Local unitary representations of the braid group and their applications to quantum computing

We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum comp...

Full description

Autores:
Delaney, Colleen
Rowell, Eric C.
Wang, Zhenghan
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66448
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66448
http://bdigital.unal.edu.co/67476/
Palabra clave:
51 Matemáticas / Mathematics
topological quantum computation
braid group representations
localizations
quantum algebra
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial by a quantum computer and explicit localizations of braid group representations.