Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención

ilustraciones, diagramas, tablas

Autores:
Miranda Arroyave, Lina Marcela
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82327
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82327
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::549 - Mineralogía
Suelos - Contenidos de cinc
Soils - Zinc content
Recuperación de Zn
Esfalerita
Biolixiviación
Electroobtención
Zn recovery
Sphalerite
Acidithiobacillus ferrooxidans
Leptospirillum ferrooxidans
Acidithiobacillus thiooxidans
Bioleaching
Electrowinning
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8d5073b12faf0ded16e65204f0d54c5f
oai_identifier_str oai:repositorio.unal.edu.co:unal/82327
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
dc.title.translated.eng.fl_str_mv Recovery of zinc from mining waste through bioleaching by acidophilic bacteria and electrowinning
title Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
spellingShingle Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::549 - Mineralogía
Suelos - Contenidos de cinc
Soils - Zinc content
Recuperación de Zn
Esfalerita
Biolixiviación
Electroobtención
Zn recovery
Sphalerite
Acidithiobacillus ferrooxidans
Leptospirillum ferrooxidans
Acidithiobacillus thiooxidans
Bioleaching
Electrowinning
title_short Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
title_full Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
title_fullStr Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
title_full_unstemmed Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
title_sort Recuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención
dc.creator.fl_str_mv Miranda Arroyave, Lina Marcela
dc.contributor.advisor.none.fl_str_mv Márquez Godoy, Marco Antonio
OCAMPO CARMONA, LUZ MARINA
dc.contributor.author.none.fl_str_mv Miranda Arroyave, Lina Marcela
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Mineralogía Aplicada y Bioprocesos (Gmab)
Ciencia y Tecnología de Materiales - CTM
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::549 - Mineralogía
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
540 - Química y ciencias afines::549 - Mineralogía
Suelos - Contenidos de cinc
Soils - Zinc content
Recuperación de Zn
Esfalerita
Biolixiviación
Electroobtención
Zn recovery
Sphalerite
Acidithiobacillus ferrooxidans
Leptospirillum ferrooxidans
Acidithiobacillus thiooxidans
Bioleaching
Electrowinning
dc.subject.lemb.none.fl_str_mv Suelos - Contenidos de cinc
Soils - Zinc content
dc.subject.proposal.spa.fl_str_mv Recuperación de Zn
Esfalerita
Biolixiviación
Electroobtención
dc.subject.proposal.eng.fl_str_mv Zn recovery
Sphalerite
Acidithiobacillus ferrooxidans
Leptospirillum ferrooxidans
Acidithiobacillus thiooxidans
Bioleaching
Electrowinning
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-26T16:23:08Z
dc.date.available.none.fl_str_mv 2022-09-26T16:23:08Z
dc.date.issued.none.fl_str_mv 2022-09-25
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82327
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82327
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv DANE, “Inicio,” 2021
SIMCO, “Inicio,” SIMCO. Sistema de Información Minero Colombiano., 2021. https://www1.upme.gov.co/simco/Paginas/home.aspx
R. Oyarzún, P. Higueras, and J. Lillo, “Minería Ambiental. Una introducción a los Impactos y su Remediación,” GEMM - Aula2puntonet, pp. 1–337, 2011.
L. E. Sánchez, “Manejo De Residuos Solidos En Mineria,” II Curso Internacional de aspectos geológicos de protección ambiental, pp. 239–250, 2005.
K. Bosecker, “Bioleaching: Metal solubilization by microorganisms,” FEMS Microbiol Rev, vol. 20, no. 3–4, pp. 591–604, 1997, doi: 10.1016/S0168-6445(97)00036-3.
A. Ballester, J. Sancho, and L. F. Verdeja, Metalurgia extractiva: Fundamentos (Vol. I). 2000.
H. J. Ayala Mosquera, M. Cabrera Leal, A. Cadena Galvis, and C. Castaño Uribe, “Diagnóstico de la información ambiental y social respecto a la actividad minera y extracción ilícita de minerales en el país,” 2019.
E. D. Ruiz López, “Valoración de los residuos industriales en organizaciones del sector minero-energético y su impacto en el medio ambiente,” 2019. [Online]. Available: http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component%0Ahttp://www.albayan.ae%0Ahttps://scholar.google.co.id/scholar?hl=en&q=APLIKASI+PENGENA
Y. Rodríguez, A. Ballester, M. L. Blázquez, F. González, and J. A. Muñoz, “Mecanismo de biolixiviación de sulfuros metálicos,” Revista de Metalurgia, vol. 37, no. 2001, pp. 665–672, 2001, doi: 10.3989/egeogr.2001.i245.267.
E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 1,” 2010.
F. Anjum, M. Shahid, and A. Akcil, “Biohydrometallurgy techniques of low grade ores: A review on black shale,” Hydrometallurgy, vol. 117–118, pp. 1–12, 2012, doi: 10.1016/j.hydromet.2012.01.007.
D. B. Johnson, “Development and application of biotechnologies in the metal mining industry,” Environmental Science and Pollution Research, vol. 20, no. 11, pp. 7768–7776, 2013, doi: 10.1007/s11356-013-1482-7.
Elsevier B.V., “Scopus.”
C. Gómez, M. L. Blázquez, and A. Ballester, “Bioleaching of a Spanish complex sulphide ore bulk concentrate,” Miner Eng, vol. 12, no. 98, pp. 93–106, 1999, doi: 10.1016/S0892-6875(98)00122-8.
S. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, and R. Roostaazad, “Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and Sulfobacillus,” Int J Miner Process, vol. 80, no. 2–4, pp. 238–243, 2006, doi: 10.1016/j.minpro.2006.05.001.
S. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, “Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains,” Hydrometallurgy, vol. 85, no. 1, pp. 59–65, 2007, doi: 10.1016/j.hydromet.2006.08.003.
S. M. Mousavi et al., “The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor,” Bioresour Technol, vol. 99, no. 8, pp. 2840–2845, 2008, doi: 10.1016/j.biortech.2007.06.009.
D. M. Zapata Aguirre, “Mineralogía del proceso de oxidación bacteriana de esfalerita, proveniente del distrito minero de marmato (Caldas),” p. 181, 2006.
P. A. OLUBAMBI, S. NDLOVU, J. H. POTGIETER, and J. O. BORODE, “Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 5, pp. 1234–1246, 2008, doi: 10.1016/S1003-6326(08)60210-1.
P. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.
M. Soleimani, S. Hosseini, R. Roostaazad, J. Petersen, S. M. Mousavi, and A. K. Vasiri, “Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor,” Hydrometallurgy, vol. 99, no. 3–4, pp. 131–136, 2009, doi: 10.1016/j.hydromet.2009.06.006.
D. M. Zapata Aguirre, D. M. Ossa Henao, and M. A. Marquez Godoy, “Mineralogical characterization of oxidation productos in a pyrite-sphalerite system using indigenous Fe oxidizing bacteria,” Dyna-Colombia, vol. 75, no. 154, pp. 59–64, 2008.
S. Ghassa, Z. Boruomand, H. Abdollahi, M. Moradian, and A. Akcil, “Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms,” Sep Purif Technol, vol. 136, pp. 241–249, 2014, doi: 10.1016/j.seppur.2014.08.029.
A. Ahmadi and S. J. Mousavi, The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms, vol. 135. Elsevier B.V., 2015. doi: 10.1016/j.minpro.2015.01.002.
M. O. Bustamante Rúa, A. C. Gaviria Cartagena, and J. O. Restrepo Baena, “Concentracion De Minerales,” p. 83, 2008, [Online]. Available: http://minas.medellin.unal.edu.co/centro-editorial/cuadernos/download/24_5a1004a32dcbd619453c3eed562725f0
D. H. Lock, “Aplicaciones en la biometalurgia,” Revista de Química, no. 1012–3946, pp. 25–30, 2009.
M. E. Hoque and O. J. Philip, “Biotechnological recovery of heavy metals from secondary sources-An overview,” Materials Science and Engineering C, vol. 31, no. 2, pp. 57–66, 2011, doi: 10.1016/j.msec.2010.09.019.
S. L. Márquez Cordero, “Estudio de la precipitación de zinc producto de la oxidación bacteriana de la esfalerita (Variedad marmatita) usando electrowinning,” p. 80, 2006.
Y. Rodríguez, M. L. Blázquez, A. Ballester, F. González, and J. A. Muñoz, “La biolixiviación al comienzo del siglo XXI,” Metalurgia, vol. LIX, no. 37, pp. 121–129, 2001, doi: 10.3989/egeogr.2001.i245.267.
[30] A. Mahmoud, P. Cézac, A. F. A. Hoadley, F. Contamine, and P. D’Hugues, “A review of sulfide minerals microbially assisted leaching in stirred tank reactors,” Int Biodeterior Biodegradation, vol. 119, pp. 118–146, 2017, doi: 10.1016/j.ibiod.2016.09.015.
M. Vera, A. Schippers, and W. Sand, “Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A,” Appl Microbiol Biotechnol, vol. 97, no. 17, pp. 7529–7541, 2013, doi: 10.1007/s00253-013-4954-2.
W. Sand, T. Gehrke, P. G. Jozsa, and A. Schippers, “(Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching,” Hydrometallurgy, vol. 59, no. 2–3, pp. 159–175, 2001, doi: 10.1016/S0304-386X(00)00180-8.
G. Rossi, Biohydrometallurgy. New York: McGraw-Hill, 1990.
[34] F. Acevedo and J. Gentina, “Fundamentos y Perspectivas de las Tecnologías Biomineras,” Archivos de Ingeniería Bioquímica, pp. 3–24, 2005, [Online]. Available: www.euv.cl
D. Arroyave, “Evaluación del proceso de Biooxidación a escala de laboratorio del mineral aurífero de la mina El Zancudo, Titiribí-Antioquia,” 2008.
J. R. Ban, G. H. Gu, and K. T. Hu, “Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans,” Transactions of Nonferrous Metals Society of China (English Edition), 2013, doi: 10.1016/S1003-6326(13)62490-5.
P. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.
G. Lewis, S. Gaydardzhiev, D. Bastin, and P. F. Bareel, “Bio hydrometallurgical recovery of metals from Fine Shredder Residues,” Miner Eng, vol. 24, no. 11, pp. 1166–1171, 2011, doi: 10.1016/j.mineng.2011.03.025.
L. M. Ocampo Carmona, “Serie electroquímica, escala de tensiones, electrodos de referencia,” Medellin, 2017.
L. M. Ocampo Carmona, “Generalidades sobre termodinámica electroquímica, ecuación de Nerst y diagrama de Pourbaix,” 2018.
D. Calla, “Tratamiento de los residuos del proceso jarosita de la industria metalurgica del zinc, conla finalidad de mitigar este pasivo ambiental,” 2010. doi: 10.1007/s00103-010-1194-9.
Mx News and others, “¿Qué es una celda electrolítica y como esta formada?,” Celdas Electrolíticas y Electroquímicas (Definición, Primarias o Secundarias y Otros datos)., Nov. 14, 2019.
Metallos, “Zn-pourbaix-diagram,” Oct. 24, 2007.
L. M. Ocampo Carmona, “Cinética electroquímica,” 2018.
ATCC, “ATCC: The Global Bioresource Center. Bacterial Products.” https://www.atcc.org/
DSMZ, “German Collection of Microorganisms and Cell Cultures GmbH: Culture Technology.” https://www.dsmz.de/collection/catalogue/microorganisms/culturetechnology
Hach Company, “HQ40D Multimedidor digital de dos canales - Hach España - Aspectos generales.” https://es.hach.com/hq40d-multimedidor-digital-de-doscanales/product?id=26096933367#
Hach Company, “Electrodo de pH Intellical PHC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.”
[49] Hach Company, “Electrodo de ORP/RedOx Intellical MTC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.” https://es.hach.com/electrodo-de-orp-redox-intellical-mtc301-para-laboratorio-multiusorellenable-cable-de-1-metro/product?id=25116715766&callback=qs (accessed Jun. 02, 2021).
[50] A. R. Dubon Urbina and A. Ivette Guadron, “Determinacion cuantitativa de elementos presentes en sales inorganicas por métodos complejometricos no oficiales,” 2009. [Online]. Available: http://ri.ues.edu.sv/2597/1/16101216.pdf
[51] M. KIMATA et al., “Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite,” Journal of Mineralogical and Petrological Sciences, vol. 103, no. 2, pp. 145–151, 2008, doi: 10.2465/jmps.071022f.
[52] L. G. Berry and R. M. Thompson, X-Ray Powder Data for Ore Minerals: The Peacock Atlas. 1962.
[53] C. L. Burdick and H. Ellis, James, The crystal structure of chalcopyrite determined by x-ray, vol. 505, no. 1916. 1917.
[54] S. M. Antao, I. Hassan, J. Wang, P. L. Lee, and B. H. Toby, “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can Mineral, vol. 46, no. 6, pp. 1501–1509, 2008, doi: 10.3749/canmin.46.6.1501.
M. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, and R. Dovesi, “The vibrational spectrum of calcite (CaCO3): An ab initio quantum-
J. J. Liang, F. C. Hawthorne, and I. P. Swainson, “Triclinic muscovite: X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy,” Can Mineral, vol. 36, no. 4, pp. 1017–1027, 1998.
[57] H. W. van der Marel and H. Beutelspacher, Atlas of infrared spectroscopy of clay minerals and their admixtures. New York: Elsevier Scientific Publishing Company, 1976.
[58] K. Harneit, A. Göksel, D. Kock, J. H. Klock, T. Gehrke, and W. Sand, “Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans,” Hydrometallurgy, vol. 83, no. 1–4, pp. 245–254, 2006, doi: 10.1016/j.hydromet.2006.03.044.
[59] A. A. Baba, F. A. Adekola, R. F. Atata, R. N. Ahmed, and S. Panda, “Bioleaching of Zn(II) and Pb(II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 21, no. 11, pp. 2535–2541, 2011, doi: 10.1016/S1003-6326(11)61047-9.
[60] E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 2,” 2010.
[61] H. Deveci, A. Akcil, and I. Alp, “Bioleaching of complex zinc importance of pH and iron,” Hydrometallurgy, 2004, doi: 10.1016/j.hydromet.2003.12.001.
[62] J. E. Dutrizac and J. L. Jambor, “Jarosites and Their Application in Hydrometallurgy,” Rev Mineral Geochem, vol. 40, no. 1, pp. 405–452, 2000, doi: 10.2138/rmg.2000.40.8.
M. Gotić, S. Popović, N. Ljubešić, and S. Musić, “Structural properties of precipitates formed by hydrolysis of Fe3+ ions in aqueous solutions containing NO3- and Cl- ions,” J Mater Sci, vol. 29, no. 9, pp. 2474–2480, 1994, doi: 10.1007/BF00363442sulphides using mesophilic and thermophilic bacteria: Comparative
J. D. Ospina Correa, “Mineralogia del proceso de oxidación bacteriana de arsenopirita y pirita,” 2010.
[65] M. C. Prada, “Influencia de las sales cloruro férrico y sulfato férrico como fuentes de hierro exógenas en un proceso de biodesulfurización de carbones, mediado por la acción de una cepa de Acidithiobacillus ferrooxidans,” 2015.
[66] D. Baron and C. Palmer, “Solubility of jarosite at 4-35oC,” Geochim Cosmochim Acta, vol. 60, no. 2, pp. 185–195, 1996, [Online]. Available: http://www.hicn.org/wordpress/wp-content/uploads/2012/06/wp114.pdf
[67] N. Lazaroff, W. Sigal, and A. Wasserman, “Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells.,” Appl Environ Microbiol, vol. 43, no. 4, pp. 924–38, 1982, doi: 82/040924-15$02.00/0.
[68] K. C. Ivarson, “Microbiological formation of basic ferric sulfates,” Can. J. Soil Sci., vol. 53, no. 433, pp. 315–323, 1973. [69] H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” American Mineralogist, vol. 50, no. 1–2, pp. 132–147, Feb. 1965, [Online]. Available: https://dx.doi.org/
[70] S. Xuguang, “The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 62, no. 5, pp. 557–564, 2005, doi: 10.1016/j.saa.2006.11.034.
[71] L. Gunneriusson, Å. Sandström, A. Holmgren, E. Kuzmann, K. Kovacs, and A. Vértes, “Jarosite inclusion of fluoride and its potential significance to bioleaching of sulphide minerals,” Hydrometallurgy, vol. 96, no. 1–2, pp. 108–116, 2009, doi: 10.1016/j.hydromet.2008.08.012.
[72] J. L. Bishop and E. Murad, “The visible and infrared spectral properties of jarosite and alunite,” American Mineralogist, vol. 90, no. 7, pp. 1100–1107, Jul. 2005, doi: 10.2138/am.2005.1700.
K. Sasaki, M. Tsunekawa, and H. Konno, “Characterization of Argentojarosite Formed From Biologically Oxidized Fe3+ Ions,” Can Mineral, vol. 33, no. Part 6, pp. 1311–1319, 1995, doi: 10.1785/0120000261.
[74] E. J. W. Whittaker, “The infrared spectra of minerals,” Mineral Mag, vol. 40, no. 309, p. 539, 1975, doi: 10.1080/00207237108709483.
[75] I. v. Chernyshova, “An in situ FTIR study of galena and pyrite oxidation in aqueous solution,” Journal of Electroanalytical Chemistry, vol. 558, no. 1–2, pp. 83–98, 2003, doi: 10.1016/S0022-0728(03)00382-6.
[76] M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” American Mineralogist, vol. 92, no. 1, pp. 1–18, 2007, doi: 10.2138/am.2007.2170.
[77] H. H. Adler and P. F. Kerr, “Infrared spectra, symmentry and structure relations of some carbonate minerals,” American Mineralogist, vol. 48, no. 7–8, pp. 839–853, Aug. 1963, [Online]. Available: https://dx.doi.org/
[78] D. Helm and D. Naumann, “Identification of some bacterial cell components by FT-IR spectroscopy,” FEMS Microbiol Lett, vol. 126, no. 1, pp. 75–79, 1995, doi: 10.1016/0378-1097(94)00529-Z.
[79] P. K. Sharma and K. H. Rao, “Surface characterization of bacterial cells relevant to the mineral industry,” Minerals & Metallurgical Processing, vol. 22, no. 1, pp. 31–37, 2005.
[80] A. Heydarian, S. M. Mousavi, F. Vakilchap, and M. Baniasadi, “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries,” J Power Sources, vol. 378, no. November 2017, pp. 19–30, 2018, doi: 10.1016/j.jpowsour.2017.12.009.
[81] C. Castro, “Interacción de una arquea termófila con la superficie mineral y su influencia en la biolixiviación de minerales,” p. 268, 2016.
S. J. G. Casaroli, B. Cohen, A. R. Tong, P. Linkson, and J. G. Petrie, “Cementation for metal removal in zinc electrowinning circuits,” Miner Eng, vol. 18, no. 13–14, pp. 1282–1288, 2005, doi: 10.1016/j.mineng.2005.05.017.
[83] T. Karlsson, Y. Cao, Y. Colombus, and B. M. Steenari, “Investigation of the kinetics and the morphology of cementation products formed during purification of a synthetic zinc sulfate electrolyte,” Hydrometallurgy, vol. 181, no. August, pp. 169–179, 2018, doi: 10.1016/j.hydromet.2018.09.007.
[84] T. J. Peng et al., “Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 26, no. 2, pp. 544–550, 2016, doi: 10.1016/S1003-6326(16)64143-2.
[85] S. yuan Shi and Z. heng Fang, “Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans,” Hydrometallurgy, vol. 75, no. 1–4, pp. 1–10, 2004, doi: 10.1016/j.hydromet.2004.05.008.
[86] M. Ye et al., “Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process,” Chemosphere, vol. 168, pp. 1115–1125, 2017, doi: 10.1016/j.chemosphere.2016.10.095.
[87] J. E. Dutrizac and S. Kaiman, “Synthesis and properties of jarosite type compounds,” Can Mineral, vol. 14, pp. 151–158, 1976.
[88] P. Cogram, “Jarosite,” Reference Module in Earth Systems and Environmental Sciences, pp. 1–9, 2018, doi: 10.1016/B978-0-12-409548-9.10960-1.
[89] G. da Silva, M. R. Lastra, and J. R. Budden, “Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena,” Miner Eng, vol. 16, no. 3, pp. 199–203, 2003, doi: 10.1016/S0892-6875(03)00010-4.
[90] P. A. Olubambi, “Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores,” Hydrometallurgy, vol. 95, no. 1–2, pp. 159–165, 2009, doi: 10.1016/j.hydromet.2008.05.043.
H. Ollakka, J. Ruuska, and S. Taskila, “The application of principal component analysis for bioheapleaching process - Case study: Talvivaara mine,” Miner Eng, vol. 95, pp. 48–58, 2016, doi: 10.1016/j.mineng.2016.06.009.
J. Valdés, I. Pedroso, R. Quatrini, and D. S. Holmes, “Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology,” Hydrometallurgy, vol. 94, no. 1–4, pp. 180–184, doi: 10.1016/j.hydromet.2008.05.039.
G. A. González, “Transporte iónico y patrones de crecimiento en electrodeposición ramificada,” p. 138, 2003, [Online]. Available: http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_3611_Gonzalez.pdf
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxvi, 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Riosucio, Caldas, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Materiales y Minerales
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82327/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82327/2/1020766900.2022.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bc68eed47efc23e9cc817fa6a8a98298
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886187234754560
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Márquez Godoy, Marco Antoniod4e253d07a48cb9652fd6c366cf4c910600OCAMPO CARMONA, LUZ MARINA9c673f9c4ac57bb5e989c3572660d4e4600Miranda Arroyave, Lina Marcela43ff5b8e14fc34115d469d1c068a05dbGrupo de Mineralogía Aplicada y Bioprocesos (Gmab)Ciencia y Tecnología de Materiales - CTM2022-09-26T16:23:08Z2022-09-26T16:23:08Z2022-09-25https://repositorio.unal.edu.co/handle/unal/82327Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEn este trabajo se presentan los resultados obtenidos para la recuperación de Zn, por medio de procesos de biolixiviación/biooxidación y electroobtención, a partir de residuos mineros de la mina la Gavia, ubicada en el municipio de Riosucio, Caldas, Colombia. Esta empresa minera se dedica a la explotación de oro, y en ella se produce grandes pilas residuales con contenido apreciable de minerales secundarios, donde se resalta la esfalerita, una de las principales menas de Zn. La biolixiviación se realizó en presencia de cultivos puros y mixtos de cepas de A. ferrooxidans, L. ferrooxidans y A. thiooxidans, con el objetivo de evaluar su capacidad y empleo en el proceso de lixiviación. Los resultados a escala de laboratorio del proceso de adaptación evidenciaron la facultad de estos microrganismos a sobrevivir en ambientes complejos. Los ensayos formales permitieron conocer la cinética del proceso, en función del Eh, pH, biomasa y determinación de Zn+2. Se confirmó la ventaja de emplear cultivos en mezcla, de este modo, el mayor porcentaje de disolución de Zn que fue del 69,5%, se logró con el cultivo [A. ferrooxidans + L. ferrooxidans + A. thiooxidans]. Mediante los análisis FT-IR, DRX y SEM/EDS, se confirmó la presencia de productos secundarios, los cuales fueron principalmente jarosita, anglesita y yeso, y posiblemente azufre elemental, compuestos que intervienen negativamente en la recuperación de Zn. Los experimentos de electroobtención consiguieron mostrar el comportamiento de la electrodeposición de Zn en función del rendimiento, el pH y el voltaje. En general, las formaciones morfológicamente de los depósitos fueron rugosos (dendríticos o fractales) y polvo. Lo anterior se asoció con el desprendimiento de hidrógeno gaseoso, además de la influencia de variables como temperatura, pH, agitación e impurezas del sistema. El trabajo de laboratorio realizado con residuos de la actividad minera de la mina La Gavia corroboró el potencial uso del proceso de la biolixiviación/biooxidación para la recuperación de metales, en los que se resaltó la capacidad adaptativa de las cepas, frente a muestras minerales con altos contenidos de metales tóxicos. Por lo anterior, se concluyó que la biolixiviación asistida por bacterias acidófilas es un proceso efectivo para la recuperación de material de interés (Zn en el caso de la presente tesis) a partir de residuos mineros, además de ser amigable con el medio ambiente. (Texto tomado de la fuente)This paper presented the results obtained for the recovery of zinc, through bioleaching / biooxidation and electrowinning processes, from mining waste from the La Gavia mine, located in the municipality of Riosucio, Caldas, Colombia. This mining company is dedicated to the exploitation of gold, and it produces large residual piles with an appreciable content of secondary minerals, where sphalerite stands out, one of the main Zn ores. The bioleaching was carried out in the presence of pure and mixed cultures of A. ferrooxidans, L. ferrooxidans and A. thiooxidans strains, with the purpose to evaluate their capacity and use in the leaching process. The laboratory-scale results of the adaptation process evidenced the ability of these microorganisms to survive in complex environments. The formal bioleaching tests allowed to know the kinetics of the process, as a function of Eh, pH, biomass and determination of Zn+2. The advantage of using mixed cultures was confirmed, in this way, the highest percentage of Zn dissolution, which was 69,5%, was achieved with the culture [A. ferrooxidans + L. ferrooxidans + A. thiooxidans]. Through the FT-IR, XRD and SEM / EDS analyzes, the presence of secondary products was confirmed, which were mainly jarosite, anglesite and gypsum, and possibly elemental sulfur, compounds that are negatively involved in Zn recovery. Electrowinning experiments were able to show the behavior of Zn electrodeposition as a function of yield, pH and voltage. In general, the morphological formations of the deposits were rough (dendritic or fractal) and dust. This was associated with the detachment of hydrogen gas, in addition to the influence of variables such as temperature, pH, agitation and impurities in the system. The laboratory work carried out with residues from the mining activity of the La Gavia mine corroborated the potential use of the bioleaching/biooxidation process for the recovery of metals, in which the adaptive capacity of the strains was highlighted, compared to mineral samples with high content of toxic metals. Therefore, it was concluded that bioleaching assisted by acidophilic bacteria is an effective process for the recovery of material of interest (Zn in the case of this thesis) from mining waste, in addition to being friendly to the environment.Universidad Nacional de ColombiaMaestríaMagíster en Ingeniería - Materiales y ProcesosReciclaje de materialesÁrea Curricular de Materiales y Nanotecnologíaxxvi, 147 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Materiales y MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería540 - Química y ciencias afines::549 - MineralogíaSuelos - Contenidos de cincSoils - Zinc contentRecuperación de ZnEsfaleritaBiolixiviaciónElectroobtenciónZn recoverySphaleriteAcidithiobacillus ferrooxidansLeptospirillum ferrooxidansAcidithiobacillus thiooxidansBioleachingElectrowinningRecuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtenciónRecovery of zinc from mining waste through bioleaching by acidophilic bacteria and electrowinningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRiosucio, Caldas, ColombiaDANE, “Inicio,” 2021SIMCO, “Inicio,” SIMCO. Sistema de Información Minero Colombiano., 2021. https://www1.upme.gov.co/simco/Paginas/home.aspxR. Oyarzún, P. Higueras, and J. Lillo, “Minería Ambiental. Una introducción a los Impactos y su Remediación,” GEMM - Aula2puntonet, pp. 1–337, 2011.L. E. Sánchez, “Manejo De Residuos Solidos En Mineria,” II Curso Internacional de aspectos geológicos de protección ambiental, pp. 239–250, 2005.K. Bosecker, “Bioleaching: Metal solubilization by microorganisms,” FEMS Microbiol Rev, vol. 20, no. 3–4, pp. 591–604, 1997, doi: 10.1016/S0168-6445(97)00036-3.A. Ballester, J. Sancho, and L. F. Verdeja, Metalurgia extractiva: Fundamentos (Vol. I). 2000.H. J. Ayala Mosquera, M. Cabrera Leal, A. Cadena Galvis, and C. Castaño Uribe, “Diagnóstico de la información ambiental y social respecto a la actividad minera y extracción ilícita de minerales en el país,” 2019.E. D. Ruiz López, “Valoración de los residuos industriales en organizaciones del sector minero-energético y su impacto en el medio ambiente,” 2019. [Online]. Available: http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218&lang=fa&tmpl=component%0Ahttp://www.albayan.ae%0Ahttps://scholar.google.co.id/scholar?hl=en&q=APLIKASI+PENGENAY. Rodríguez, A. Ballester, M. L. Blázquez, F. González, and J. A. Muñoz, “Mecanismo de biolixiviación de sulfuros metálicos,” Revista de Metalurgia, vol. 37, no. 2001, pp. 665–672, 2001, doi: 10.3989/egeogr.2001.i245.267.E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 1,” 2010.F. Anjum, M. Shahid, and A. Akcil, “Biohydrometallurgy techniques of low grade ores: A review on black shale,” Hydrometallurgy, vol. 117–118, pp. 1–12, 2012, doi: 10.1016/j.hydromet.2012.01.007.D. B. Johnson, “Development and application of biotechnologies in the metal mining industry,” Environmental Science and Pollution Research, vol. 20, no. 11, pp. 7768–7776, 2013, doi: 10.1007/s11356-013-1482-7.Elsevier B.V., “Scopus.”C. Gómez, M. L. Blázquez, and A. Ballester, “Bioleaching of a Spanish complex sulphide ore bulk concentrate,” Miner Eng, vol. 12, no. 98, pp. 93–106, 1999, doi: 10.1016/S0892-6875(98)00122-8.S. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, and R. Roostaazad, “Zinc extraction from Iranian low-grade complex zinc-lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and Sulfobacillus,” Int J Miner Process, vol. 80, no. 2–4, pp. 238–243, 2006, doi: 10.1016/j.minpro.2006.05.001.S. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, “Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains,” Hydrometallurgy, vol. 85, no. 1, pp. 59–65, 2007, doi: 10.1016/j.hydromet.2006.08.003.S. M. Mousavi et al., “The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor,” Bioresour Technol, vol. 99, no. 8, pp. 2840–2845, 2008, doi: 10.1016/j.biortech.2007.06.009.D. M. Zapata Aguirre, “Mineralogía del proceso de oxidación bacteriana de esfalerita, proveniente del distrito minero de marmato (Caldas),” p. 181, 2006.P. A. OLUBAMBI, S. NDLOVU, J. H. POTGIETER, and J. O. BORODE, “Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 18, no. 5, pp. 1234–1246, 2008, doi: 10.1016/S1003-6326(08)60210-1.P. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.M. Soleimani, S. Hosseini, R. Roostaazad, J. Petersen, S. M. Mousavi, and A. K. Vasiri, “Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor,” Hydrometallurgy, vol. 99, no. 3–4, pp. 131–136, 2009, doi: 10.1016/j.hydromet.2009.06.006.D. M. Zapata Aguirre, D. M. Ossa Henao, and M. A. Marquez Godoy, “Mineralogical characterization of oxidation productos in a pyrite-sphalerite system using indigenous Fe oxidizing bacteria,” Dyna-Colombia, vol. 75, no. 154, pp. 59–64, 2008.S. Ghassa, Z. Boruomand, H. Abdollahi, M. Moradian, and A. Akcil, “Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms,” Sep Purif Technol, vol. 136, pp. 241–249, 2014, doi: 10.1016/j.seppur.2014.08.029.A. Ahmadi and S. J. Mousavi, The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms, vol. 135. Elsevier B.V., 2015. doi: 10.1016/j.minpro.2015.01.002.M. O. Bustamante Rúa, A. C. Gaviria Cartagena, and J. O. Restrepo Baena, “Concentracion De Minerales,” p. 83, 2008, [Online]. Available: http://minas.medellin.unal.edu.co/centro-editorial/cuadernos/download/24_5a1004a32dcbd619453c3eed562725f0D. H. Lock, “Aplicaciones en la biometalurgia,” Revista de Química, no. 1012–3946, pp. 25–30, 2009.M. E. Hoque and O. J. Philip, “Biotechnological recovery of heavy metals from secondary sources-An overview,” Materials Science and Engineering C, vol. 31, no. 2, pp. 57–66, 2011, doi: 10.1016/j.msec.2010.09.019.S. L. Márquez Cordero, “Estudio de la precipitación de zinc producto de la oxidación bacteriana de la esfalerita (Variedad marmatita) usando electrowinning,” p. 80, 2006.Y. Rodríguez, M. L. Blázquez, A. Ballester, F. González, and J. A. Muñoz, “La biolixiviación al comienzo del siglo XXI,” Metalurgia, vol. LIX, no. 37, pp. 121–129, 2001, doi: 10.3989/egeogr.2001.i245.267.[30] A. Mahmoud, P. Cézac, A. F. A. Hoadley, F. Contamine, and P. D’Hugues, “A review of sulfide minerals microbially assisted leaching in stirred tank reactors,” Int Biodeterior Biodegradation, vol. 119, pp. 118–146, 2017, doi: 10.1016/j.ibiod.2016.09.015.M. Vera, A. Schippers, and W. Sand, “Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A,” Appl Microbiol Biotechnol, vol. 97, no. 17, pp. 7529–7541, 2013, doi: 10.1007/s00253-013-4954-2.W. Sand, T. Gehrke, P. G. Jozsa, and A. Schippers, “(Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching,” Hydrometallurgy, vol. 59, no. 2–3, pp. 159–175, 2001, doi: 10.1016/S0304-386X(00)00180-8.G. Rossi, Biohydrometallurgy. New York: McGraw-Hill, 1990.[34] F. Acevedo and J. Gentina, “Fundamentos y Perspectivas de las Tecnologías Biomineras,” Archivos de Ingeniería Bioquímica, pp. 3–24, 2005, [Online]. Available: www.euv.clD. Arroyave, “Evaluación del proceso de Biooxidación a escala de laboratorio del mineral aurífero de la mina El Zancudo, Titiribí-Antioquia,” 2008.J. R. Ban, G. H. Gu, and K. T. Hu, “Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans,” Transactions of Nonferrous Metals Society of China (English Edition), 2013, doi: 10.1016/S1003-6326(13)62490-5.P. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” International Journal of Minerals, Metallurgy and Materials, vol. 16, no. 4, pp. 368–374, 2009, doi: 10.1016/S1674-4799(09)60066-2.G. Lewis, S. Gaydardzhiev, D. Bastin, and P. F. Bareel, “Bio hydrometallurgical recovery of metals from Fine Shredder Residues,” Miner Eng, vol. 24, no. 11, pp. 1166–1171, 2011, doi: 10.1016/j.mineng.2011.03.025.L. M. Ocampo Carmona, “Serie electroquímica, escala de tensiones, electrodos de referencia,” Medellin, 2017.L. M. Ocampo Carmona, “Generalidades sobre termodinámica electroquímica, ecuación de Nerst y diagrama de Pourbaix,” 2018.D. Calla, “Tratamiento de los residuos del proceso jarosita de la industria metalurgica del zinc, conla finalidad de mitigar este pasivo ambiental,” 2010. doi: 10.1007/s00103-010-1194-9.Mx News and others, “¿Qué es una celda electrolítica y como esta formada?,” Celdas Electrolíticas y Electroquímicas (Definición, Primarias o Secundarias y Otros datos)., Nov. 14, 2019.Metallos, “Zn-pourbaix-diagram,” Oct. 24, 2007.L. M. Ocampo Carmona, “Cinética electroquímica,” 2018.ATCC, “ATCC: The Global Bioresource Center. Bacterial Products.” https://www.atcc.org/DSMZ, “German Collection of Microorganisms and Cell Cultures GmbH: Culture Technology.” https://www.dsmz.de/collection/catalogue/microorganisms/culturetechnologyHach Company, “HQ40D Multimedidor digital de dos canales - Hach España - Aspectos generales.” https://es.hach.com/hq40d-multimedidor-digital-de-doscanales/product?id=26096933367#Hach Company, “Electrodo de pH Intellical PHC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.”[49] Hach Company, “Electrodo de ORP/RedOx Intellical MTC301 para laboratorio, multiuso, rellenable, cable de 1 metro | Hach España - Aspectos Generales.” https://es.hach.com/electrodo-de-orp-redox-intellical-mtc301-para-laboratorio-multiusorellenable-cable-de-1-metro/product?id=25116715766&callback=qs (accessed Jun. 02, 2021).[50] A. R. Dubon Urbina and A. Ivette Guadron, “Determinacion cuantitativa de elementos presentes en sales inorganicas por métodos complejometricos no oficiales,” 2009. [Online]. Available: http://ri.ues.edu.sv/2597/1/16101216.pdf[51] M. KIMATA et al., “Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite,” Journal of Mineralogical and Petrological Sciences, vol. 103, no. 2, pp. 145–151, 2008, doi: 10.2465/jmps.071022f.[52] L. G. Berry and R. M. Thompson, X-Ray Powder Data for Ore Minerals: The Peacock Atlas. 1962.[53] C. L. Burdick and H. Ellis, James, The crystal structure of chalcopyrite determined by x-ray, vol. 505, no. 1916. 1917.[54] S. M. Antao, I. Hassan, J. Wang, P. L. Lee, and B. H. Toby, “State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with rietveld structure refinement of quartz, sodalite, tremolite, and meionite,” Can Mineral, vol. 46, no. 6, pp. 1501–1509, 2008, doi: 10.3749/canmin.46.6.1501.M. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, and R. Dovesi, “The vibrational spectrum of calcite (CaCO3): An ab initio quantum-J. J. Liang, F. C. Hawthorne, and I. P. Swainson, “Triclinic muscovite: X-ray diffraction, neutron diffraction and photo-acoustic FTIR spectroscopy,” Can Mineral, vol. 36, no. 4, pp. 1017–1027, 1998.[57] H. W. van der Marel and H. Beutelspacher, Atlas of infrared spectroscopy of clay minerals and their admixtures. New York: Elsevier Scientific Publishing Company, 1976.[58] K. Harneit, A. Göksel, D. Kock, J. H. Klock, T. Gehrke, and W. Sand, “Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans,” Hydrometallurgy, vol. 83, no. 1–4, pp. 245–254, 2006, doi: 10.1016/j.hydromet.2006.03.044.[59] A. A. Baba, F. A. Adekola, R. F. Atata, R. N. Ahmed, and S. Panda, “Bioleaching of Zn(II) and Pb(II) from Nigerian sphalerite and galena ores by mixed culture of acidophilic bacteria,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 21, no. 11, pp. 2535–2541, 2011, doi: 10.1016/S1003-6326(11)61047-9.[60] E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Parte 2,” 2010.[61] H. Deveci, A. Akcil, and I. Alp, “Bioleaching of complex zinc importance of pH and iron,” Hydrometallurgy, 2004, doi: 10.1016/j.hydromet.2003.12.001.[62] J. E. Dutrizac and J. L. Jambor, “Jarosites and Their Application in Hydrometallurgy,” Rev Mineral Geochem, vol. 40, no. 1, pp. 405–452, 2000, doi: 10.2138/rmg.2000.40.8.M. Gotić, S. Popović, N. Ljubešić, and S. Musić, “Structural properties of precipitates formed by hydrolysis of Fe3+ ions in aqueous solutions containing NO3- and Cl- ions,” J Mater Sci, vol. 29, no. 9, pp. 2474–2480, 1994, doi: 10.1007/BF00363442sulphides using mesophilic and thermophilic bacteria: ComparativeJ. D. Ospina Correa, “Mineralogia del proceso de oxidación bacteriana de arsenopirita y pirita,” 2010.[65] M. C. Prada, “Influencia de las sales cloruro férrico y sulfato férrico como fuentes de hierro exógenas en un proceso de biodesulfurización de carbones, mediado por la acción de una cepa de Acidithiobacillus ferrooxidans,” 2015.[66] D. Baron and C. Palmer, “Solubility of jarosite at 4-35oC,” Geochim Cosmochim Acta, vol. 60, no. 2, pp. 185–195, 1996, [Online]. Available: http://www.hicn.org/wordpress/wp-content/uploads/2012/06/wp114.pdf[67] N. Lazaroff, W. Sigal, and A. Wasserman, “Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells.,” Appl Environ Microbiol, vol. 43, no. 4, pp. 924–38, 1982, doi: 82/040924-15$02.00/0.[68] K. C. Ivarson, “Microbiological formation of basic ferric sulfates,” Can. J. Soil Sci., vol. 53, no. 433, pp. 315–323, 1973. [69] H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” American Mineralogist, vol. 50, no. 1–2, pp. 132–147, Feb. 1965, [Online]. Available: https://dx.doi.org/[70] S. Xuguang, “The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 62, no. 5, pp. 557–564, 2005, doi: 10.1016/j.saa.2006.11.034.[71] L. Gunneriusson, Å. Sandström, A. Holmgren, E. Kuzmann, K. Kovacs, and A. Vértes, “Jarosite inclusion of fluoride and its potential significance to bioleaching of sulphide minerals,” Hydrometallurgy, vol. 96, no. 1–2, pp. 108–116, 2009, doi: 10.1016/j.hydromet.2008.08.012.[72] J. L. Bishop and E. Murad, “The visible and infrared spectral properties of jarosite and alunite,” American Mineralogist, vol. 90, no. 7, pp. 1100–1107, Jul. 2005, doi: 10.2138/am.2005.1700.K. Sasaki, M. Tsunekawa, and H. Konno, “Characterization of Argentojarosite Formed From Biologically Oxidized Fe3+ Ions,” Can Mineral, vol. 33, no. Part 6, pp. 1311–1319, 1995, doi: 10.1785/0120000261.[74] E. J. W. Whittaker, “The infrared spectra of minerals,” Mineral Mag, vol. 40, no. 309, p. 539, 1975, doi: 10.1080/00207237108709483.[75] I. v. Chernyshova, “An in situ FTIR study of galena and pyrite oxidation in aqueous solution,” Journal of Electroanalytical Chemistry, vol. 558, no. 1–2, pp. 83–98, 2003, doi: 10.1016/S0022-0728(03)00382-6.[76] M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” American Mineralogist, vol. 92, no. 1, pp. 1–18, 2007, doi: 10.2138/am.2007.2170.[77] H. H. Adler and P. F. Kerr, “Infrared spectra, symmentry and structure relations of some carbonate minerals,” American Mineralogist, vol. 48, no. 7–8, pp. 839–853, Aug. 1963, [Online]. Available: https://dx.doi.org/[78] D. Helm and D. Naumann, “Identification of some bacterial cell components by FT-IR spectroscopy,” FEMS Microbiol Lett, vol. 126, no. 1, pp. 75–79, 1995, doi: 10.1016/0378-1097(94)00529-Z.[79] P. K. Sharma and K. H. Rao, “Surface characterization of bacterial cells relevant to the mineral industry,” Minerals & Metallurgical Processing, vol. 22, no. 1, pp. 31–37, 2005.[80] A. Heydarian, S. M. Mousavi, F. Vakilchap, and M. Baniasadi, “Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries,” J Power Sources, vol. 378, no. November 2017, pp. 19–30, 2018, doi: 10.1016/j.jpowsour.2017.12.009.[81] C. Castro, “Interacción de una arquea termófila con la superficie mineral y su influencia en la biolixiviación de minerales,” p. 268, 2016.S. J. G. Casaroli, B. Cohen, A. R. Tong, P. Linkson, and J. G. Petrie, “Cementation for metal removal in zinc electrowinning circuits,” Miner Eng, vol. 18, no. 13–14, pp. 1282–1288, 2005, doi: 10.1016/j.mineng.2005.05.017.[83] T. Karlsson, Y. Cao, Y. Colombus, and B. M. Steenari, “Investigation of the kinetics and the morphology of cementation products formed during purification of a synthetic zinc sulfate electrolyte,” Hydrometallurgy, vol. 181, no. August, pp. 169–179, 2018, doi: 10.1016/j.hydromet.2018.09.007.[84] T. J. Peng et al., “Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 26, no. 2, pp. 544–550, 2016, doi: 10.1016/S1003-6326(16)64143-2.[85] S. yuan Shi and Z. heng Fang, “Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans,” Hydrometallurgy, vol. 75, no. 1–4, pp. 1–10, 2004, doi: 10.1016/j.hydromet.2004.05.008.[86] M. Ye et al., “Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process,” Chemosphere, vol. 168, pp. 1115–1125, 2017, doi: 10.1016/j.chemosphere.2016.10.095.[87] J. E. Dutrizac and S. Kaiman, “Synthesis and properties of jarosite type compounds,” Can Mineral, vol. 14, pp. 151–158, 1976.[88] P. Cogram, “Jarosite,” Reference Module in Earth Systems and Environmental Sciences, pp. 1–9, 2018, doi: 10.1016/B978-0-12-409548-9.10960-1.[89] G. da Silva, M. R. Lastra, and J. R. Budden, “Electrochemical passivation of sphalerite during bacterial oxidation in the presence of galena,” Miner Eng, vol. 16, no. 3, pp. 199–203, 2003, doi: 10.1016/S0892-6875(03)00010-4.[90] P. A. Olubambi, “Influence of microwave pretreatment on the bioleaching behaviour of low-grade complex sulphide ores,” Hydrometallurgy, vol. 95, no. 1–2, pp. 159–165, 2009, doi: 10.1016/j.hydromet.2008.05.043.H. Ollakka, J. Ruuska, and S. Taskila, “The application of principal component analysis for bioheapleaching process - Case study: Talvivaara mine,” Miner Eng, vol. 95, pp. 48–58, 2016, doi: 10.1016/j.mineng.2016.06.009.J. Valdés, I. Pedroso, R. Quatrini, and D. S. Holmes, “Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology,” Hydrometallurgy, vol. 94, no. 1–4, pp. 180–184, doi: 10.1016/j.hydromet.2008.05.039.G. A. González, “Transporte iónico y patrones de crecimiento en electrodeposición ramificada,” p. 138, 2003, [Online]. Available: http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_3611_Gonzalez.pdfRecuperación de zinc a partir de residuos mineros mediante biolixiviación por bacterias acidófilas y electroobtención“Aplicaciones biotecnológicas en procesos de síntesis y transformación de minerales aplicadas a la industria - fase II” con código Hermes 35981 de la convocatoria nacional de proyectos para el fortalecimiento de la investigación, creación e innovación de la Universidad Nacional de Colombia 2016-2018)“Recuperación de zinc a partir de residuos sólidos mineros mediante biolixiviación por bacterias acidófilas” con código Hermes 40912 de la convocatoria nacional para el apoyo al desarrollo de tesis de posgrado o de trabajos finales de especialidades en el área de la salud, de la Universidad Nacional de Colombia 2017-2018AdministradoresBibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82327/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020766900.2022.pdf1020766900.2022.pdfTesis de Maestría en Materiales y Procesosapplication/pdf7686668https://repositorio.unal.edu.co/bitstream/unal/82327/2/1020766900.2022.pdfbc68eed47efc23e9cc817fa6a8a98298MD52unal/82327oai:repositorio.unal.edu.co:unal/823272023-10-20 21:11:12.941Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=