A note on involutions in Ore extensions

Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the cont...

Full description

Autores:
Arriagada, Waldo
Ramírez, Hugo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/61869
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/61869
http://bdigital.unal.edu.co/60681/
Palabra clave:
51 Matemáticas / Mathematics
Skew polynomials
involution
ring endomorphism
derivation
polinomios torcidos
involución, endomorfismo de anillos
derivación
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8cd969e7e32e14f412a5f28bdba2a072
oai_identifier_str oai:repositorio.unal.edu.co:unal/61869
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arriagada, Waldo844142a5-6653-449e-95f3-5ddb2ef45269300Ramírez, Hugo7b42e201-383d-4d86-a36b-9e5bb9ef166c3002019-07-02T20:46:42Z2019-07-02T20:46:42Z2017-01-01ISSN: 2357-6529https://repositorio.unal.edu.co/handle/unal/61869http://bdigital.unal.edu.co/60681/Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the context of uncoupling and solving systems of linear differential and difference equations in closed form. In this short note we let K denote a division ring, α: K $rarr; K a ring endomorphism and δ: K → K an α-derivation. We determine the involutions in the Ore extension K[x; α, δ].Los anillos de polinomios torcidos, o extensiones de Ore, forman una clase importante en la teoría de anillos noconmutativos. Tales estructuras son actualmente estudiadas desde diversos puntos de vista en matemáticas tales como la teoría de ideales en álgebra, la teoría del orden, la teoría de Galois, el álgebra homológica, etc. En aplicaciones, las extensiones de Ore aparecen en el desacoplamiento y posterior solución explícita de algunos sistemas de ecuaciones diferenciales lineales y en diferencias. En esta nota consideramos un cuerpo no conmutativo (o anillo de división) K, un endomorsmo de anillos α: K → K y una α-derivación δ: K → K. Luego se determinan y caracterizan las involuciones en la extensión de Ore K[x; α, δ].application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticashttps://revistas.unal.edu.co/index.php/bolma/article/view/66847Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasArriagada, Waldo and Ramírez, Hugo (2017) A note on involutions in Ore extensions. Boletín de Matemáticas, 24 (1). pp. 29-35. ISSN 2357-652951 Matemáticas / MathematicsSkew polynomialsinvolutionring endomorphismderivationpolinomios torcidosinvolución, endomorfismo de anillosderivaciónA note on involutions in Ore extensionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL66847-342880-1-SM.pdfapplication/pdf289746https://repositorio.unal.edu.co/bitstream/unal/61869/1/66847-342880-1-SM.pdfead542781ea4f2be5a31c34ad36ae626MD51THUMBNAIL66847-342880-1-SM.pdf.jpg66847-342880-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5641https://repositorio.unal.edu.co/bitstream/unal/61869/2/66847-342880-1-SM.pdf.jpg48ca84e51615fe6ab3f5dab8f4035a33MD52unal/61869oai:repositorio.unal.edu.co:unal/618692023-04-14 23:04:50.517Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A note on involutions in Ore extensions
title A note on involutions in Ore extensions
spellingShingle A note on involutions in Ore extensions
51 Matemáticas / Mathematics
Skew polynomials
involution
ring endomorphism
derivation
polinomios torcidos
involución, endomorfismo de anillos
derivación
title_short A note on involutions in Ore extensions
title_full A note on involutions in Ore extensions
title_fullStr A note on involutions in Ore extensions
title_full_unstemmed A note on involutions in Ore extensions
title_sort A note on involutions in Ore extensions
dc.creator.fl_str_mv Arriagada, Waldo
Ramírez, Hugo
dc.contributor.author.spa.fl_str_mv Arriagada, Waldo
Ramírez, Hugo
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Skew polynomials
involution
ring endomorphism
derivation
polinomios torcidos
involución, endomorfismo de anillos
derivación
dc.subject.proposal.spa.fl_str_mv Skew polynomials
involution
ring endomorphism
derivation
polinomios torcidos
involución, endomorfismo de anillos
derivación
description Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the context of uncoupling and solving systems of linear differential and difference equations in closed form. In this short note we let K denote a division ring, α: K $rarr; K a ring endomorphism and δ: K → K an α-derivation. We determine the involutions in the Ore extension K[x; α, δ].
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T20:46:42Z
dc.date.available.spa.fl_str_mv 2019-07-02T20:46:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-6529
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/61869
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/60681/
identifier_str_mv ISSN: 2357-6529
url https://repositorio.unal.edu.co/handle/unal/61869
http://bdigital.unal.edu.co/60681/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/bolma/article/view/66847
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.references.spa.fl_str_mv Arriagada, Waldo and Ramírez, Hugo (2017) A note on involutions in Ore extensions. Boletín de Matemáticas, 24 (1). pp. 29-35. ISSN 2357-6529
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/61869/1/66847-342880-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/61869/2/66847-342880-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv ead542781ea4f2be5a31c34ad36ae626
48ca84e51615fe6ab3f5dab8f4035a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089431591682048