Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast

The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting com...

Full description

Autores:
Deng, Hua
Li, Yan
Zhang, Yingchao
Zhou, Hou
Cheng, Peipei
Wang, Jia
Ashraf, Muhammad Aqeel
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63591
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63591
http://bdigital.unal.edu.co/64037/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Wind forecast
WRF/YSU/ Noah
BP-ANN
LS-SVM
Predicción del viento
esquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah)
propagación hacia atrás en redes neuronales artificiales
máquina de vectores
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8d6480c6ab81896f565cb1dee90238c2
oai_identifier_str oai:repositorio.unal.edu.co:unal/63591
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
title Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
spellingShingle Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
55 Ciencias de la tierra / Earth sciences and geology
Wind forecast
WRF/YSU/ Noah
BP-ANN
LS-SVM
Predicción del viento
esquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah)
propagación hacia atrás en redes neuronales artificiales
máquina de vectores
title_short Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
title_full Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
title_fullStr Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
title_full_unstemmed Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
title_sort Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast
dc.creator.fl_str_mv Deng, Hua
Li, Yan
Zhang, Yingchao
Zhou, Hou
Cheng, Peipei
Wang, Jia
Ashraf, Muhammad Aqeel
dc.contributor.author.spa.fl_str_mv Deng, Hua
Li, Yan
Zhang, Yingchao
Zhou, Hou
Cheng, Peipei
Wang, Jia
Ashraf, Muhammad Aqeel
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
Wind forecast
WRF/YSU/ Noah
BP-ANN
LS-SVM
Predicción del viento
esquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah)
propagación hacia atrás en redes neuronales artificiales
máquina de vectores
dc.subject.proposal.spa.fl_str_mv Wind forecast
WRF/YSU/ Noah
BP-ANN
LS-SVM
Predicción del viento
esquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah)
propagación hacia atrás en redes neuronales artificiales
máquina de vectores
description The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T21:55:56Z
dc.date.available.spa.fl_str_mv 2019-07-02T21:55:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63591
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64037/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/63591
http://bdigital.unal.edu.co/64037/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/63004
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Deng, Hua and Li, Yan and Zhang, Yingchao and Zhou, Hou and Cheng, Peipei and Wang, Jia and Ashraf, Muhammad Aqeel (2017) Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast. Earth Sciences Research Journal, 21 (1). pp. 37-43. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63591/1/63004-327283-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/63591/2/63004-327283-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv c3e235ae0ebbfe3473461331794dd639
dc5c972d3a45e9c62557da4da2206630
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089177330876416
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Deng, Hua0e823340-dc55-479a-9562-fac6d47ac940300Li, Yan32fd4c5f-0abc-4f97-a308-adbff040c534300Zhang, Yingchaoa4d002fa-05a8-4868-b08e-8e1fd727964c300Zhou, Hou9e9ac001-9474-4a7a-b64d-29419adebcd9300Cheng, Peipei9481bdc6-8b3e-4e45-9fb5-d8e21965a360300Wang, Jia41d024b1-5d38-4a0d-ba1a-f8e8191da944300Ashraf, Muhammad Aqeelfa68621f-0156-462a-b33a-e05059b9cea63002019-07-02T21:55:56Z2019-07-02T21:55:56Z2017-01-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63591http://bdigital.unal.edu.co/64037/The forecast of wind energy is closely linked to the prediction of the variation of winds over very short time intervals. Four wind towers located in the Inner Mongolia were selected to understand wind power resources in the compound plateau region. The mesoscale weather research and forecasting combining Yonsei University scheme and Noah land surface model (WRF/YSU/Noah) with 1-km horizontal resolution and 10-min time resolution were used to be as the wind numerical weather prediction (NWP) model. Three statistical techniques, persistence, back-propagation artificial neural network (BP-ANN), and least square support vector machine (LS-SVM) were used to improve the wind speed forecasts at a typical wind turbine hub height (70 m) along with the WRF/YSU/Noah output. The current physical-statistical forecasting techniques exhibit good skill in three different time scales: (1) short-term (day-ahead); (2) immediate-short-term (6-h ahead); and (3) nowcasting (1-h ahead). The forecast method, which combined WRF/YSU/Noah outputs, persistence, and LS-SVM methods, increases the forecast skill by 26.3-49.4% compared to the direct outputs of numerical WRF/YSU/Noah model. Also, this approach captures well the diurnal cycle and seasonal variability of wind speeds, as well as wind direction.La estimación de la energía eólica está relacionada con la predicción en la variación de los vientos en pequeños intervalos de tiempo. Se seleccionaron cuatro torres eólicas ubicadas al interior de Mongolia para estudiar los recursos eólicos en la complejidad de un altiplano. Se utilizó la investigación climática a mesoscala y la combinación del esquema de la Universidad Yonsei con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah), con resolución de 1km horizontal y 10 minutos, como el modelo numérico de predicción meteorológica (NWP, del inglés Numerical Weather Prediction). Se utilizaron tres técnicas estadísticas, persistencia, propagación hacia atrás en redes neuronales artificiales y máquina de vectores de soporte-mínimos cuadrados (LS-SVM, del inglés Least Square Support Vector Machine), para mejorar la predicción de la velocidad del viento en una turbina con la altura del eje a 70 metros y se complementó con los resultados del WRF/YSU/Noah. Las técnicas de predicción físico-estadísticas actuales tienen un buen desempeo en tres escalas de tiempo: (1) corto plazo, un día en adelante; (2) mediano plazo, de seis días en adelante; (3) cercano, una hora en adelante. Este método de predicción, que combina los resultados WRF/YSU/Noah con los métodos de persistencia y LS-SVM incrementa la precisión de predicción entre 26,3 y 49,4 por ciento, comparado con los resultados directos del modelo numérico WRF/YSU/Noah. Además, este método diferencia la variabilidad de las estaciones y el ciclo diurno en la velocidad y la dirección del viento.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/63004Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalDeng, Hua and Li, Yan and Zhang, Yingchao and Zhou, Hou and Cheng, Peipei and Wang, Jia and Ashraf, Muhammad Aqeel (2017) Prediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical Forecast. Earth Sciences Research Journal, 21 (1). pp. 37-43. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyWind forecastWRF/YSU/ NoahBP-ANNLS-SVMPredicción del vientoesquema de la Universidad Yonsei combinado con el Modelo de Superficie Terrestre Noah (WRF/YSU/Noah)propagación hacia atrás en redes neuronales artificialesmáquina de vectoresPrediction of Hub Height Winds over the Plateau Terrain by using WRF /YSU/Noah and Statistical ForecastArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL63004-327283-2-PB.pdfapplication/pdf1939713https://repositorio.unal.edu.co/bitstream/unal/63591/1/63004-327283-2-PB.pdfc3e235ae0ebbfe3473461331794dd639MD51THUMBNAIL63004-327283-2-PB.pdf.jpg63004-327283-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg8148https://repositorio.unal.edu.co/bitstream/unal/63591/2/63004-327283-2-PB.pdf.jpgdc5c972d3a45e9c62557da4da2206630MD52unal/63591oai:repositorio.unal.edu.co:unal/635912023-04-22 23:05:37.42Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co