysis No. A421,” Tokyo, Japan, 2021.M. Pandey, G. Joshi, A. Mukherjee, and P. Thomas, “Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites,” Polym. Int., Jun. 2016.Alibaba, “DIDP diisodecyl phthalate.” https://www.alibaba.com/showroom/didp-diisodecyl-phthalate.html (accessed Jan. 21, 2021).Alibaba, “DBP dibutyl phthalate.” https://www.alibaba.com/showroom/dibutyl-phthalate-price.html (accessed Jan. 20, 2021).ICIS, “ICIS Chemical Prices-B.” https://www.icis.com/explore/resources/news/2000/12/11/128127/chemical-prices-b/ (accessed Jan. 20, 2021).ICIS, “Asia methanol higher on potential Saudi Arabia supply issues,” 2019. https://www.icis.com/explore/resources/news/2019/09/17/10418063/asia-methanol-higher-on-potential-saudi-arabia-supply-issues (accessed Jan. 20, 2021).ICIS, “US spot fuel ethanol prices mixed amid varying demand,” 2020. https://www.icis.com/explore/resources/news/2020/07/15/10530504/us-spot-fuel-ethanol-prices-mixed-amid-varying-demand (accessed Jan. 20, 2021).Alibaba, “Propyl alcohol price.” https://www.alibaba.com/showroom/propyl-alcohol.html (accessed Jan. 20, 2021).ICIS, “Southeast Asia IPA prices hit six-year high, market warns of peak,” 2020. https://www.icis.com/explore/resources/news/2020/04/06/10493861/southeast-asia-ipa-prices-hit-six-year-high-market-warns-of-peak (accessed Jan. 20, 2021).ICIS, “Asia oxo-alcohols face weak demand; deep-sea cargo influx,” 2019. https://www.icis.com/explore/resources/news/2019/12/09/10451591/asia-oxo-alcohols-face-weak-demand-deep-sea-cargo-influx (accessed Jan. 20, 2021).ECHEMI, “Isobutyl Alcohol Price Analysis,” 2020. https://www.echemi.com/productsInformation/pd1804281021-isobutyl-alcohol.html (accessed Jan. 20, 2021).Alibaba, “Isoamyl Alcohol price.” https://www.alibaba.com/product-detail/Best-selling-chemicals-Isoamyl-Alcohol-Cas_1600110577919.html?spm=a2700.7724857.normal_offer.d_title.dbc874a8QIsZfQ (accessed Jan. 20, 2021).Made in China, “High Pure Capryl Alcohol C8h18o Octanol.” https://hailijia888.en.made-in-china.com/product/oKIxSrkvZcUH/China-CAS-111-87-5-High-Pure-Capryl-Alcohol-C8h18o-Octanol.html (accessed Jan. 20, 2021)ICIS, “Asia MEG nears six-month highs on regional output cuts, US shutdowns,” 2020. Asia MEG nears six-month highs on regional output cuts, US shutdowns (accessed Jan. 20, 2021).Alibaba, “Propylene glycol price.” https://www.alibaba.com/product-detail/Propylene-Glycol-Propylene-Glycol-Price_62329752387.html?spm=a2700.7735675.normal_offer.d_image.4a384f2aFpeMcy&s=p (accessed Jan. 20, 2021).ICIS, “Asia BDO market faces year-end lull, weak downstream PBT demand,” 2019. https://www.icis.com/explore/resources/news/2019/11/07/10440781/asia-bdo-market-faces-year-end-lull-weak-downstream-pbt-demand (accessed Jan. 20, 2021).InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83816/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ingeniería - Ingeniería QuímicaTesis de Maestría en Ingeniería - Ingeniería QuímicaTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf4007433https://repositorio.unal.edu.co/bitstream/unal/83816/2/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20-%20Ingenier%c3%ada%20Qu%c3%admica080d5338021f85b8b04360a183a6718dMD52THUMBNAILTesis de Maestría en Ingeniería - Ingeniería Química.jpgTesis de Maestría en Ingeniería - Ingeniería Química.jpgGenerated Thumbnailimage/jpeg4704https://repositorio.unal.edu.co/bitstream/unal/83816/3/Tesis%20de%20Maestr%c3%ada%20en%20Ingenier%c3%ada%20-%20Ingenier%c3%ada%20Qu%c3%admica.jpg0aa4527949888cdd2be62f737b0568feMD53unal/83816oai:repositorio.unal.edu.co:unal/838162024-08-06 23:10:01.447Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=