Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad
graficas, tablas
- Autores:
-
Morales Chávez, Marcela María
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84077
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Problema de inventario localización y ruteamiento
Estrategia de configuración dinámica
Cadena de suministro sostenible
Algoritmo de recocido simulado
Inventory location routing problem
Dynamic configuration strategy
Sustainable supply chain
Simulated annealing algorithm
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_8d4e0ccebbb5b90ae93d8d7c1cd04b0a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84077 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
dc.title.translated.eng.fl_str_mv |
Design of a biofuel supply chain from coffee waste, integrating facility, routing and inventory decisions, under a sustainable approach |
title |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
spellingShingle |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad 620 - Ingeniería y operaciones afines Problema de inventario localización y ruteamiento Estrategia de configuración dinámica Cadena de suministro sostenible Algoritmo de recocido simulado Inventory location routing problem Dynamic configuration strategy Sustainable supply chain Simulated annealing algorithm |
title_short |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
title_full |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
title_fullStr |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
title_full_unstemmed |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
title_sort |
Diseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidad |
dc.creator.fl_str_mv |
Morales Chávez, Marcela María |
dc.contributor.advisor.none.fl_str_mv |
Sarache, William Costa Salas, Yasel J. |
dc.contributor.author.none.fl_str_mv |
Morales Chávez, Marcela María |
dc.contributor.orcid.spa.fl_str_mv |
Morales Chávez, Marcela María [0000-0002-7384-8745] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Problema de inventario localización y ruteamiento Estrategia de configuración dinámica Cadena de suministro sostenible Algoritmo de recocido simulado Inventory location routing problem Dynamic configuration strategy Sustainable supply chain Simulated annealing algorithm |
dc.subject.proposal.spa.fl_str_mv |
Problema de inventario localización y ruteamiento Estrategia de configuración dinámica Cadena de suministro sostenible Algoritmo de recocido simulado |
dc.subject.proposal.eng.fl_str_mv |
Inventory location routing problem Dynamic configuration strategy Sustainable supply chain Simulated annealing algorithm |
description |
graficas, tablas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-06-27T13:19:20Z |
dc.date.available.none.fl_str_mv |
2023-06-27T13:19:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84077 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84077 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmadi-Javid, A., & Seddighi, A. H. (2012). A location-routing-inventory model for designing multisource distribution networks. Engineering Optimization, 44(6), 637–656. https://doi.org/10.1080/0305215X.2011.600756 Ahmadi Javid, A., & Azad, N. (2010). Incorporating location, routing and inventory decisions in supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 46(5), 582–597. https://doi.org/10.1016/j.tre.2009.06.005 Alikhani, R., Torabi, S. A., & Altay, N. (2021). Retail supply chain network design with concurrent resilience capabilities. International Journal of Production Economics, 234. https://doi.org/10.1016/j.ijpe.2021.108042 Aloui, A., Hamani, N., Derrouiche, R., & Delahoche, L. (2021). Assessing the benefits of horizontal collaboration using an integrated planning model for two-echelon energy efficiency-oriented logistics networks design. International Journal of Systems Science: Operations and Logistics. https://doi.org/10.1080/23302674.2021.1887397 Amaruchkul, K. (2021). Planning migrant labor for green sugarcane harvest: A stochastic logistics model with dynamic yield prediction. Computers and Industrial Engineering, 154. https://doi.org/10.1016/j.cie.2020.107016 Ambrosino, D., & Grazia Scutellà, M. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, 165(3), 610–624. https://doi.org/10.1016/J.EJOR.2003.04.009 Aravendan, M., & Panneerselvam, R. (2014). Literature review on network design problems in closed loop and reverse supply chains. Intelligent Information Management, 2014. Asadi, E., Habibi, F., Nickel, S., & Sahebi, H. (2018). A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Applied Energy, 228(July), 2235–2261. https://doi.org/10.1016/j.apenergy.2018.07.067 Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368. https://doi.org/http://dx.doi.org/10.1016/j.rser.2011.10.016 Ayoughi, H., Dehghani Podeh, H., Raad, A., & Talebi, D. (2020). Providing an Integrated Multi-Objective Model for Closed-Loop Supply Chain under Fuzzy Conditions with Upgral Approach. International Journal of Nonlinear Analysis and Applications, 11(1), 107–136. Babagolzadeh, M., Shrestha, A., Abbasi, B., & Zhang, Y. (2020). Sustainable cold supply chain management under demand uncertainty and carbon tax regulation. Transportation Research Part D, 80, 102245. https://doi.org/10.1016/j.trd.2020.102245 Bag, S., Dhamija, P., Bryde, D. J., & Singh, R. K. (2022). Effect of eco-innovation on green supply chain management, circular economy capability, and performance of small and medium enterprises. Journal of Business Research, 141, 60–72. https://doi.org/10.1016/j.jbusres.2021.12.011 Bagherinejad, J., & Shoeib, M. (2018). Dynamic capacitated maximal covering location problem by considering dynamic capacity. International Journal of Industrial Engineering Computations, 9(2), 249–264. https://doi.org/10.5267/j.ijiec.2017.5.004 Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409–420. https://doi.org/10.1016/j.ijpe.2016.08.012 Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2018). Agribusiness supply chain risk management: A review of quantitative decision models. Omega, 79, 21–42. https://doi.org/10.1016 / j.omega.2017.07.005 Bera, T., Inglett, K. S., Inglett, P. W., Vardanyan, L., Wilkie, A. C., O’Connor, G. A., & Reddy, K. R. (2021). Comparing first- and second-generation bioethanol by-products from sugarcane: Impact on soil carbon and nitrogen dynamics. Geoderma, 384. https://doi.org/10.1016/j.geoderma.2020.114818 Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics, 152, 131–143. https://doi.org/10.1016/j.ijpe.2013.12.026 Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.120842 Bonilla-Hermosa, V. A., Duarte, W. F., & Schwan, R. F. (2014). Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology, 166, 142–150. https://doi.org/10.1016/j.biortech.2014.05.031 Boostani, A., Jolai, F., & Bozorgi-Amiri, A. (2021). Designing a sustainable humanitarian relief logistics model in pre-and postdisaster management. International Journal of Sustainable Transportation, 15(8), 604–620. Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348–359. https://doi.org/10.1016/j.ejor.2016.03.057 Cadena, E., Rocca, F., Gutierrez, J. A., & Carvalho, A. (2019). Social life cycle assessment methodology for evaluating production process design : Biore fi nery case study. Journal of Cleaner Production, 238, 117718. https://doi.org/10.1016/j.jclepro.2019.117718 Cenicafé. (2016). Manejo de Subproductos. https://www.cenicafe.org/es/index.php/cultivemos_cafe/manejo_de_subproductos Choi, I. S., Wi, S. G., Kim, S.-B., & Bae, H.-J. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology, 125, 132–137. https://doi.org/10.1016/j.biortech.2012.08.080 Christopher, M. (2007). New directions in logistics. Waters, D., Global Logistics: New Directions in Supply Chain Management, London, Kogan Page Limited, 21–32. Conpes. (2008). C o n p e s 3510. Lineamientos de política para promover la producción sostenible de Biocombustibles en Colombia. http://www.minminas.gov.co/minminas/downloads/UserFiles/File/Conpes 3510.pdf Conpes. (2022). CONPES 4075. Política de transición energética. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf Correa, D. F., Beyer, H. L., Possingham, H. P., Fargione, J. E., Hill, J. D., & Schenk, P. M. (2021). Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries. Energy, 215. https://doi.org/10.1016/j.energy.2020.119033 Čuček, L., Martín, M. J. P., Grossmann, I. E., & Kravanja, Z. (2012). Multi-objective optimization of a biorefinery’s supply network. AIChE 2012 - 2012 AIChE Annual Meeting, 1. da Silva, C., Barbosa-Póvoa, A. P., & Carvalho, A. (2020). Environmental monetization and risk assessment in supply chain design and planning. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.121552 Duarte, A., Sarache, W., & Costa, Y. (2014). A facility-location model for biofuel plants: Applications in the Colombian context. Energy, 72, 476–483. https://doi.org/10.1016/j.energy.2014.05.069 Duarte, A., Sarache, W., & Costa, Y. (2016). Biofuel supply chain design from Coffee Cut Stem under environmental analysis. Energy, 100, 321–331. https://doi.org/10.1016/J.ENERGY.2016.01.076 Echeverry, M. (2009). Algoritmos evolutivos y técnicas bio-inspiradas. De la teoría a la práctica. Universidad tecnológica de Pereira Pereira. Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega (United Kingdom), 54, 11–32. https://doi.org/10.1016/j.omega.2015.01.006 Fallah-Tafti, A., Vahdatzad, M. A., & Sadegheiyeh, A. (2019). A comprehensive mathematical model for a location-routing-inventory problem under uncertain demand: A numerical illustration in cash-in-transit sector. International Journal of Engineering, Transactions B: Applications, 32(11), 1634 – 1642. https://doi.org/10.5829/ije.2019.32.11b.15 FAO. (2013). Food wastage footprint: impacts on natural resources: summary report. Food \& Agriculture Org. Fatemi Ghomi, S. M. T., & Asgarian, B. (2019). Development of metaheuristics to solve a transportation inventory location routing problem considering lost sale for perishable goods. Journal of Modelling in Management, 14(1), 175–198. https://doi.org/10.1108/JM2-05-2018-0064 Fedebiocombustibles. (2022). Fedebiocombustibles. https://fedebiocombustibles.com/2022/06/01/4-contribuciones-clave-del-sector-de-los-biocombustibles-ante-los-compromisos-del-cop-26-2/ Feitó-Cespón, M., Costa, Y., Pishvaee, M. S., & Cespón-Castro, R. (2021). A fuzzy inference based scenario building in two-stage optimization framework for sustainable recycling supply chain redesign. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113906 FNC. (2013a). Familias cafeteras en Colombia. http://www.federaciondecafeteros.org/particulares/es/nuestros_caficultores FNC. (2013b). La decisión tranquila de zoquear hoy un cafetal - Federación Nacional de Cafeteros. https://federaciondecafeteros.org/wp/blog/la-decision-tranquila-de-zoquear-hoy-un-cafetal/ FNC. (2022). Precios, área y producción de café. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ Gamborg, C., Millar, K., Shortall, O., & Sandøe, P. (2012). Bioenergy and Land Use: Framing the Ethical Debate. Journal of Agricultural and Environmental Ethics, 25(6), 909–925. http://www.scopus.com/inward/record.url?eid=2-s2.0-84869082138&partnerID=40&md5=114a56e8989289127258d3e34e663bf0 Ghelichi, Z., Saidi-Mehrabad, M., & Pishvaee, M. S. (2018). A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study. Energy, 156, 661–687. https://doi.org/10.1016/j.energy.2018.05.103 Gholipour, S., Ashoftehfard, A., & Mina, H. (2020). Green supply chain network design considering inventory-location-routing problem: A fuzzy solution approach. International Journal of Logistics Systems and Management, 35(4), 436–452. https://doi.org/10.1504/IJLSM.2020.106272 Ghorashi, S. B., Hamedi, M., & Sadeghian, R. (2020). Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO. Neural Computing and Applications, 32(16), 12173 – 12200. https://doi.org/10.1007/s00521-019-04343-1 Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028 Govindan, K., Mina, H., Esmaeili, A., & Gholami-Zanjani, S. M. (2020). An Integrated Hybrid Approach for Circular supplier selection and Closed loop Supply Chain Network Design under Uncertainty. Journal of Cleaner Production, 242. https://doi.org/10.1016/j.jclepro.2019.118317 GRI. (2016). Global Reporting Initiative. In GRI 306: Effluents and Waste. GRI Standards. https://www.globalreporting.org/standards/gri-standards-download-center/ Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2013). Hybrid heuristic for the inventory location-routing problem with deterministic demand. International Journal of Production Economics, 146(1), 359–370. https://doi.org/10.1016/j.ijpe.2013.07.025 Habibi, F., Asadi, E., & Sadjadi, S. J. (2017). Developing a location-inventory-routing model using METRIC approach in inventory policy. Uncertain Supply Chain Management, 5(4), 337–358. https://doi.org/10.5267/j.uscm.2017.4.003 Habibi, F., Asadi, E., & Sadjadi, S. J. (2018). A location-inventory-routing optimization model for cost effective design of microalgae biofuel distribution system: A case study in Iran. Energy Strategy Reviews, 22(April 2017), 82–93. https://doi.org/10.1016/j.esr.2018.08.006 Hajirasouli, A., & Kumarasuriyar, A. (2016). The social dimention of sustainability: Towards some definitions and analysis. Journal of Social Science for Policy Implications, 4(2), 23–34. Hernández-Sampieri, R., Fernández Collado, C., Baptista Lucio, P., & others. (2018). Metodología de la investigación (Vol. 4). McGraw-Hill Interamericana México. Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology, 169(0), 742–749. https://doi.org/http://dx.doi.org/10.1016/j.biortech.2014.07.022 Hu, J., & Li, X. (2022). Construction and optimization of green supply chain management mode of agricultural enterprises in the digital economy. International Journal of Information Systems and Supply Chain Management, 15(2), 1–18. https://doi.org/10.4018/IJISSCM.287864 Huang, E., & Goetschalckx, M. (2014). Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk. European Journal of Operational Research, 237(2), 508–518. https://doi.org/10.1016/j.ejor.2014.02.038 Hurford, A. P., Huskova, I., & Harou, J. J. (2014). Using many-objective trade-off analysis to help dams promote economic development, protect the poor and enhance ecological health. Environmental Science & Policy, 38, 72–86. https://doi.org/10.1016/J.ENVSCI.2013.10.003 Huysman, S., Sala, S., Mancini, L., Ardente, F., Alvarenga, R. A. F., De Meester, S., Mathieux, F., & Dewulf, J. (2015). Toward a systematized framework for resource efficiency indicators. Resources, Conservation and Recycling, 95, 68–76. https://doi.org/10.1016/j.resconrec.2014.10.014 ICO. (2020). International Coffee Organization. https://www.ico.org/ ICO. (2022). Total production of exporting countries. http://www.ico.org/prices/po.htm IPCC. (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (L. A. M. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave (ed.)). https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/contents.html IPCC. (2011). Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (C. von S. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer (ed.)). IPCC. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (eds.)). IPCC. (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems ((eds.)]. In press. [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, (ed.)). Ivanov, B., & Stoyanov, S. (2016). A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system. Energy, 99. https://doi.org/10.1016/j.energy.2016.01.038 Jena, S. D., Cordeau, J.-F., & Gendron, B. (2016). Solving a dynamic facility location problem with partial closing and reopening. Computers and Operations Research, 67, 143–154. https://doi.org/10.1016/j.cor.2015.10.011 Jiménez, J. E., & Hernández, S. (2002). Marco conceptual de la cadena de suministro : un nuevo enfoque logístico. In Instituto Mexicano del Transporte (Issue 215). http://www.elmayorportaldegerencia.com/Documentos/Cadena Suministros/[PD] Documentos - Un nuevo enfoque logistico.pdf Jonkman, J., Barbosa-Póvoa, A. P., & Bloemhof, J. M. (2019). Integrating harvesting decisions in the design of agro-food supply chains. European Journal of Operational Research, 276(1), 247–258. https://doi.org/10.1016/j.ejor.2018.12.024 Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194. https://doi.org/10.1016/j.ijpe.2019.05.022 Karakostas, P., Sifaleras, A., & Georgiadis, M. C. (2020). Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem. Expert Systems with Applications, 153. https://doi.org/10.1016/j.eswa.2020.113444 Kaya, O., & Ozkok, D. (2020). A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions. Networks and Spatial Economics, 20(3), 757 – 783. https://doi.org/10.1007/s11067-020-09500-x Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126 / science.220.4598.671 Kumar, M., Tiwari, M. K., Wong, K. Y., Govindan, K., & Kuah, C. T. (2014). Evaluating reverse supply chain efficiency: Manufacturer’s perspective. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/901914 Lahri, V., Shaw, K., & Ishizaka, A. (2021). Sustainable supply chain network design problem: Using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods. Expert Systems with Applications, 168. https://doi.org/10.1016/j.eswa.2020.114373 Lee, S., Park, S. J., & Seshadri, S. (2017). Plant location and inventory level decisions in global supply chains: Evidence from Korean firms. European Journal of Operational Research, 262(1), 163–179. https://doi.org/10.1016/j.ejor.2017.03.044 Liu, S. C., & Lee, S. B. (2003). A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into consideration. The International Journal of Advanced Manufacturing Technology, 22(11–12), 941–950. https://doi.org/10.1007/s00170-003-1639-5 Liu, Y., Ma, L., & Liu, Y. (2021). A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity. Applied Mathematical Modelling, 92, 99–135. https://doi.org/10.1016/j.apm.2020.10.042 Maass, K. L., Daskin, M. S., & Shen, S. (2016). Mitigating hard capacity constraints with inventory in facility location modeling. IIE Transactions (Institute of Industrial Engineers), 48(2), 120–133. https://doi.org/10.1080/0740817X.2015.1078015 Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007 Meredith, J. R., Raturi, A., Amoako-Gyampah, K., & Kaplan, B. (1989). Alternative research paradigms in operations. Journal of Operations Management, 8(4), 297–326. https://doi.org/10.1016/0272-6963(89)90033-8 Messmann, L., Zender, V., Thorenz, A., & Tuma, A. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. Journal of Cleaner Production, 257, 120459. https://doi.org/10.1016 / j.jclepro.2020.120459 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. Mirhashemi, M. S., Mohseni, S., Hasanzadeh, M., & Pishvaee, M. S. (2018). Moringa oleifera biomass-to-biodiesel supply chain design: An opportunity to combat desertification in Iran. Journal of Cleaner Production, 203, 313–327. https://doi.org/10.1016/j.jclepro.2018.08.257 Monemi, R. N., Gelareh, S., Nagih, A., & Jones, D. (2021). Bi-objective load balancing multiple allocation hub location: a compromise programming approach. Annals of Operations Research, 296(1), 363–406. Morales-Chavez, M. M., Costa, Y., & Sarache, W. (2021). A three-objective stochastic location-inventory-routing model for agricultural waste-based biofuel supply chain. Computers \& Industrial Engineering, 162, 107759. https://doi.org/doi.org/10.1016/j.cie.2021.107759 Morales-Chavez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116(May), 136–162. https://doi.org/10.1016/j.tre.2018.06.001 Morales-Chavez, M. M., Sarache, W., Costa, Y., & Soto, J. (2020). Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. Journal of Cleaner Production, 123305. https://doi.org/10.1016/j.jclepro.2020.123305 Moreno-Camacho, C. A., Montoya-Torres, J. R., Jaegler, A., & Gondran, N. (2019). Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. Journal of Cleaner Production, 231, 600–618. https://doi.org/10.1016/j.jclepro.2019.05.278 Mottaghi, M., Bairamzadeh, S., & M.S., P. (2022). A taxonomic review and analysis on biomass supply chain design and planning: New trends, methodologies and applications. Industrial Crops and Products, 180. https://doi.org/10.1016/j.indcrop.2022.114747 Nakhjirkan, S., Rafiei, F. M., & Kashan, A. H. (2019). Developing an integrated decision making model in supply chain under demand uncertainty using genetic algorithm and network data envelopment analysis. International Journal of Mathematics in Operational Research, 14(1), 53 – 81. https://doi.org/10.1504/IJMOR.2019.096979 Nasr, N., Niaki, S. T. A., Hussenzadek Kashan, A., & Seifbarghy, M. (2021). An efficient solution method for an agri-fresh food supply chain: hybridization of Lagrangian relaxation and genetic algorithm. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13718-8 Nematollahi, M., & Tajbakhsh, A. (2020). Past, present, and prospective themes of sustainable agricultural supply chains: A content analysis. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.122201 Ng, R. T. L., & Maravelias, C. T. (2016). Design of Cellulosic Ethanol Supply Chains with Regional Depots. Industrial and Engineering Chemistry Research, 55(12). https://doi.org/10.1021/acs.iecr.5b03677 Nguyen, T. H., Granger, J., Pandya, D., & Paustian, K. (2019). High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries. Applied Energy, 238, 1484–1496. https://doi.org/10.1016/j.apenergy.2019.01.117 O’Neill, E. G., & Maravelias, C. T. (2021). Towards integrated landscape design and biofuel supply chain optimization. Current Opinion in Chemical Engineering, 31, 1–7. https://doi.org/10.1016/j.coche.2020.100666 OCDE, & FAO, F. and A. O. of U. N.-. (2017). Perspectivas Agrícolas OCDE-FAO. https://doi.org/10.1007/BF02915673 ONU. (2018). Generación de residuos. https://www.unep.org/es/noticias-y-reportajes/comunicado-de-prensa/un-tercio-de-los-residuos-de-america-latina-y-el-caribe Organizacion de las naciones Unidas - Medio Ambiente (ONU). (2018). Perspectiva de la Gestión de Residuos en América Latina y el Caribe Perspectiva de la Gestión de Residuos en América Latina y el Caribe. Pehlivan, C., Augusto, V., & Xie, X. (2014). Dynamic capacity planning and location of hierarchical service networks under service level constraints. IEEE Transactions on Automation Science and Engineering, 11(3), 863–880. https://doi.org/10.1109/TASE.2014.2309255 Pourhejazy, P., Kwon, O. K., & Lim, H. (2019). Integrating Sustainability into the Optimization of Fuel Logistics Networks. KSCE Journal of Civil Engineering, 23(3), 1369 – 1383. https://doi.org/10.1007/s12205-019-1373-7 Programa Mundial de Alimentos. (2020). Programa Mundial de Alimentos. https://www.un.org/sustainabledevelopment/es/hunger/ Rabbani, M., Amirhossein Sadati, S., & Farrokhi-Asl, H. (2020). Incorporating location routing model and decision making techniques in industrial waste management: Application in the automotive industry. Computers and Industrial Engineering, 148. https://doi.org/10.1016/j.cie.2020.106692 Rabbani, M., Heidari, R., & Yazdanparast, R. (2019). A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. European Journal of Operational Research, 272(3), 945 – 961. https://doi.org/10.1016/j.ejor.2018.07.024 Rahbari, M., Arshadi Khamseh, A., Sadati-Keneti, Y., & Jafari, M. J. (2022). A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization. Environment, Development and Sustainability, 24(2), 2804 – 2840. https://doi.org/10.1007/s10668-021-01555-1 Ríos, P. (2018). Metodología de la Investigación: Un enfoque pedagógico. Editorial Cognitus CA. Rocha, M. V. P., de Matos, L. J. B. L., Lima, L. P. D., Figueiredo, P. M. D. S., Lucena, I. L., Fernandes, F. A. N., & Gonçalves, L. R. B. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresource Technology, 167, 343–348. https://doi.org/10.1016/j.biortech.2014.06.032 Rodríguez Valencia, N., Zambrano Franco, A., Rodríguez, N., & Zambrano, D. (2010). Los subproductos del café: fuente de energía renovable. In Avances Técnicos Cenicafé (Colombia)(no. 393) 0120-0178 (Issue 3). https://doi.org/doi.org/ISSN-0120-0178 Romero, C. (1993). Teoría de la decisión multicriterio: conceptos, técnicas y aplicaciones. (Issue 338 ROM). Romero, C., & Rehman, T. (2003). Multiple criteria analysis for agricultural decisions (Vol. 11). Elsevier. Saif-Eddine, A. S., El-Beheiry, M. M., & El-Kharbotly, A. K. (2019). An improved genetic algorithm for optimizing total supply chain cost in inventory location routing problem. Ain Shams Engineering Journal, 10(1), 63–76. https://doi.org/10.1016/j.asej.2018.09.002 Sampieri, R., Fernández, C., & Baptista, P. (2010). METODOLOGÍA de la investigación (5th ed.). Mc Graw Hill. Sarache, W., & Morales-Chavez, M. M. (2016). Localización, transporte e inventarios: tres decisiones estructurales en el diseño de cadenas de abastecimiento (Editorial Universidad Nacional de Colombia (ed.)). Sarma, D., Das, A., & Bera, U. K. (2020). Uncertain demand estimation with optimization of time and cost using Facebook disaster map in emergency relief operation. Applied Soft Computing, 87, 105992. https://doi.org/10.1016/j.asoc.2019.105992 Sasikumar, P., & Kannan, G. (2008a). Issues in reverse supply chains, part I: End-of-life product recovery and inventory management - an overview. International Journal of Sustainable Engineering, 1(3), 154–172. https://doi.org/10.1080/19397030802433860 Sasikumar, P., & Kannan, G. (2008b). Issues in reverse supply chains, part II: Reverse distribution issues - an overview. International Journal of Sustainable Engineering, 1(4), 234–249. https://doi.org/10.1080/19397030802509974 Schaffel, S. B., & La Rovere, E. L. (2010). The quest for eco-social efficiency in biofuels production in Brazil. Journal of Cleaner Production, 18(16–17), 1663–1670. https://doi.org/10.1016/j.jclepro.2010.06.031 Serageldin, I., & Steer, A. (1994). Making development sustainable: from concepts to action. In Making development sustainable: from concepts to action. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041151110&partnerID=40&md5=e7bb7fe34d6c61fd78bf0acf58238f88 Seuring, S, & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. Supply Chain Management, 17(5), 544–555. https://doi.org/10.1108/13598541211258609 Seuring, Stefan, & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020 Shanmugam, S., Hari, A., Kumar, D., Rajendran, K., Mathimani, T., Atabani, A. E., Brindhadevi, K., & Pugazhendhi, A. (2021). Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. Fuel, 285. https://doi.org/10.1016/j.fuel.2020.119052 Sharma, B., Ingalls, R. G., Jones, C. L., & Khanchi, A. (2013). Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renewable and Sustainable Energy Reviews, 24(0), 608–627. https://doi.org/http://dx.doi.org/10.1016/j.rser.2013.03.049 Singh, A. R., Mishra, P. K., Jain, R., & Khurana, M. K. (2012). Design of global supply chain network with operational risks. International Journal of Advanced Manufacturing Technology, 60(1–4), 273–290. https://doi.org/10.1007/s00170-011-3615-9 Tavakkoli-Moghaddam, R., & Raziei, Z. (2016). A New Bi-Objective Location-Routing-Inventory Problem with Fuzzy Demands. IFAC-PapersOnLine, 49(12), 1116–1121. https://doi.org/10.1016/J.IFACOL.2016.07.646 Tavana, M., Abtahi, A.-R., Di Caprio, D., Hashemi, R., & Yousefi-Zenouz, R. (2018). An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations. Socio-Economic Planning Sciences, 64, 21 – 37. https://doi.org/10.1016/j.seps.2017.12.004 Tavana, M., Tohidi, H., Alimohammadi, M., & Lesansalmasi, R. (2021). A location-inventory-routing model for green supply chains with low-carbon emissions under uncertainty. Environmental Science and Pollution Research, 28(36), 50636 – 50648. https://doi.org/10.1007/s11356-021-13815-8 Triana, C. F., Quintero, J. A., Agudelo, R. A., Cardona, C. A., & Higuita, J. C. (2011). Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production. Energy, 36(7), 4182–4190. https://doi.org/10.1016/j.energy.2011.04.025 Valderrama, C. V., Santiba\vnez-González, E., Pimentel, B., Candia-Véjar, A., & Canales-Bustos, L. (2020). Designing an environmental supply chain network in the mining industry to reduce carbon emissions. Journal of Cleaner Production, 119688. Van Engeland, J., Beliën, J., De Boeck, L., & De Jaeger, S. (2020). Literature review: Strategic network optimization models in waste reverse supply chains. Omega (United Kingdom), 91. https://doi.org/10.1016/j.omega.2018.12.001 Waltho, C., Elhedhli, S., & Gzara, F. (2019). Green supply chain network design: A review focused on policy adoption and emission quantification. International Journal of Production Economics, 208, 305–318. https://doi.org/10.1016/j.ijpe.2018.12.003 Williams, P. R. D., Inman, D., Aden, A., & Heath, G. A. (2009). Environmental and sustainability factors associated with next-generation biofuels in the U.S.: What do we really know? Environmental Science and Technology, 43(13), 4763–4775. https://doi.org/10.1021/es900250d Wu, W., Zhou, W., Lin, Y., Xie, Y., & Jin, W. (2021). A hybrid metaheuristic algorithm for location inventory routing problem with time windows and fuel consumption. Expert Systems with Applications, 166. https://doi.org/10.1016/j.eswa.2020.114034 Yaghoubi, A., & Akrami, F. (2019). Proposing a new model for location - routing problem of perishable raw material suppliers with using meta-heuristic algorithms. Heliyon, 5(12), e03020. https://doi.org/10.1016/j.heliyon.2019.e03020 Yao, X., & Askin, R. (2019). Review of supply chain configuration and design decision-making for new product. International Journal of Production Research, 57(7), 2226–2246. https://doi.org/10.1080/00207543.2019.1567954 Yuchi, Q., Wang, N., He, Z., & Chen, H. (2021). Hybrid heuristic for the location-inventory-routing problem in closed-loop supply chain. International Transactions in Operational Research, 28(3), 1265 – 1295. https://doi.org/10.1111/itor.12621 Zandkarimkhani, S., Mina, H., Biuki, M., & Govindan, K. (2020). A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Annals of Operations Research, 295(1), 425 – 452. https://doi.org/10.1007/s10479-020-03677-7 Zeleny, M. (1973). Compromise programming, multiple criteria decision-making. Multiple Criteria Decision Making. University of South Carolina Press, Columbia, 263–301. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182–214. https://doi.org/10.1016/j.tre.2016.02.011 Zhang, Y., Qi, M., Miao, L., & Liu, E. (2014). Hybrid metaheuristic solutions to inventory location routing problem. Transportation Research Part E: Logistics and Transportation Review, 70(1), 305–323. https://doi.org/10.1016/j.tre.2014.07.010 Zhao, J., & Ke, G. Y. (2017). Incorporating inventory risks in location-routing models for explosive waste management. International Journal of Production Economics, 193, 123–136. https://doi.org/10.1016/j.ijpe.2017.07.001 Zhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000 e 2019. Journal of Cleaner Production, 256, 120404. https://doi.org/10.1016/j.jclepro.2020.120404 Zheng, X., Yin, M., & Zhang, Y. (2019). Integrated optimization of location, inventory and routing in supply chain network design. Transportation Research Part B: Methodological, 121, 1–20. https://doi.org/10.1016/j.trb.2019.01.003 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 158 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y Organizaciones |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84077/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/84077/2/42153083.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84077/3/Anexos.pdf https://repositorio.unal.edu.co/bitstream/unal/84077/5/42153083.2023.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/84077/6/Anexos.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 079c9c6cd8da6ffe485d5790272dc2cd 55491791be8afdecf2685c056c160a1d 53a2c11b321f7eb3342073b5637411a6 15c1326c513e609b9d2bdc71de61e81b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090186689085440 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarache, William546ec7b467c878938b5ead59844811de600Costa Salas, Yasel J.d2faf621795aeec09cf6ffb0c095afb6Morales Chávez, Marcela Maríac265144895acf112d9db08f088ae8afd600Morales Chávez, Marcela María [0000-0002-7384-8745]2023-06-27T13:19:20Z2023-06-27T13:19:20Z2022https://repositorio.unal.edu.co/handle/unal/84077Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasLos biocombustibles surgen como alternativa a la crisis energética y ambiental que afecta al planeta. No obstante, integrar decisiones estratégicas, tácticas y operativas, desde un enfoque sostenible, plantea grandes desafíos para el diseño de su cadena de suministro (SCND: Supply Chain Network Design). La revisión de la literatura relacionada con el SCND considerando decisiones de localización, ruteo e inventario (ILRP: Inventory Location Rounting Problem) evidencia que las contribuciones sobre biocombustibles son limitadas, la mayoría de los modelos matemáticos no consideran métricas sostenibles y la estrategia de configuración dinámica (DCS: Dynamic Configuration Strategy) ha sido totalmente ignorada. De acuerdo con los vacíos de conocimiento identificados, esta tesis doctoral presenta un conjunto de modelos matemáticos altamente novedosos para el SCND de biocombustible a partir de residuos agrícolas, integrando decisiones de localización, ruteo e inventario bajo un enfoque sostenible y estocástico. Esta investigación es la primera en abordar dentro de la formulación ILRP la DCS, lo cual constituye un avance relevante en el campo de estudio. Adicionalmente, se diseñó una heurística para resolver el modelo de optimización NP-hard utilizando la metaheurística de recocido simulado. Se analiza un caso de estudio en Colombia y 15 conjuntos de datos de la literatura. Los resultados demuestran la eficiencia de la heurística comparada con el método exacto. Se observan las ventajas de la integración sostenible del ILRP en contraste con la optimización de un solo objetivo. Adicionalmente, se evidencia que la DCS alcanza mejor desempeño económico, ambiental y social comparada con la estrategia de configuración estática en el SCND. (Texto tomado de la fuente)Biofuels arise as an alternative to the energy and environmental crisis that affects the entire planet. However, integrating strategic, tactical and operational decisions, from a sustainable approach, poses great challenges for the design of its supply chain (SCND: Supply Chain Network Design). Reviewing the state of the art related to the SCND considering location, routing and inventory decisions (ILRP: Inventory Location Rounting Problem) shows that contributions on biofuels are limited, most mathematical models don’t consider sustainable metrics and the dynamic configuration strategy (DCS: Dynamic Configuration Strategy) has been totally ignored. According to the knowledge gaps identified, this doctoral thesis presents a set of highly novel mathematical models for the SCND of biofuel from agricultural waste, integrating location, routing and inventory decisions under a sustainable and stochastic approach. This research is the first one addressing DCS within the ILRP formulation, which is a relevant advance in the field of study. In addition, a heuristic was designed to solve the NP-hard optimization model using simulated annealing metaheuristics. A case study in Colombia and 15 data sets from the literature are analyzed. The results demonstrate the efficiency of heuristics compared to the exact method. Also, the advantages of the sustainable integration of the ILRP formulation are observed in contrast to the optimization of a single objective. Thus, it is evident that the CSD achieves better economic, environmental and social performance compared to the static configuration strategy in the SCND.DoctoradoDoctor en IngenieríaIndustrial, Organizaciones Y Logística.Sede Manizalesxv, 158 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y OrganizacionesFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesProblema de inventario localización y ruteamientoEstrategia de configuración dinámicaCadena de suministro sostenibleAlgoritmo de recocido simuladoInventory location routing problemDynamic configuration strategySustainable supply chainSimulated annealing algorithmDiseño de una cadena de suministro de biocombustible a partir de residuos de café, integrando decisiones de instalaciones, ruteo e inventario, bajo un enfoque de sostenibilidadDesign of a biofuel supply chain from coffee waste, integrating facility, routing and inventory decisions, under a sustainable approachTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextAhmadi-Javid, A., & Seddighi, A. H. (2012). A location-routing-inventory model for designing multisource distribution networks. Engineering Optimization, 44(6), 637–656. https://doi.org/10.1080/0305215X.2011.600756Ahmadi Javid, A., & Azad, N. (2010). Incorporating location, routing and inventory decisions in supply chain network design. Transportation Research Part E: Logistics and Transportation Review, 46(5), 582–597. https://doi.org/10.1016/j.tre.2009.06.005Alikhani, R., Torabi, S. A., & Altay, N. (2021). Retail supply chain network design with concurrent resilience capabilities. International Journal of Production Economics, 234. https://doi.org/10.1016/j.ijpe.2021.108042Aloui, A., Hamani, N., Derrouiche, R., & Delahoche, L. (2021). Assessing the benefits of horizontal collaboration using an integrated planning model for two-echelon energy efficiency-oriented logistics networks design. International Journal of Systems Science: Operations and Logistics. https://doi.org/10.1080/23302674.2021.1887397Amaruchkul, K. (2021). Planning migrant labor for green sugarcane harvest: A stochastic logistics model with dynamic yield prediction. Computers and Industrial Engineering, 154. https://doi.org/10.1016/j.cie.2020.107016Ambrosino, D., & Grazia Scutellà, M. (2005). Distribution network design: New problems and related models. European Journal of Operational Research, 165(3), 610–624. https://doi.org/10.1016/J.EJOR.2003.04.009Aravendan, M., & Panneerselvam, R. (2014). Literature review on network design problems in closed loop and reverse supply chains. Intelligent Information Management, 2014.Asadi, E., Habibi, F., Nickel, S., & Sahebi, H. (2018). A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Applied Energy, 228(July), 2235–2261. https://doi.org/10.1016/j.apenergy.2018.07.067Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368. https://doi.org/http://dx.doi.org/10.1016/j.rser.2011.10.016Ayoughi, H., Dehghani Podeh, H., Raad, A., & Talebi, D. (2020). Providing an Integrated Multi-Objective Model for Closed-Loop Supply Chain under Fuzzy Conditions with Upgral Approach. International Journal of Nonlinear Analysis and Applications, 11(1), 107–136.Babagolzadeh, M., Shrestha, A., Abbasi, B., & Zhang, Y. (2020). Sustainable cold supply chain management under demand uncertainty and carbon tax regulation. Transportation Research Part D, 80, 102245. https://doi.org/10.1016/j.trd.2020.102245Bag, S., Dhamija, P., Bryde, D. J., & Singh, R. K. (2022). Effect of eco-innovation on green supply chain management, circular economy capability, and performance of small and medium enterprises. Journal of Business Research, 141, 60–72. https://doi.org/10.1016/j.jbusres.2021.12.011Bagherinejad, J., & Shoeib, M. (2018). Dynamic capacitated maximal covering location problem by considering dynamic capacity. International Journal of Industrial Engineering Computations, 9(2), 249–264. https://doi.org/10.5267/j.ijiec.2017.5.004Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409–420. https://doi.org/10.1016/j.ijpe.2016.08.012Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2018). Agribusiness supply chain risk management: A review of quantitative decision models. Omega, 79, 21–42. https://doi.org/10.1016 / j.omega.2017.07.005Bera, T., Inglett, K. S., Inglett, P. W., Vardanyan, L., Wilkie, A. C., O’Connor, G. A., & Reddy, K. R. (2021). Comparing first- and second-generation bioethanol by-products from sugarcane: Impact on soil carbon and nitrogen dynamics. Geoderma, 384. https://doi.org/10.1016/j.geoderma.2020.114818Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics, 152, 131–143. https://doi.org/10.1016/j.ijpe.2013.12.026Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260. https://doi.org/10.1016/j.jclepro.2020.120842Bonilla-Hermosa, V. A., Duarte, W. F., & Schwan, R. F. (2014). Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology, 166, 142–150. https://doi.org/10.1016/j.biortech.2014.05.031Boostani, A., Jolai, F., & Bozorgi-Amiri, A. (2021). Designing a sustainable humanitarian relief logistics model in pre-and postdisaster management. International Journal of Sustainable Transportation, 15(8), 604–620.Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348–359. https://doi.org/10.1016/j.ejor.2016.03.057Cadena, E., Rocca, F., Gutierrez, J. A., & Carvalho, A. (2019). Social life cycle assessment methodology for evaluating production process design : Biore fi nery case study. Journal of Cleaner Production, 238, 117718. https://doi.org/10.1016/j.jclepro.2019.117718Cenicafé. (2016). Manejo de Subproductos. https://www.cenicafe.org/es/index.php/cultivemos_cafe/manejo_de_subproductosChoi, I. S., Wi, S. G., Kim, S.-B., & Bae, H.-J. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology, 125, 132–137. https://doi.org/10.1016/j.biortech.2012.08.080Christopher, M. (2007). New directions in logistics. Waters, D., Global Logistics: New Directions in Supply Chain Management, London, Kogan Page Limited, 21–32.Conpes. (2008). C o n p e s 3510. Lineamientos de política para promover la producción sostenible de Biocombustibles en Colombia. http://www.minminas.gov.co/minminas/downloads/UserFiles/File/Conpes 3510.pdfConpes. (2022). CONPES 4075. Política de transición energética. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdfCorrea, D. F., Beyer, H. L., Possingham, H. P., Fargione, J. E., Hill, J. D., & Schenk, P. M. (2021). Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries. Energy, 215. https://doi.org/10.1016/j.energy.2020.119033Čuček, L., Martín, M. J. P., Grossmann, I. E., & Kravanja, Z. (2012). Multi-objective optimization of a biorefinery’s supply network. AIChE 2012 - 2012 AIChE Annual Meeting, 1.da Silva, C., Barbosa-Póvoa, A. P., & Carvalho, A. (2020). Environmental monetization and risk assessment in supply chain design and planning. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.121552Duarte, A., Sarache, W., & Costa, Y. (2014). A facility-location model for biofuel plants: Applications in the Colombian context. Energy, 72, 476–483. https://doi.org/10.1016/j.energy.2014.05.069Duarte, A., Sarache, W., & Costa, Y. (2016). Biofuel supply chain design from Coffee Cut Stem under environmental analysis. Energy, 100, 321–331. https://doi.org/10.1016/J.ENERGY.2016.01.076Echeverry, M. (2009). Algoritmos evolutivos y técnicas bio-inspiradas. De la teoría a la práctica. Universidad tecnológica de Pereira Pereira.Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega (United Kingdom), 54, 11–32. https://doi.org/10.1016/j.omega.2015.01.006Fallah-Tafti, A., Vahdatzad, M. A., & Sadegheiyeh, A. (2019). A comprehensive mathematical model for a location-routing-inventory problem under uncertain demand: A numerical illustration in cash-in-transit sector. International Journal of Engineering, Transactions B: Applications, 32(11), 1634 – 1642. https://doi.org/10.5829/ije.2019.32.11b.15FAO. (2013). Food wastage footprint: impacts on natural resources: summary report. Food \& Agriculture Org.Fatemi Ghomi, S. M. T., & Asgarian, B. (2019). Development of metaheuristics to solve a transportation inventory location routing problem considering lost sale for perishable goods. Journal of Modelling in Management, 14(1), 175–198. https://doi.org/10.1108/JM2-05-2018-0064Fedebiocombustibles. (2022). Fedebiocombustibles. https://fedebiocombustibles.com/2022/06/01/4-contribuciones-clave-del-sector-de-los-biocombustibles-ante-los-compromisos-del-cop-26-2/Feitó-Cespón, M., Costa, Y., Pishvaee, M. S., & Cespón-Castro, R. (2021). A fuzzy inference based scenario building in two-stage optimization framework for sustainable recycling supply chain redesign. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113906FNC. (2013a). Familias cafeteras en Colombia. http://www.federaciondecafeteros.org/particulares/es/nuestros_caficultoresFNC. (2013b). La decisión tranquila de zoquear hoy un cafetal - Federación Nacional de Cafeteros. https://federaciondecafeteros.org/wp/blog/la-decision-tranquila-de-zoquear-hoy-un-cafetal/FNC. (2022). Precios, área y producción de café. https://federaciondecafeteros.org/wp/estadisticas-cafeteras/Gamborg, C., Millar, K., Shortall, O., & Sandøe, P. (2012). Bioenergy and Land Use: Framing the Ethical Debate. Journal of Agricultural and Environmental Ethics, 25(6), 909–925. http://www.scopus.com/inward/record.url?eid=2-s2.0-84869082138&partnerID=40&md5=114a56e8989289127258d3e34e663bf0Ghelichi, Z., Saidi-Mehrabad, M., & Pishvaee, M. S. (2018). A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study. Energy, 156, 661–687. https://doi.org/10.1016/j.energy.2018.05.103Gholipour, S., Ashoftehfard, A., & Mina, H. (2020). Green supply chain network design considering inventory-location-routing problem: A fuzzy solution approach. International Journal of Logistics Systems and Management, 35(4), 436–452. https://doi.org/10.1504/IJLSM.2020.106272Ghorashi, S. B., Hamedi, M., & Sadeghian, R. (2020). Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO. Neural Computing and Applications, 32(16), 12173 – 12200. https://doi.org/10.1007/s00521-019-04343-1Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28. https://doi.org/10.1016/j.ijpe.2013.12.028Govindan, K., Mina, H., Esmaeili, A., & Gholami-Zanjani, S. M. (2020). An Integrated Hybrid Approach for Circular supplier selection and Closed loop Supply Chain Network Design under Uncertainty. Journal of Cleaner Production, 242. https://doi.org/10.1016/j.jclepro.2019.118317GRI. (2016). Global Reporting Initiative. In GRI 306: Effluents and Waste. GRI Standards. https://www.globalreporting.org/standards/gri-standards-download-center/Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2013). Hybrid heuristic for the inventory location-routing problem with deterministic demand. International Journal of Production Economics, 146(1), 359–370. https://doi.org/10.1016/j.ijpe.2013.07.025Habibi, F., Asadi, E., & Sadjadi, S. J. (2017). Developing a location-inventory-routing model using METRIC approach in inventory policy. Uncertain Supply Chain Management, 5(4), 337–358. https://doi.org/10.5267/j.uscm.2017.4.003Habibi, F., Asadi, E., & Sadjadi, S. J. (2018). A location-inventory-routing optimization model for cost effective design of microalgae biofuel distribution system: A case study in Iran. Energy Strategy Reviews, 22(April 2017), 82–93. https://doi.org/10.1016/j.esr.2018.08.006Hajirasouli, A., & Kumarasuriyar, A. (2016). The social dimention of sustainability: Towards some definitions and analysis. Journal of Social Science for Policy Implications, 4(2), 23–34.Hernández-Sampieri, R., Fernández Collado, C., Baptista Lucio, P., & others. (2018). Metodología de la investigación (Vol. 4). McGraw-Hill Interamericana México.Ho, D. P., Ngo, H. H., & Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology, 169(0), 742–749. https://doi.org/http://dx.doi.org/10.1016/j.biortech.2014.07.022Hu, J., & Li, X. (2022). Construction and optimization of green supply chain management mode of agricultural enterprises in the digital economy. International Journal of Information Systems and Supply Chain Management, 15(2), 1–18. https://doi.org/10.4018/IJISSCM.287864Huang, E., & Goetschalckx, M. (2014). Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk. European Journal of Operational Research, 237(2), 508–518. https://doi.org/10.1016/j.ejor.2014.02.038Hurford, A. P., Huskova, I., & Harou, J. J. (2014). Using many-objective trade-off analysis to help dams promote economic development, protect the poor and enhance ecological health. Environmental Science & Policy, 38, 72–86. https://doi.org/10.1016/J.ENVSCI.2013.10.003Huysman, S., Sala, S., Mancini, L., Ardente, F., Alvarenga, R. A. F., De Meester, S., Mathieux, F., & Dewulf, J. (2015). Toward a systematized framework for resource efficiency indicators. Resources, Conservation and Recycling, 95, 68–76. https://doi.org/10.1016/j.resconrec.2014.10.014ICO. (2020). International Coffee Organization. https://www.ico.org/ICO. (2022). Total production of exporting countries. http://www.ico.org/prices/po.htmIPCC. (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (L. A. M. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave (ed.)). https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/contents.htmlIPCC. (2011). Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (C. von S. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer (ed.)).IPCC. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (eds.)).IPCC. (2019). Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems ((eds.)]. In press. [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, (ed.)).Ivanov, B., & Stoyanov, S. (2016). A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system. Energy, 99. https://doi.org/10.1016/j.energy.2016.01.038Jena, S. D., Cordeau, J.-F., & Gendron, B. (2016). Solving a dynamic facility location problem with partial closing and reopening. Computers and Operations Research, 67, 143–154. https://doi.org/10.1016/j.cor.2015.10.011Jiménez, J. E., & Hernández, S. (2002). Marco conceptual de la cadena de suministro : un nuevo enfoque logístico. In Instituto Mexicano del Transporte (Issue 215). http://www.elmayorportaldegerencia.com/Documentos/Cadena Suministros/[PD] Documentos - Un nuevo enfoque logistico.pdfJonkman, J., Barbosa-Póvoa, A. P., & Bloemhof, J. M. (2019). Integrating harvesting decisions in the design of agro-food supply chains. European Journal of Operational Research, 276(1), 247–258. https://doi.org/10.1016/j.ejor.2018.12.024Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179–194. https://doi.org/10.1016/j.ijpe.2019.05.022Karakostas, P., Sifaleras, A., & Georgiadis, M. C. (2020). Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem. Expert Systems with Applications, 153. https://doi.org/10.1016/j.eswa.2020.113444Kaya, O., & Ozkok, D. (2020). A Blood Bank Network Design Problem with Integrated Facility Location, Inventory and Routing Decisions. Networks and Spatial Economics, 20(3), 757 – 783. https://doi.org/10.1007/s11067-020-09500-xKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126 / science.220.4598.671Kumar, M., Tiwari, M. K., Wong, K. Y., Govindan, K., & Kuah, C. T. (2014). Evaluating reverse supply chain efficiency: Manufacturer’s perspective. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/901914Lahri, V., Shaw, K., & Ishizaka, A. (2021). Sustainable supply chain network design problem: Using the integrated BWM, TOPSIS, possibilistic programming, and ε-constrained methods. Expert Systems with Applications, 168. https://doi.org/10.1016/j.eswa.2020.114373Lee, S., Park, S. J., & Seshadri, S. (2017). Plant location and inventory level decisions in global supply chains: Evidence from Korean firms. European Journal of Operational Research, 262(1), 163–179. https://doi.org/10.1016/j.ejor.2017.03.044Liu, S. C., & Lee, S. B. (2003). A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into consideration. The International Journal of Advanced Manufacturing Technology, 22(11–12), 941–950. https://doi.org/10.1007/s00170-003-1639-5Liu, Y., Ma, L., & Liu, Y. (2021). A novel robust fuzzy mean-UPM model for green closed-loop supply chain network design under distribution ambiguity. Applied Mathematical Modelling, 92, 99–135. https://doi.org/10.1016/j.apm.2020.10.042Maass, K. L., Daskin, M. S., & Shen, S. (2016). Mitigating hard capacity constraints with inventory in facility location modeling. IIE Transactions (Institute of Industrial Engineers), 48(2), 120–133. https://doi.org/10.1080/0740817X.2015.1078015Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007Meredith, J. R., Raturi, A., Amoako-Gyampah, K., & Kaplan, B. (1989). Alternative research paradigms in operations. Journal of Operations Management, 8(4), 297–326. https://doi.org/10.1016/0272-6963(89)90033-8Messmann, L., Zender, V., Thorenz, A., & Tuma, A. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. Journal of Cleaner Production, 257, 120459. https://doi.org/10.1016 / j.jclepro.2020.120459Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.Mirhashemi, M. S., Mohseni, S., Hasanzadeh, M., & Pishvaee, M. S. (2018). Moringa oleifera biomass-to-biodiesel supply chain design: An opportunity to combat desertification in Iran. Journal of Cleaner Production, 203, 313–327. https://doi.org/10.1016/j.jclepro.2018.08.257Monemi, R. N., Gelareh, S., Nagih, A., & Jones, D. (2021). Bi-objective load balancing multiple allocation hub location: a compromise programming approach. Annals of Operations Research, 296(1), 363–406.Morales-Chavez, M. M., Costa, Y., & Sarache, W. (2021). A three-objective stochastic location-inventory-routing model for agricultural waste-based biofuel supply chain. Computers \& Industrial Engineering, 162, 107759. https://doi.org/doi.org/10.1016/j.cie.2021.107759Morales-Chavez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116(May), 136–162. https://doi.org/10.1016/j.tre.2018.06.001Morales-Chavez, M. M., Sarache, W., Costa, Y., & Soto, J. (2020). Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. Journal of Cleaner Production, 123305. https://doi.org/10.1016/j.jclepro.2020.123305Moreno-Camacho, C. A., Montoya-Torres, J. R., Jaegler, A., & Gondran, N. (2019). Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. Journal of Cleaner Production, 231, 600–618. https://doi.org/10.1016/j.jclepro.2019.05.278Mottaghi, M., Bairamzadeh, S., & M.S., P. (2022). A taxonomic review and analysis on biomass supply chain design and planning: New trends, methodologies and applications. Industrial Crops and Products, 180. https://doi.org/10.1016/j.indcrop.2022.114747Nakhjirkan, S., Rafiei, F. M., & Kashan, A. H. (2019). Developing an integrated decision making model in supply chain under demand uncertainty using genetic algorithm and network data envelopment analysis. International Journal of Mathematics in Operational Research, 14(1), 53 – 81. https://doi.org/10.1504/IJMOR.2019.096979Nasr, N., Niaki, S. T. A., Hussenzadek Kashan, A., & Seifbarghy, M. (2021). An efficient solution method for an agri-fresh food supply chain: hybridization of Lagrangian relaxation and genetic algorithm. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13718-8Nematollahi, M., & Tajbakhsh, A. (2020). Past, present, and prospective themes of sustainable agricultural supply chains: A content analysis. Journal of Cleaner Production, 271. https://doi.org/10.1016/j.jclepro.2020.122201Ng, R. T. L., & Maravelias, C. T. (2016). Design of Cellulosic Ethanol Supply Chains with Regional Depots. Industrial and Engineering Chemistry Research, 55(12). https://doi.org/10.1021/acs.iecr.5b03677Nguyen, T. H., Granger, J., Pandya, D., & Paustian, K. (2019). High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries. Applied Energy, 238, 1484–1496. https://doi.org/10.1016/j.apenergy.2019.01.117O’Neill, E. G., & Maravelias, C. T. (2021). Towards integrated landscape design and biofuel supply chain optimization. Current Opinion in Chemical Engineering, 31, 1–7. https://doi.org/10.1016/j.coche.2020.100666OCDE, & FAO, F. and A. O. of U. N.-. (2017). Perspectivas Agrícolas OCDE-FAO. https://doi.org/10.1007/BF02915673ONU. (2018). Generación de residuos. https://www.unep.org/es/noticias-y-reportajes/comunicado-de-prensa/un-tercio-de-los-residuos-de-america-latina-y-el-caribeOrganizacion de las naciones Unidas - Medio Ambiente (ONU). (2018). Perspectiva de la Gestión de Residuos en América Latina y el Caribe Perspectiva de la Gestión de Residuos en América Latina y el Caribe.Pehlivan, C., Augusto, V., & Xie, X. (2014). Dynamic capacity planning and location of hierarchical service networks under service level constraints. IEEE Transactions on Automation Science and Engineering, 11(3), 863–880. https://doi.org/10.1109/TASE.2014.2309255Pourhejazy, P., Kwon, O. K., & Lim, H. (2019). Integrating Sustainability into the Optimization of Fuel Logistics Networks. KSCE Journal of Civil Engineering, 23(3), 1369 – 1383. https://doi.org/10.1007/s12205-019-1373-7Programa Mundial de Alimentos. (2020). Programa Mundial de Alimentos. https://www.un.org/sustainabledevelopment/es/hunger/Rabbani, M., Amirhossein Sadati, S., & Farrokhi-Asl, H. (2020). Incorporating location routing model and decision making techniques in industrial waste management: Application in the automotive industry. Computers and Industrial Engineering, 148. https://doi.org/10.1016/j.cie.2020.106692Rabbani, M., Heidari, R., & Yazdanparast, R. (2019). A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. European Journal of Operational Research, 272(3), 945 – 961. https://doi.org/10.1016/j.ejor.2018.07.024Rahbari, M., Arshadi Khamseh, A., Sadati-Keneti, Y., & Jafari, M. J. (2022). A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization. Environment, Development and Sustainability, 24(2), 2804 – 2840. https://doi.org/10.1007/s10668-021-01555-1Ríos, P. (2018). Metodología de la Investigación: Un enfoque pedagógico. Editorial Cognitus CA.Rocha, M. V. P., de Matos, L. J. B. L., Lima, L. P. D., Figueiredo, P. M. D. S., Lucena, I. L., Fernandes, F. A. N., & Gonçalves, L. R. B. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresource Technology, 167, 343–348. https://doi.org/10.1016/j.biortech.2014.06.032Rodríguez Valencia, N., Zambrano Franco, A., Rodríguez, N., & Zambrano, D. (2010). Los subproductos del café: fuente de energía renovable. In Avances Técnicos Cenicafé (Colombia)(no. 393) 0120-0178 (Issue 3). https://doi.org/doi.org/ISSN-0120-0178Romero, C. (1993). Teoría de la decisión multicriterio: conceptos, técnicas y aplicaciones. (Issue 338 ROM).Romero, C., & Rehman, T. (2003). Multiple criteria analysis for agricultural decisions (Vol. 11). Elsevier.Saif-Eddine, A. S., El-Beheiry, M. M., & El-Kharbotly, A. K. (2019). An improved genetic algorithm for optimizing total supply chain cost in inventory location routing problem. Ain Shams Engineering Journal, 10(1), 63–76. https://doi.org/10.1016/j.asej.2018.09.002Sampieri, R., Fernández, C., & Baptista, P. (2010). METODOLOGÍA de la investigación (5th ed.). Mc Graw Hill.Sarache, W., & Morales-Chavez, M. M. (2016). Localización, transporte e inventarios: tres decisiones estructurales en el diseño de cadenas de abastecimiento (Editorial Universidad Nacional de Colombia (ed.)).Sarma, D., Das, A., & Bera, U. K. (2020). Uncertain demand estimation with optimization of time and cost using Facebook disaster map in emergency relief operation. Applied Soft Computing, 87, 105992. https://doi.org/10.1016/j.asoc.2019.105992Sasikumar, P., & Kannan, G. (2008a). Issues in reverse supply chains, part I: End-of-life product recovery and inventory management - an overview. International Journal of Sustainable Engineering, 1(3), 154–172. https://doi.org/10.1080/19397030802433860Sasikumar, P., & Kannan, G. (2008b). Issues in reverse supply chains, part II: Reverse distribution issues - an overview. International Journal of Sustainable Engineering, 1(4), 234–249. https://doi.org/10.1080/19397030802509974Schaffel, S. B., & La Rovere, E. L. (2010). The quest for eco-social efficiency in biofuels production in Brazil. Journal of Cleaner Production, 18(16–17), 1663–1670. https://doi.org/10.1016/j.jclepro.2010.06.031Serageldin, I., & Steer, A. (1994). Making development sustainable: from concepts to action. In Making development sustainable: from concepts to action. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041151110&partnerID=40&md5=e7bb7fe34d6c61fd78bf0acf58238f88Seuring, S, & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. Supply Chain Management, 17(5), 544–555. https://doi.org/10.1108/13598541211258609Seuring, Stefan, & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020Shanmugam, S., Hari, A., Kumar, D., Rajendran, K., Mathimani, T., Atabani, A. E., Brindhadevi, K., & Pugazhendhi, A. (2021). Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae. Fuel, 285. https://doi.org/10.1016/j.fuel.2020.119052Sharma, B., Ingalls, R. G., Jones, C. L., & Khanchi, A. (2013). Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renewable and Sustainable Energy Reviews, 24(0), 608–627. https://doi.org/http://dx.doi.org/10.1016/j.rser.2013.03.049Singh, A. R., Mishra, P. K., Jain, R., & Khurana, M. K. (2012). Design of global supply chain network with operational risks. International Journal of Advanced Manufacturing Technology, 60(1–4), 273–290. https://doi.org/10.1007/s00170-011-3615-9Tavakkoli-Moghaddam, R., & Raziei, Z. (2016). A New Bi-Objective Location-Routing-Inventory Problem with Fuzzy Demands. IFAC-PapersOnLine, 49(12), 1116–1121. https://doi.org/10.1016/J.IFACOL.2016.07.646Tavana, M., Abtahi, A.-R., Di Caprio, D., Hashemi, R., & Yousefi-Zenouz, R. (2018). An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations. Socio-Economic Planning Sciences, 64, 21 – 37. https://doi.org/10.1016/j.seps.2017.12.004Tavana, M., Tohidi, H., Alimohammadi, M., & Lesansalmasi, R. (2021). A location-inventory-routing model for green supply chains with low-carbon emissions under uncertainty. Environmental Science and Pollution Research, 28(36), 50636 – 50648. https://doi.org/10.1007/s11356-021-13815-8Triana, C. F., Quintero, J. A., Agudelo, R. A., Cardona, C. A., & Higuita, J. C. (2011). Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production. Energy, 36(7), 4182–4190. https://doi.org/10.1016/j.energy.2011.04.025Valderrama, C. V., Santiba\vnez-González, E., Pimentel, B., Candia-Véjar, A., & Canales-Bustos, L. (2020). Designing an environmental supply chain network in the mining industry to reduce carbon emissions. Journal of Cleaner Production, 119688.Van Engeland, J., Beliën, J., De Boeck, L., & De Jaeger, S. (2020). Literature review: Strategic network optimization models in waste reverse supply chains. Omega (United Kingdom), 91. https://doi.org/10.1016/j.omega.2018.12.001Waltho, C., Elhedhli, S., & Gzara, F. (2019). Green supply chain network design: A review focused on policy adoption and emission quantification. International Journal of Production Economics, 208, 305–318. https://doi.org/10.1016/j.ijpe.2018.12.003Williams, P. R. D., Inman, D., Aden, A., & Heath, G. A. (2009). Environmental and sustainability factors associated with next-generation biofuels in the U.S.: What do we really know? Environmental Science and Technology, 43(13), 4763–4775. https://doi.org/10.1021/es900250dWu, W., Zhou, W., Lin, Y., Xie, Y., & Jin, W. (2021). A hybrid metaheuristic algorithm for location inventory routing problem with time windows and fuel consumption. Expert Systems with Applications, 166. https://doi.org/10.1016/j.eswa.2020.114034Yaghoubi, A., & Akrami, F. (2019). Proposing a new model for location - routing problem of perishable raw material suppliers with using meta-heuristic algorithms. Heliyon, 5(12), e03020. https://doi.org/10.1016/j.heliyon.2019.e03020Yao, X., & Askin, R. (2019). Review of supply chain configuration and design decision-making for new product. International Journal of Production Research, 57(7), 2226–2246. https://doi.org/10.1080/00207543.2019.1567954Yuchi, Q., Wang, N., He, Z., & Chen, H. (2021). Hybrid heuristic for the location-inventory-routing problem in closed-loop supply chain. International Transactions in Operational Research, 28(3), 1265 – 1295. https://doi.org/10.1111/itor.12621Zandkarimkhani, S., Mina, H., Biuki, M., & Govindan, K. (2020). A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Annals of Operations Research, 295(1), 425 – 452. https://doi.org/10.1007/s10479-020-03677-7Zeleny, M. (1973). Compromise programming, multiple criteria decision-making. Multiple Criteria Decision Making. University of South Carolina Press, Columbia, 263–301.Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182–214. https://doi.org/10.1016/j.tre.2016.02.011Zhang, Y., Qi, M., Miao, L., & Liu, E. (2014). Hybrid metaheuristic solutions to inventory location routing problem. Transportation Research Part E: Logistics and Transportation Review, 70(1), 305–323. https://doi.org/10.1016/j.tre.2014.07.010Zhao, J., & Ke, G. Y. (2017). Incorporating inventory risks in location-routing models for explosive waste management. International Journal of Production Economics, 193, 123–136. https://doi.org/10.1016/j.ijpe.2017.07.001Zhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000 e 2019. Journal of Cleaner Production, 256, 120404. https://doi.org/10.1016/j.jclepro.2020.120404Zheng, X., Yin, M., & Zhang, Y. (2019). Integrated optimization of location, inventory and routing in supply chain network design. Transportation Research Part B: Methodological, 121, 1–20. https://doi.org/10.1016/j.trb.2019.01.003AdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84077/4/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD54ORIGINAL42153083.2023.pdf42153083.2023.pdfTesis de Doctorado en Ingeniería - Industria y Organizacionesapplication/pdf7026285https://repositorio.unal.edu.co/bitstream/unal/84077/2/42153083.2023.pdf079c9c6cd8da6ffe485d5790272dc2cdMD52Anexos.pdfAnexos.pdfAnexosapplication/pdf1983265https://repositorio.unal.edu.co/bitstream/unal/84077/3/Anexos.pdf55491791be8afdecf2685c056c160a1dMD53THUMBNAIL42153083.2023.pdf.jpg42153083.2023.pdf.jpgGenerated Thumbnailimage/jpeg5587https://repositorio.unal.edu.co/bitstream/unal/84077/5/42153083.2023.pdf.jpg53a2c11b321f7eb3342073b5637411a6MD55Anexos.pdf.jpgAnexos.pdf.jpgGenerated Thumbnailimage/jpeg2498https://repositorio.unal.edu.co/bitstream/unal/84077/6/Anexos.pdf.jpg15c1326c513e609b9d2bdc71de61e81bMD56unal/84077oai:repositorio.unal.edu.co:unal/840772023-08-10 23:03:52.55Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |