A note on involutions in Ore extensions
Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the cont...
- Autores:
-
Arriagada, Waldo
Ramírez, Hugo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/61869
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/61869
http://bdigital.unal.edu.co/60681/
- Palabra clave:
- 51 Matemáticas / Mathematics
Skew polynomials
involution
ring endomorphism
derivation
polinomios torcidos
involución, endomorfismo de anillos
derivación
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_8cd969e7e32e14f412a5f28bdba2a072 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/61869 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arriagada, Waldo844142a5-6653-449e-95f3-5ddb2ef45269300Ramírez, Hugo7b42e201-383d-4d86-a36b-9e5bb9ef166c3002019-07-02T20:46:42Z2019-07-02T20:46:42Z2017-01-01ISSN: 2357-6529https://repositorio.unal.edu.co/handle/unal/61869http://bdigital.unal.edu.co/60681/Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the context of uncoupling and solving systems of linear differential and difference equations in closed form. In this short note we let K denote a division ring, α: K $rarr; K a ring endomorphism and δ: K → K an α-derivation. We determine the involutions in the Ore extension K[x; α, δ].Los anillos de polinomios torcidos, o extensiones de Ore, forman una clase importante en la teoría de anillos noconmutativos. Tales estructuras son actualmente estudiadas desde diversos puntos de vista en matemáticas tales como la teoría de ideales en álgebra, la teoría del orden, la teoría de Galois, el álgebra homológica, etc. En aplicaciones, las extensiones de Ore aparecen en el desacoplamiento y posterior solución explícita de algunos sistemas de ecuaciones diferenciales lineales y en diferencias. En esta nota consideramos un cuerpo no conmutativo (o anillo de división) K, un endomorsmo de anillos α: K → K y una α-derivación δ: K → K. Luego se determinan y caracterizan las involuciones en la extensión de Ore K[x; α, δ].application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticashttps://revistas.unal.edu.co/index.php/bolma/article/view/66847Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasArriagada, Waldo and Ramírez, Hugo (2017) A note on involutions in Ore extensions. Boletín de Matemáticas, 24 (1). pp. 29-35. ISSN 2357-652951 Matemáticas / MathematicsSkew polynomialsinvolutionring endomorphismderivationpolinomios torcidosinvolución, endomorfismo de anillosderivaciónA note on involutions in Ore extensionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL66847-342880-1-SM.pdfapplication/pdf289746https://repositorio.unal.edu.co/bitstream/unal/61869/1/66847-342880-1-SM.pdfead542781ea4f2be5a31c34ad36ae626MD51THUMBNAIL66847-342880-1-SM.pdf.jpg66847-342880-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5641https://repositorio.unal.edu.co/bitstream/unal/61869/2/66847-342880-1-SM.pdf.jpg48ca84e51615fe6ab3f5dab8f4035a33MD52unal/61869oai:repositorio.unal.edu.co:unal/618692023-04-14 23:04:50.517Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
A note on involutions in Ore extensions |
title |
A note on involutions in Ore extensions |
spellingShingle |
A note on involutions in Ore extensions 51 Matemáticas / Mathematics Skew polynomials involution ring endomorphism derivation polinomios torcidos involución, endomorfismo de anillos derivación |
title_short |
A note on involutions in Ore extensions |
title_full |
A note on involutions in Ore extensions |
title_fullStr |
A note on involutions in Ore extensions |
title_full_unstemmed |
A note on involutions in Ore extensions |
title_sort |
A note on involutions in Ore extensions |
dc.creator.fl_str_mv |
Arriagada, Waldo Ramírez, Hugo |
dc.contributor.author.spa.fl_str_mv |
Arriagada, Waldo Ramírez, Hugo |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Skew polynomials involution ring endomorphism derivation polinomios torcidos involución, endomorfismo de anillos derivación |
dc.subject.proposal.spa.fl_str_mv |
Skew polynomials involution ring endomorphism derivation polinomios torcidos involución, endomorfismo de anillos derivación |
description |
Skew-polynomial rings, or Ore extensions, constitute an important class in noncommutative ring theory. These structures are currently studied from different points of view such as ideal theory, order theory, Galois theory, homological algebras, etc. Computationally, Ore extensions appear in the context of uncoupling and solving systems of linear differential and difference equations in closed form. In this short note we let K denote a division ring, α: K $rarr; K a ring endomorphism and δ: K → K an α-derivation. We determine the involutions in the Ore extension K[x; α, δ]. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T20:46:42Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T20:46:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2357-6529 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/61869 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/60681/ |
identifier_str_mv |
ISSN: 2357-6529 |
url |
https://repositorio.unal.edu.co/handle/unal/61869 http://bdigital.unal.edu.co/60681/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/bolma/article/view/66847 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas Boletín de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Arriagada, Waldo and Ramírez, Hugo (2017) A note on involutions in Ore extensions. Boletín de Matemáticas, 24 (1). pp. 29-35. ISSN 2357-6529 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/61869/1/66847-342880-1-SM.pdf https://repositorio.unal.edu.co/bitstream/unal/61869/2/66847-342880-1-SM.pdf.jpg |
bitstream.checksum.fl_str_mv |
ead542781ea4f2be5a31c34ad36ae626 48ca84e51615fe6ab3f5dab8f4035a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089431591682048 |