Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries
gráficas, tablas
- Autores:
-
Poveda Giraldo, Jhonny Alejandro
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85023
- Palabra clave:
- 660 - Ingeniería química::664 - Tecnología de alimentos
Sequential pretreatment
Efficacy
Platform products
Techno-economic assessment
Life cycle analysis
Social analysis
Sustainability
Pretratamientos secuenciales
Eficacia
Productos plataforma
Evaluación tecno-económica
Análisis de ciclo de vida
Análisis social
Sostenibilidad
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_8d3f4c72671aa389aa9826086fb1950d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85023 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
dc.title.translated.spa.fl_str_mv |
Pretratamientos de etapa simple y secuencial para biorrefinerías lignocelulósicas sostenibles |
title |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
spellingShingle |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries 660 - Ingeniería química::664 - Tecnología de alimentos Sequential pretreatment Efficacy Platform products Techno-economic assessment Life cycle analysis Social analysis Sustainability Pretratamientos secuenciales Eficacia Productos plataforma Evaluación tecno-económica Análisis de ciclo de vida Análisis social Sostenibilidad |
title_short |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
title_full |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
title_fullStr |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
title_full_unstemmed |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
title_sort |
Single-step and sequential pretreatments for sustainable lignocellulosic biorefineries |
dc.creator.fl_str_mv |
Poveda Giraldo, Jhonny Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Cardona Alzate, Carlos Ariel |
dc.contributor.author.none.fl_str_mv |
Poveda Giraldo, Jhonny Alejandro |
dc.contributor.researchgroup.spa.fl_str_mv |
Procesos Químicos Cataliticos y Biotecnológicos |
dc.contributor.orcid.spa.fl_str_mv |
Poveda Giraldo, Jhonny Alejandro [0000000271811156] |
dc.contributor.scopus.spa.fl_str_mv |
Poveda Giraldo, Jhonny Alejandro [57214072021] |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::664 - Tecnología de alimentos |
topic |
660 - Ingeniería química::664 - Tecnología de alimentos Sequential pretreatment Efficacy Platform products Techno-economic assessment Life cycle analysis Social analysis Sustainability Pretratamientos secuenciales Eficacia Productos plataforma Evaluación tecno-económica Análisis de ciclo de vida Análisis social Sostenibilidad |
dc.subject.proposal.eng.fl_str_mv |
Sequential pretreatment Efficacy Platform products Techno-economic assessment Life cycle analysis Social analysis Sustainability |
dc.subject.proposal.spa.fl_str_mv |
Pretratamientos secuenciales Eficacia Productos plataforma Evaluación tecno-económica Análisis de ciclo de vida Análisis social Sostenibilidad |
description |
gráficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-30T02:54:53Z |
dc.date.available.none.fl_str_mv |
2023-11-30T02:54:53Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85023 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85023 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
K. Kokkinos, V. Karayannis, and K. Moustakas, “Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment,” Science of the Total Environment, vol. 721, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137754. J. Moncada, V. Aristizábal, and C. A. Cardona, “Design strategies for sustainable biorefineries,” Biochem Eng J, vol. 116, pp. 122–134, 2016. C. A. Bollino and P. Polinori, “Sustainability,” in Energy, Sustainability and the Environment: Technology, Incentives, Behavior, Elsevier, 2011, pp. 137–164. doi: 10.1016/B978-0-12-385136-9.10006-3. U. Berardi, “Sustainability assessments of buildings, communities, and cities,” in Assessing and Measuring Environmental Impact and Sustainability, Elsevier Inc., 2015, pp. 497–545. doi: 10.1016/B978-0-12-799968-5.00015-4. J. A. Poveda-Giraldo, S. Piedrahita-Rodríguez, N. Salgado Aristizabal, M. Salas-Moreno, and C. A. Cardona Alzate, “Prefeasibility analysis of small-scale biorefineries: the annatto and açai case to improve the incomes of rural communities,” Biomass Convers Biorefin, Nov. 2022, doi: 10.1007/s13399-022-03479-w. J. A. Poveda-Giraldo and C. A. Cardona, “Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas,” Canadian Journal of Forest Research, vol. 51, no. 1, pp. 89–100, 2021, doi: 10.1139/cjfr-2020-0201. N. Phonphuak and P. Chindaprasirt, “Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks,” in Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, Elsevier Inc., 2015, pp. 103–127. doi: 10.1016/B978-1-78242-305-8.00006-1 J. A. Poveda-Giraldo, M. C. Garcia-Vallejo, and C. A. Cardona Alzate, “Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design,” Molecules, vol. 28, no. 3, p. 1278, Jan. 2023, doi: 10.3390/molecules28031278. M. Galbe and O. Wallberg, “Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials,” Biotechnology for Biofuels, vol. 12, no. 1. BioMed Central Ltd., Dec. 23, 2019. doi: 10.1186/s13068-019-1634-1. I. Romero, J. C. López-Linares, Y. Delgado, C. Cara, and E. Castro, “Ethanol production from rape straw by a two-stage pretreatment under mild conditions,” Bioprocess Biosyst Eng, vol. 38, no. 8, pp. 1469–1478, Mar. 2015, doi: 10.1007/s00449-015-1389-4 E. Z. Hoşgün, S. Biran Ay, and B. Bozan, “Effect of sequential pretreatment combinations on the composition and enzymatic hydrolysis of hazelnut shells,” Prep Biochem Biotechnol, vol. 0, no. 0, pp. 1–10, 2020, doi: 10.1080/10826068.2020.1836657. C. Zhang, F. Pang, B. Li, S. Xue, and Y. Kang, “Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks,” Bioresour Technol, vol. 138, pp. 314–320, 2013, doi: 10.1016/j.biortech.2013.03.091. T. L. K. Yong and M. Yukihiko, “Kinetic analysis of guaiacol conversion in sub- and supercritical water,” Ind Eng Chem Res, vol. 52, no. 26, pp. 9048–9059, 2013, doi: 10.1021/ie4009748. T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” Springfield, USA, 2004. [Online]. Available: http://www.osti.gov/bridge O. Ajao, M. Marinova, O. Savadogo, and J. Paris, “Hemicellulose based integrated forest biorefineries: Implementation strategies,” Industrial Crops and Products, vol. 126. Elsevier B.V., pp. 250–260, Dec. 15, 2018. doi: 10.1016/j.indcrop.2018.10.025. J. A. Poveda-Giraldo and C. A. Cardona Alzate, “A biorefinery for the valorization of marigold (Calendula officinalis) residues to produce biogas and phenolic compounds,” Food and Bioproducts Processing, vol. 125, pp. 91–104, 2021, doi: 10.1016/j.fbp.2020.10.015. R. Ukawa-Sato, N. Hirano, and C. Fushimi, “Design and techno–economic analysis of levulinic acid production process from biomass by using co-product formic acid as a catalyst with minimal waste generation,” Chemical Engineering Research and Design, vol. 192, pp. 389–401, Apr. 2023, doi: 10.1016/j.cherd.2023.02.046. M. Munagala, Y. Shastri, K. Nalawade, K. Konde, and S. Patil, “Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid,” Waste Management, vol. 126, pp. 52–64, May 2021, doi: 10.1016/j.wasman.2021.02.052. V. Aristizábal-Marulanda, J. C. Solarte-Toro, and C. A. Cardona Alzate, “Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia,” Bioresour Technol Rep, vol. 9, Feb. 2020, doi: 10.1016/j.biteb.2020.100397. J. A. Poveda-Giraldo and C. A. Cardona Alzate, “Valorization of Lignocellulosic Platform Products Based on Biorefinery Schemes Through Sequential Pretreatments,” Manuscript submitted for publication. R. Alén, “Pulp Mills and Wood-Based Biorefineries,” in Industrial Biorefineries and White Biotechnology, Elsevier, 2015, pp. 91–126. doi: 10.1016/B978-0-444-63453-5.00003-3. W. A. Orjuela Garzón, M. A. Reyes Parga, and J. J. Méndez Arteaga, Agenda Prospectiva de Investigación y Desarrollo Tecnológico para la Cadena Productiva de Arroz en el Departamento del Tolima, First ed. Ibagué, Colombia: Universidad del Tolima, 2020. R. J. Wooley and V. Putsche, “Development of an ASPEN PLUS Physical Property Database for Biofuels Components - NREL/MP-425-20685,” Golden, Colorado, 1996. A. Darmawan, M. W. Ajiwibowo, M. Aziz, and K. Tokimatsu, “Efficient black liquor conversion to power and H2 based on process integration and exergy recovery,” in Energy Procedia, Elsevier Ltd, 2018, pp. 1272–1277. doi: 10.1016/j.egypro.2018.09.181. V. Aristizábal-Marulanda and C. A. Cardona A., “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, Jan. 2021, doi: 10.1016/j.ces.2020.116047. V. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057. E. D. Gomes, M. I. Mota, and A. E. Rodrigues, “Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin,” Sep Purif Technol, vol. 194, no. October 2017, pp. 256–264, 2018, doi: 10.1016/j.seppur.2017.11.050. M. I. F. Mota et al., “Adsorption of vanillic and syringic acids onto a macroporous polymeric resin and recovery with ethanol:water (90:10 %V/V) solution,” Sep Purif Technol, vol. 217, pp. 108–117, Jun. 2019, doi: 10.1016/j.seppur.2019.02.008. V. E. Tarabanko, Y. V. Chelbina, A. V. Kudryashev, and N. V. Tarabanko, “Separation of Vanillin and Syringaldehyde Produced from Lignins,” Separation Science and Technology (Philadelphia), vol. 48, no. 1, pp. 127–132, Jan. 2013, doi: 10.1080/01496395.2012.673671. C. A. Cardona Alzate, J. C. Solarte Toro, and Á. G. Peña, “Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries,” Catal Today, vol. 302, no. August 2017, pp. 61–72, 2018, doi: 10.1016/j.cattod.2017.09.034 B. D. Mullen, D. J. Yontz, and C. M. Leibig, “Process to Prepare Levulinic Acid,” US Patent 9,073,841 B2, 2015 L. A. Alonso-Gómez, J. C. Solarte-Toro, L. A. Bello-Pérez, and C. A. Cardona-Alzate, “Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material,” Food and Bioproducts Processing, vol. 121, pp. 29–42, May 2020, doi: 10.1016/J.FBP.2020.01.005. J. C. Solarte-Toro, C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion,” Bioresour Technol Rep, vol. 15, Sep. 2021, doi: 10.1016/j.biteb.2021.100776. M. Peters, K. Timmerhaus, and R. West, Plant Design and Economics for Chemical Engineers, Fifth Ed. New York: McGraw-Hill, 2003. J. Sadhukhan, K. S. Ng, and E. Martinez-Hernandez, “Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis,” Bioresour Technol, vol. 215, pp. 131–143, Sep. 2016, doi: 10.1016/j.biortech.2016.04.030. M. Pérez-Fortes and E. Tzimas, “Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid,” Luxembourg, 2016. doi: 10.2790/981669. V. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057. C. A. García-Velásquez and C. A. Cardona, “Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment,” Energy, vol. 172, pp. 232–242, 2019, doi: 10.1016/j.energy.2019.01.073. C. A. de Dios, Secado de Granos y Secadoras. Santiago, Chile: Food and Agriculture Organization, 1996. H. J. Martínez Covaleda, Observatorio Agrocadenas: Anuario 2005. Agroindustria y Competitividad. Estructura y Dinámica en Colombia 1992-2005. Bogotá DC, Colombia: Ministerio de Agricultura y Desarrollo Rural, 2006. S. T. Asah and N. Baral, “Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications,” Appl Energy, vol. 232, pp. 462–472, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.199. Food and Agriculture organization of the Uniter Nations, “AQUASTAT,” FAO. Accessed: Nov. 16, 2022. [Online]. Available: https://tableau.apps.fao.org/views/ReviewDashboard-v1/country_dashboard?%3Aembed=y&%3AisGuestRedirectFromVizportal=y P. E. Bustamante Ortega, R. E. García Molano, O. Maya Sánchez, J. F. Rodríguez López, and T. Aguilar Londoño, “Minería de Carbón en Colombia. Transformando el Futuro de la Industria,” Bogotá DC, Colombia, 2021. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), “Inventario Nacional y Departamental de Gases Efecto Invernadero - Colombia. Tercera Comunicación Nacional de Cambio Climático,” IDEAM, Bogotá DC, Colombia, 2016. G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind Eng Chem Res, vol. 51, no. 5, pp. 2309–2328, Feb. 2012, doi: 10.1021/ie102116e. S. Serna-loaiza, E. Carmona-garcia, and C. A. Cardona, “Potential raw materials for biorefineries to ensure food security: The Cocoyam case,” Ind Crops Prod, vol. 126, no. April, pp. 92–102, 2018, doi: 10.1016/j.indcrop.2018.10.005. M. Tobiszewski, M. Marć, A. Gałuszka, and J. Namies̈nik, “Green chemistry metrics with special reference to green analytical chemistry,” Molecules, vol. 20, no. 6. MDPI AG, pp. 10928–10946, Jun. 01, 2015. doi: 10.3390/molecules200610928. L. Zhang, J. Ruiz-Menjivar, Q. Tong, J. Zhang, and M. Yue, “Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach,” J Environ Manage, vol. 300, Dec. 2021, doi: 10.1016/j.jenvman.2021.113698. G. Pratibha et al., “Identification of environment friendly tillage implement as a strategy for energy efficiency and mitigation of climate change in semiarid rainfed agro ecosystems,” J Clean Prod, vol. 214, pp. 524–535, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.251. G. W. Kim, M. A. Alam, J. J. Lee, G. Y. Kim, P. J. Kim, and M. I. Khan, “Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season,” Eur J Soil Biol, vol. 83, pp. 76–83, Nov. 2017, doi: 10.1016/j.ejsobi.2017.10.005. D. G. C. Pereira, I. A. Santana, M. M. Megda, and M. X. V. Megda, “Potassium chloride: Impacts on soil microbial activity and nitrogen mineralization,” Ciencia Rural, vol. 49, no. 5, 2019, doi: 10.1590/0103-8478cr20180556. J. Wang, Z. Cui, Y. Li, L. Cao, and Z. Lu, “Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods,” J Clean Prod, vol. 249, Mar. 2020, doi: 10.1016/j.jclepro.2019.119315. M. Mallareddy et al., “Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies,” Water (Switzerland), vol. 15, no. 10. MDPI, May 01, 2023. doi: 10.3390/w15101802. U. Surendran, P. Raja, M. Jayakumar, and S. R. Subramoniam, “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review,” J Clean Prod, vol. 309, Aug. 2021, doi: 10.1016/j.jclepro.2021.127272 S. Brodt et al., “Life cycle greenhouse gas emissions in California rice production,” Field Crops Res, vol. 169, pp. 89–98, Dec. 2014, doi: 10.1016/j.fcr.2014.09.007. H. J. Andrade, O. Campo, and M. Segura, “Carbon footprint of the rice (Oryza sativa) production system in the municipality of Campoalegre, Huila, Colombia,” Ciencia y Tecnología Agropecuaria, vol. 15, no. 1, pp. 25–31, 2014, doi: 10.21930/rcta.vol15_num1_art:394. V. Aristizábal-Marulanda, J. A. Poveda-Giraldo, and C. A. Cardona Alzate, “Comparison of furfural and biogas production using pentoses as platform,” Science of the Total Environment, vol. 728, p. 138841, 2020, doi: 10.1016/j.scitotenv.2020.138841. M. Steen, “Greenhouse Gas Emissions From Fossil Fuel Fired Power Generation Systems,” 2019. [Online]. Available: http://www.jrc.nl N. Huotari, E. Tillman-Sutela, M. Moilanen, and R. Laiho, “Recycling of ash - For the good of the environment?,” Forest Ecology and Management, vol. 348. Elsevier B.V., pp. 226–240, Jul. 05, 2015. doi: 10.1016/j.foreco.2015.03.008. D. Misra, W. Dutta, G. Jha, and P. Ray, “Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus,” Agronomy, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/agronomy13020280. L. Thannimalay, S. Yusoff, and N. Z. Zawawi, “Life Cycle Assessment of Sodium Hydroxide,” Aust J Basic Appl Sci, vol. 7, no. 2, pp. 421–431, 2013. R. Duarte-Davidson, C. Courage, and L. Rushton, “Benzene in the environment: an assessment of the potential risks to the health of the population,” Occup Environ Med, vol. 58, pp. 2–13, 2001. K. Maister, C. di Noi, A. Ciroth, and M. Srocka, “PSILCA database v.3 documentation,” Berlin, 2020. S. Serna-Loaiza, A. Martínez, Y. Pisarenko, and C. A. Cardona-Alzate, “Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale,” Environmental Science and Pollution Research, vol. 25, no. 36, pp. 35949–35959, 2018, doi: 10.1007/s11356-018-2313-7. Ecopetrol, “Resultados Segundo Trimestre 2019. Resultados Sostenidos a Pesar del Entorno,” Bogotá DC, Colombia, 2020. Esenttia, “Esenttia Sostenible. Informe de Sostenibilidad 2014,” Cartegena, Colombia, 2015. H. Huang et al., “Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: A review,” Particuology, vol. 77, pp. 79–90, Jun. 2023, doi: 10.1016/j.partic.2022.08.016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxvi, 261 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85023/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85023/2/1151957996.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85023/3/1151957996.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 47e75c5e914a136a5e4b3fc6947fd9d5 8e79d23948a042cc3f9e3d3002e9d3e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089624045223936 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Alzate, Carlos Ariel7ba5eaa612910e30e5cc7620a5c0ff5fPoveda Giraldo, Jhonny Alejandrof4f8e570a4f6d417da4fa617df0ed7de600Procesos Químicos Cataliticos y BiotecnológicosPoveda Giraldo, Jhonny Alejandro [0000000271811156]Poveda Giraldo, Jhonny Alejandro [57214072021]2023-11-30T02:54:53Z2023-11-30T02:54:53Z2023https://repositorio.unal.edu.co/handle/unal/85023Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficas, tablasPretreatments have been considered the first step in designing biorefineries since they facilitate biomass fractionation to produce platform products, affecting further reaction and downstream stages. However, many studies report the use and enhancement of single-step pretreatments for valorizing a specific sub-stream, hindering integral biomass valorization. Therefore, sequential pretreatments seem to be an alternative to selective biomass component fractionation for future integral valorization. This thesis focuses on analyzing the performance of sequential pretreatments in the sustainability of biorefineries through experimental and simulation approaches. After a preliminary heuristic analysis of both single-step and sequential pretreatments, different proposed sequential combinations that best-isolated cellulose, hemicellulose, and lignin platforms were experimentally evaluated. It was determined that the dilute acid - wet air oxidation (DA-WAO) combination hydrolyzed 79% of hemicellulose during the first stage and 89% of lignin in the second stage, obtaining a pretreated solid with a cellulose recovery higher than 96%. All the platforms had an accessibility of more than 80%. The cellulose, hemicellulose, and lignin-based platform products were valorized to obtain value-added products such as levulinic acid, furfural, and phenolic compounds, respectively. As a main result, it was obtained that sequential pretreatments substantially increased the conversions compared to single-step schemes and raw feedstock, obtaining yields of 60.8% for the production of furfural and 30.3% for the acid reaction of levulinic acid production. In contrast, there was a slight reduction in vanillin and syringaldehyde production yield when performing a sequential scheme compared to the single-step. The experimental results were used to simulate and assess the sustainability of biorefineries coupled to the rice value chain. Sustainability was assessed through technical, environmental, economic, and social pillars. The main result was that biorefinery schemes increase technical indicators but increase waste generation. Likewise, economic feasibility was only observed when the three lignocellulosic fractions were valorized in a biorefinery scheme when the production of phenolic compounds was involved. From the environmental perspective, it was determined that the carbon footprint of the rice value chain was 2.17 kg CO2 / kg of rice husks, where fertilizers are the major contributors, while in the processing stage, steam had the greatest influence on the environmental impact. It was also observed that biorefinery schemes based on sequential technology increase employment generation; however, industrial water consumption represents a major social risk. All dimensions were coupled to evaluate the sustainability index, where it was concluded that sequential pretreatment schemes always increase sustainability compared to single-step pretreatment schemes (Texto tomado de la fuente)Los pretratamientos se han catalogado como el primer eslabón en el diseño de biorrefinerías ya que facilita el fraccionamiento de la biomasa para la producción de productos plataforma, afectando futuramente las etapas de reacción y aguas abajo. Sin embargo, muchos estudios relatan el uso y mejoramiento de pretratamientos de etapa simple para la valorización de una subcorriente, impidiendo la valorización integral de la biomasa. Por lo tanto, los pretratamientos secuenciales se ven como una alternativa para el fraccionamiento selectivo de los componentes de la biomasa para futuras valorizaciones integrales. Este trabajo se centra en analizar el desempeño de los pretratamientos secuenciales en la sostenibilidad de biorrefinerías a través de trabajo experimental y simulación. Posterior a un análisis heurístico preliminar de pretratamientos tanto de etapa simple como secuencial, se evaluó experimentalmente diferentes propuestas de combinaciones secuenciales que mejor aislaran productos plataforma de celulosa, hemicelulosa y lignina. Se determinó que la combinación acido diluido – oxidación por aire húmedo (DA-WAO) hidroliza el 79% de hemicelulosa durante la primera etapa y el 89% de lignina en la segunda etapa, obteniendo un solido pretratado con una recuperación de celulosa superior al 96%. Todas las plataformas tuvieron una accesibilidad superior al 80%. Los productos plataforma a base de celulosa, hemicelulosa y lignina fueron valorizados para la obtención de productos de valor agregado como el ácido levulínico, furfural y compuestos fenólicos, respectivamente. Como resultado principal, se obtuvo que los pretratamientos secuenciales aumentaron sustancialmente las conversiones en comparación a esquemas de etapa simple y a materia prima cruda, obteniendo rendimientos de 60.8% para la producción de furfural y 30.3% para la reacción acida de producción de ácido levulínico. En contraste, hubo una pequeña reducción en el rendimiento de producción de vainillina y siringaldehído al efectuar un esquema secuencial en comparación al simple. Los resultados experimentales fueron usados para la simulación y evaluación de la sostenibilidad de biorefinerias acoplado a la cadena de valor del arroz. La sostenibilidad fue evaluada a través de cuatro pilares: técnico, ambiental, económico y social. Como resultado principal se obtuvo que los esquemas de biorefineria aumentan indicadores técnicos pero aumentan la generación de residuos. Asimismo, únicamente se observó viabilidad económica cuando se valorizan las tres fracciones lignocelulósicas en un esquema de biorefinerias cuando se involucra la producción de comúestos fenólicos. Desde la perspectiva ambiental, se determinó que la huella de carbono de la cadena de valor del arroz fue de 2.17 kg CO2 / kg de cascarillad de arroz, donde los fertilizantes son los mayores contribuyentes, mientras que en la etapa de procesamiento el vapor fue quien mas influyó en el impacto ambiental. Asimismo, se observó que los esquemas de biorefineria basado en tecnología secuencial aumenta la generación de empleo; sin embargo, el consumo de agua industrial representa un gran riesgo social. Todos las dimensiones fueron acopladas para evaluar el índice de sostenibilidad, donde se concluyó que los esquemas a base de pretratamiento secuencial siempre aumentan la sostebilidad en comparación a los esquemas de pretratamiento de etapa simple"Sistema de Información de la Investigación, Extensión y Laboratorios - HERMES." Movilidad 12792 de la Universidad Nacional de ColombiaProyecto de investigación "Impulsando el desarrollo de biosurfactantes a través de su ciclo de vida sistemático." Número de contrato (MINCIENCIAS): 80740-903-2020Programa “Reconstrucción del tejido social en zonas posconflicto en Colombia” código SIGP 57579 con el proyecto titulado "Competencias empresariales y de innovación para el desarrollo económico y la inclusión productiva de las regiones afectadas por el conflicto colombiano” código SIGP 58907. Número de contrato (MINCIENCIAS): FP44842-213-2018DoctoradoDoctorado en Ingeniería - Ingeniería QuímicaBiotechnological Process EngineeringQuímica Y Procesos.Sede Manizalesxxvi, 261 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales660 - Ingeniería química::664 - Tecnología de alimentosSequential pretreatmentEfficacyPlatform productsTechno-economic assessmentLife cycle analysisSocial analysisSustainabilityPretratamientos secuencialesEficaciaProductos plataformaEvaluación tecno-económicaAnálisis de ciclo de vidaAnálisis socialSostenibilidadSingle-step and sequential pretreatments for sustainable lignocellulosic biorefineriesPretratamientos de etapa simple y secuencial para biorrefinerías lignocelulósicas sosteniblesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextK. Kokkinos, V. Karayannis, and K. Moustakas, “Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment,” Science of the Total Environment, vol. 721, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137754.J. Moncada, V. Aristizábal, and C. A. Cardona, “Design strategies for sustainable biorefineries,” Biochem Eng J, vol. 116, pp. 122–134, 2016.C. A. Bollino and P. Polinori, “Sustainability,” in Energy, Sustainability and the Environment: Technology, Incentives, Behavior, Elsevier, 2011, pp. 137–164. doi: 10.1016/B978-0-12-385136-9.10006-3.U. Berardi, “Sustainability assessments of buildings, communities, and cities,” in Assessing and Measuring Environmental Impact and Sustainability, Elsevier Inc., 2015, pp. 497–545. doi: 10.1016/B978-0-12-799968-5.00015-4.J. A. Poveda-Giraldo, S. Piedrahita-Rodríguez, N. Salgado Aristizabal, M. Salas-Moreno, and C. A. Cardona Alzate, “Prefeasibility analysis of small-scale biorefineries: the annatto and açai case to improve the incomes of rural communities,” Biomass Convers Biorefin, Nov. 2022, doi: 10.1007/s13399-022-03479-w.J. A. Poveda-Giraldo and C. A. Cardona, “Biorefinery potential of Eucalyptus grandis to produce phenolic compounds and biogas,” Canadian Journal of Forest Research, vol. 51, no. 1, pp. 89–100, 2021, doi: 10.1139/cjfr-2020-0201.N. Phonphuak and P. Chindaprasirt, “Types of waste, properties, and durability of pore-forming waste-based fired masonry bricks,” in Eco-efficient Masonry Bricks and Blocks: Design, Properties and Durability, Elsevier Inc., 2015, pp. 103–127. doi: 10.1016/B978-1-78242-305-8.00006-1J. A. Poveda-Giraldo, M. C. Garcia-Vallejo, and C. A. Cardona Alzate, “Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design,” Molecules, vol. 28, no. 3, p. 1278, Jan. 2023, doi: 10.3390/molecules28031278.M. Galbe and O. Wallberg, “Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials,” Biotechnology for Biofuels, vol. 12, no. 1. BioMed Central Ltd., Dec. 23, 2019. doi: 10.1186/s13068-019-1634-1.I. Romero, J. C. López-Linares, Y. Delgado, C. Cara, and E. Castro, “Ethanol production from rape straw by a two-stage pretreatment under mild conditions,” Bioprocess Biosyst Eng, vol. 38, no. 8, pp. 1469–1478, Mar. 2015, doi: 10.1007/s00449-015-1389-4E. Z. Hoşgün, S. Biran Ay, and B. Bozan, “Effect of sequential pretreatment combinations on the composition and enzymatic hydrolysis of hazelnut shells,” Prep Biochem Biotechnol, vol. 0, no. 0, pp. 1–10, 2020, doi: 10.1080/10826068.2020.1836657.C. Zhang, F. Pang, B. Li, S. Xue, and Y. Kang, “Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks,” Bioresour Technol, vol. 138, pp. 314–320, 2013, doi: 10.1016/j.biortech.2013.03.091.T. L. K. Yong and M. Yukihiko, “Kinetic analysis of guaiacol conversion in sub- and supercritical water,” Ind Eng Chem Res, vol. 52, no. 26, pp. 9048–9059, 2013, doi: 10.1021/ie4009748.T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas,” Springfield, USA, 2004. [Online]. Available: http://www.osti.gov/bridgeO. Ajao, M. Marinova, O. Savadogo, and J. Paris, “Hemicellulose based integrated forest biorefineries: Implementation strategies,” Industrial Crops and Products, vol. 126. Elsevier B.V., pp. 250–260, Dec. 15, 2018. doi: 10.1016/j.indcrop.2018.10.025.J. A. Poveda-Giraldo and C. A. Cardona Alzate, “A biorefinery for the valorization of marigold (Calendula officinalis) residues to produce biogas and phenolic compounds,” Food and Bioproducts Processing, vol. 125, pp. 91–104, 2021, doi: 10.1016/j.fbp.2020.10.015.R. Ukawa-Sato, N. Hirano, and C. Fushimi, “Design and techno–economic analysis of levulinic acid production process from biomass by using co-product formic acid as a catalyst with minimal waste generation,” Chemical Engineering Research and Design, vol. 192, pp. 389–401, Apr. 2023, doi: 10.1016/j.cherd.2023.02.046.M. Munagala, Y. Shastri, K. Nalawade, K. Konde, and S. Patil, “Life cycle and economic assessment of sugarcane bagasse valorization to lactic acid,” Waste Management, vol. 126, pp. 52–64, May 2021, doi: 10.1016/j.wasman.2021.02.052.V. Aristizábal-Marulanda, J. C. Solarte-Toro, and C. A. Cardona Alzate, “Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia,” Bioresour Technol Rep, vol. 9, Feb. 2020, doi: 10.1016/j.biteb.2020.100397.J. A. Poveda-Giraldo and C. A. Cardona Alzate, “Valorization of Lignocellulosic Platform Products Based on Biorefinery Schemes Through Sequential Pretreatments,” Manuscript submitted for publication.R. Alén, “Pulp Mills and Wood-Based Biorefineries,” in Industrial Biorefineries and White Biotechnology, Elsevier, 2015, pp. 91–126. doi: 10.1016/B978-0-444-63453-5.00003-3.W. A. Orjuela Garzón, M. A. Reyes Parga, and J. J. Méndez Arteaga, Agenda Prospectiva de Investigación y Desarrollo Tecnológico para la Cadena Productiva de Arroz en el Departamento del Tolima, First ed. Ibagué, Colombia: Universidad del Tolima, 2020.R. J. Wooley and V. Putsche, “Development of an ASPEN PLUS Physical Property Database for Biofuels Components - NREL/MP-425-20685,” Golden, Colorado, 1996.A. Darmawan, M. W. Ajiwibowo, M. Aziz, and K. Tokimatsu, “Efficient black liquor conversion to power and H2 based on process integration and exergy recovery,” in Energy Procedia, Elsevier Ltd, 2018, pp. 1272–1277. doi: 10.1016/j.egypro.2018.09.181.V. Aristizábal-Marulanda and C. A. Cardona A., “Experimental production of ethanol, electricity, and furfural under the biorefinery concept,” Chem Eng Sci, vol. 229, Jan. 2021, doi: 10.1016/j.ces.2020.116047.V. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057.E. D. Gomes, M. I. Mota, and A. E. Rodrigues, “Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin,” Sep Purif Technol, vol. 194, no. October 2017, pp. 256–264, 2018, doi: 10.1016/j.seppur.2017.11.050.M. I. F. Mota et al., “Adsorption of vanillic and syringic acids onto a macroporous polymeric resin and recovery with ethanol:water (90:10 %V/V) solution,” Sep Purif Technol, vol. 217, pp. 108–117, Jun. 2019, doi: 10.1016/j.seppur.2019.02.008.V. E. Tarabanko, Y. V. Chelbina, A. V. Kudryashev, and N. V. Tarabanko, “Separation of Vanillin and Syringaldehyde Produced from Lignins,” Separation Science and Technology (Philadelphia), vol. 48, no. 1, pp. 127–132, Jan. 2013, doi: 10.1080/01496395.2012.673671.C. A. Cardona Alzate, J. C. Solarte Toro, and Á. G. Peña, “Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries,” Catal Today, vol. 302, no. August 2017, pp. 61–72, 2018, doi: 10.1016/j.cattod.2017.09.034B. D. Mullen, D. J. Yontz, and C. M. Leibig, “Process to Prepare Levulinic Acid,” US Patent 9,073,841 B2, 2015L. A. Alonso-Gómez, J. C. Solarte-Toro, L. A. Bello-Pérez, and C. A. Cardona-Alzate, “Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material,” Food and Bioproducts Processing, vol. 121, pp. 29–42, May 2020, doi: 10.1016/J.FBP.2020.01.005.J. C. Solarte-Toro, C. A. Rueda-Duran, M. Ortiz-Sanchez, and C. A. Cardona Alzate, “A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion,” Bioresour Technol Rep, vol. 15, Sep. 2021, doi: 10.1016/j.biteb.2021.100776.M. Peters, K. Timmerhaus, and R. West, Plant Design and Economics for Chemical Engineers, Fifth Ed. New York: McGraw-Hill, 2003.J. Sadhukhan, K. S. Ng, and E. Martinez-Hernandez, “Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis,” Bioresour Technol, vol. 215, pp. 131–143, Sep. 2016, doi: 10.1016/j.biortech.2016.04.030.M. Pérez-Fortes and E. Tzimas, “Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid,” Luxembourg, 2016. doi: 10.2790/981669.V. Aristizábal M., Á. Gómez P., and C. A. Cardona A., “Biorefineries based on coffee cut-stems and sugarcane bagasse: Furan-based compounds and alkanes as interesting products,” Bioresour Technol, vol. 196, pp. 480–489, 2015, doi: 10.1016/j.biortech.2015.07.057.C. A. García-Velásquez and C. A. Cardona, “Comparison of the biochemical and thermochemical routes for bioenergy production: A techno-economic (TEA), energetic and environmental assessment,” Energy, vol. 172, pp. 232–242, 2019, doi: 10.1016/j.energy.2019.01.073.C. A. de Dios, Secado de Granos y Secadoras. Santiago, Chile: Food and Agriculture Organization, 1996.H. J. Martínez Covaleda, Observatorio Agrocadenas: Anuario 2005. Agroindustria y Competitividad. Estructura y Dinámica en Colombia 1992-2005. Bogotá DC, Colombia: Ministerio de Agricultura y Desarrollo Rural, 2006.S. T. Asah and N. Baral, “Technicalizing non-technical participatory social impact assessment of prospective cellulosic biorefineries: Psychometric quantification and implications,” Appl Energy, vol. 232, pp. 462–472, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.199.Food and Agriculture organization of the Uniter Nations, “AQUASTAT,” FAO. Accessed: Nov. 16, 2022. [Online]. Available: https://tableau.apps.fao.org/views/ReviewDashboard-v1/country_dashboard?%3Aembed=y&%3AisGuestRedirectFromVizportal=yP. E. Bustamante Ortega, R. E. García Molano, O. Maya Sánchez, J. F. Rodríguez López, and T. Aguilar Londoño, “Minería de Carbón en Colombia. Transformando el Futuro de la Industria,” Bogotá DC, Colombia, 2021.Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), “Inventario Nacional y Departamental de Gases Efecto Invernadero - Colombia. Tercera Comunicación Nacional de Cambio Climático,” IDEAM, Bogotá DC, Colombia, 2016.G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind Eng Chem Res, vol. 51, no. 5, pp. 2309–2328, Feb. 2012, doi: 10.1021/ie102116e.S. Serna-loaiza, E. Carmona-garcia, and C. A. Cardona, “Potential raw materials for biorefineries to ensure food security: The Cocoyam case,” Ind Crops Prod, vol. 126, no. April, pp. 92–102, 2018, doi: 10.1016/j.indcrop.2018.10.005.M. Tobiszewski, M. Marć, A. Gałuszka, and J. Namies̈nik, “Green chemistry metrics with special reference to green analytical chemistry,” Molecules, vol. 20, no. 6. MDPI AG, pp. 10928–10946, Jun. 01, 2015. doi: 10.3390/molecules200610928.L. Zhang, J. Ruiz-Menjivar, Q. Tong, J. Zhang, and M. Yue, “Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach,” J Environ Manage, vol. 300, Dec. 2021, doi: 10.1016/j.jenvman.2021.113698.G. Pratibha et al., “Identification of environment friendly tillage implement as a strategy for energy efficiency and mitigation of climate change in semiarid rainfed agro ecosystems,” J Clean Prod, vol. 214, pp. 524–535, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.251.G. W. Kim, M. A. Alam, J. J. Lee, G. Y. Kim, P. J. Kim, and M. I. Khan, “Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season,” Eur J Soil Biol, vol. 83, pp. 76–83, Nov. 2017, doi: 10.1016/j.ejsobi.2017.10.005.D. G. C. Pereira, I. A. Santana, M. M. Megda, and M. X. V. Megda, “Potassium chloride: Impacts on soil microbial activity and nitrogen mineralization,” Ciencia Rural, vol. 49, no. 5, 2019, doi: 10.1590/0103-8478cr20180556.J. Wang, Z. Cui, Y. Li, L. Cao, and Z. Lu, “Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods,” J Clean Prod, vol. 249, Mar. 2020, doi: 10.1016/j.jclepro.2019.119315.M. Mallareddy et al., “Maximizing Water Use Efficiency in Rice Farming: A Comprehensive Review of Innovative Irrigation Management Technologies,” Water (Switzerland), vol. 15, no. 10. MDPI, May 01, 2023. doi: 10.3390/w15101802.U. Surendran, P. Raja, M. Jayakumar, and S. R. Subramoniam, “Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review,” J Clean Prod, vol. 309, Aug. 2021, doi: 10.1016/j.jclepro.2021.127272S. Brodt et al., “Life cycle greenhouse gas emissions in California rice production,” Field Crops Res, vol. 169, pp. 89–98, Dec. 2014, doi: 10.1016/j.fcr.2014.09.007.H. J. Andrade, O. Campo, and M. Segura, “Carbon footprint of the rice (Oryza sativa) production system in the municipality of Campoalegre, Huila, Colombia,” Ciencia y Tecnología Agropecuaria, vol. 15, no. 1, pp. 25–31, 2014, doi: 10.21930/rcta.vol15_num1_art:394.V. Aristizábal-Marulanda, J. A. Poveda-Giraldo, and C. A. Cardona Alzate, “Comparison of furfural and biogas production using pentoses as platform,” Science of the Total Environment, vol. 728, p. 138841, 2020, doi: 10.1016/j.scitotenv.2020.138841.M. Steen, “Greenhouse Gas Emissions From Fossil Fuel Fired Power Generation Systems,” 2019. [Online]. Available: http://www.jrc.nlN. Huotari, E. Tillman-Sutela, M. Moilanen, and R. Laiho, “Recycling of ash - For the good of the environment?,” Forest Ecology and Management, vol. 348. Elsevier B.V., pp. 226–240, Jul. 05, 2015. doi: 10.1016/j.foreco.2015.03.008.D. Misra, W. Dutta, G. Jha, and P. Ray, “Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus,” Agronomy, vol. 13, no. 2. MDPI, Feb. 01, 2023. doi: 10.3390/agronomy13020280.L. Thannimalay, S. Yusoff, and N. Z. Zawawi, “Life Cycle Assessment of Sodium Hydroxide,” Aust J Basic Appl Sci, vol. 7, no. 2, pp. 421–431, 2013.R. Duarte-Davidson, C. Courage, and L. Rushton, “Benzene in the environment: an assessment of the potential risks to the health of the population,” Occup Environ Med, vol. 58, pp. 2–13, 2001.K. Maister, C. di Noi, A. Ciroth, and M. Srocka, “PSILCA database v.3 documentation,” Berlin, 2020.S. Serna-Loaiza, A. Martínez, Y. Pisarenko, and C. A. Cardona-Alzate, “Integral use of plants and their residues: the case of cocoyam (Xanthosoma sagittifolium) conversion through biorefineries at small scale,” Environmental Science and Pollution Research, vol. 25, no. 36, pp. 35949–35959, 2018, doi: 10.1007/s11356-018-2313-7.Ecopetrol, “Resultados Segundo Trimestre 2019. Resultados Sostenidos a Pesar del Entorno,” Bogotá DC, Colombia, 2020.Esenttia, “Esenttia Sostenible. Informe de Sostenibilidad 2014,” Cartegena, Colombia, 2015.H. Huang et al., “Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: A review,” Particuology, vol. 77, pp. 79–90, Jun. 2023, doi: 10.1016/j.partic.2022.08.016.Ministerio de Ciencia, Tecnología e Innovación (MINCIENCIAS)Universidad Nacional de Colombia sede ManizalesBibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85023/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1151957996.2023.pdf1151957996.2023.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf3937451https://repositorio.unal.edu.co/bitstream/unal/85023/2/1151957996.2023.pdf47e75c5e914a136a5e4b3fc6947fd9d5MD52THUMBNAIL1151957996.2023.pdf.jpg1151957996.2023.pdf.jpgGenerated Thumbnailimage/jpeg4739https://repositorio.unal.edu.co/bitstream/unal/85023/3/1151957996.2023.pdf.jpg8e79d23948a042cc3f9e3d3002e9d3e4MD53unal/85023oai:repositorio.unal.edu.co:unal/850232024-08-19 23:11:29.354Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |