Short distance constraints from HLbL contribution to the muon anomalous magnetic moment
Hadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2...
- Autores:
-
Melo Porras, Daniel Gerardo
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83744
- Palabra clave:
- 530 - Física::539 - Física moderna
Partículas (física nuclear)
Espectroscopia de electrones
Particles (Nuclear physics)
Electron spectroscopy
Anomalous magnetic moment of the muon
HLbL
Mellin-Barnes
OPE
Hypergeometric series
Multivariate residues
Kinematic singularities
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8bc7114c33f04a1df62ad6bd3a84830b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83744 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
dc.title.translated.spa.fl_str_mv |
Límites de corta distancia de la contribución HLbL al momento magnético anómalo del muon |
title |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
spellingShingle |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment 530 - Física::539 - Física moderna Partículas (física nuclear) Espectroscopia de electrones Particles (Nuclear physics) Electron spectroscopy Anomalous magnetic moment of the muon HLbL Mellin-Barnes OPE Hypergeometric series Multivariate residues Kinematic singularities |
title_short |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
title_full |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
title_fullStr |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
title_full_unstemmed |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
title_sort |
Short distance constraints from HLbL contribution to the muon anomalous magnetic moment |
dc.creator.fl_str_mv |
Melo Porras, Daniel Gerardo |
dc.contributor.advisor.none.fl_str_mv |
Fazio, Angelo Raffaele Reyes Rojas, Edilson Alfonso |
dc.contributor.author.none.fl_str_mv |
Melo Porras, Daniel Gerardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Campos y Particulas |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::539 - Física moderna |
topic |
530 - Física::539 - Física moderna Partículas (física nuclear) Espectroscopia de electrones Particles (Nuclear physics) Electron spectroscopy Anomalous magnetic moment of the muon HLbL Mellin-Barnes OPE Hypergeometric series Multivariate residues Kinematic singularities |
dc.subject.lemb.spa.fl_str_mv |
Partículas (física nuclear) Espectroscopia de electrones |
dc.subject.lemb.eng.fl_str_mv |
Particles (Nuclear physics) Electron spectroscopy |
dc.subject.proposal.eng.fl_str_mv |
Anomalous magnetic moment of the muon HLbL Mellin-Barnes OPE Hypergeometric series Multivariate residues Kinematic singularities |
description |
Hadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribution’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of the muon plays an important role. The aim of the research developed in this thesis is to study the HLbL leading order contribution in the maximally symmetric high energy region well above the hadronic threshold limit. This is achieved by performing an operator product expansion of the HLbL tensor, which we do systematically in the background field method. We consider our approach very efficient, also because it allows a straightforward renormalization of the field theoretical results. Our approach is also original and at the best of our knowledge not available in literature. The massless quark loop is the leading term and we compute it without neglecting its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in- troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are computed with their full mass dependence using a Mellin–Barnes representation. Our original method of computation for the quark loop provides an independent check of recent literature results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for the HLbL scattering amplitude that plays a central role in the dispersive computation in the low–energy regime. (Texto tomado de la fuente) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-04-19T21:23:05Z |
dc.date.available.none.fl_str_mv |
2023-04-19T21:23:05Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83744 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83744 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
D. Hanneke, S. Hoogerheide, and G. Gabrielse. In: Physical Review A 83.052122 (2011) D. Hanneke, S. Fogwell, and G. Gabrielse. In: Physical Review A 100.120801 (2008) T. Aoyama, T. Kinoshita, and M.Nio. In: Physical Review D 97.036001 (2018) G. W. Bennet et al. In: Physical Review D 73.072003 (2006) B.Abi et al. In: Physical Review Letters 126.141801 (2021) T. Aoyama et al. In: Physics Reports 887 (2020), pp. 1–166 G. Colangelo et al. In: (2022). arXiv:2203.15810 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2203.15810 J. Grange et al. In: (2015). arXiv:1501.06858 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.1501.06858 S. J. Brodsky and E. de Rafael. In: Physical Review 168.1620 (1968) B. E. Lautrup and E. de Rafael. In: Physical Review 174.1835 (1968) V.L. Ivanov et al. In: ArXiv 2008.05548 (2020) E. V. Abakumovaa, M. N. Achasova, and V. E. Blinova. In: Nuclear Instruments and Methods 651 (2011), pp. 21–29 F. Ambrosino et al. In: Physical Letters B 670.285 (2009) B. Aubert et al. In: Physical Review Letters 103.231801 (2009) R. Alemany, M. Davier, and A. Hoecker. In: European Physical Journal C2.123 (1998) G. Abbiendi et al. In: European Physical Journal C 139 (2017), p. 77 P. Banerjee et al. In: European Physical Journal C 80.591 (2020) Sz. Borsanyi et al. In: Nature 593 (2021), pp. 51–55 Alexei Bazavov et al. In: (2023). arXiv:2301.08274 [hep-lat]. URL: https://doi.org/10.48550/arXiv.2301.08274 E. De Rafael. In: Inference Review 6.3 (2021). URL: https://inference-review.com/article/muons-and-new-physics G. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 74 (2015) G. Colangelo, M. Hoferichter, M. Procura, et al. In: JHEP 161 (2017) M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018) G. Colangelo et al. In: Physical Review Letters 118.232001 (2017) M. Hayakawa, T. Kinoshita, and A. I. Sanda. In: Physical Review Letters 75.790 (1995) J. Bijnens, E. de Rafael, and H. Zheng. “Low-Energy Behaviour of Two-Point Functions of Quark Currents”. In: Zeitschrift für Physik C Particles and Fields 62 (1994), pp. 437–454 G. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 91 (2014) Johan Bijnens et al. In: JHEP 2003.0304 (2003). arXiv:hep-ph/0304222. URL: https://doi.org/10.1088/1126-6708/2003/04/055 M. Knecht and A. Nyffeler. In: The European Physical Journal C 21 (2001). arXiv:hep-ph/0106034, 659––678. URL: https://doi.org/10.1007/s100520100755 G. Colangelo et al. In: Physical Review D 101.051501 (2020). arXiv:1910.11881 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.051501 Gilberto Colangelo et al. In: JHEP 2020.101 (2020). arXiv:1910.13432 [hep-ph]. URL: https://doi.org/10.1007/JHEP03%282020%29101 Gilberto Colangelo et al. In: The European Physical Journal C 81.702 (2021). arXiv:2106.13222 [hep-ph]. URL: https://doi.org/10.1140/epjc/s10052-021-09513-x J. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-Sanchez. In: Physical Letters B 798.134994 (2019). arXiv:1908.03331 [hep-ph] J. Bijnens et al. In: Nuclear and Particle Physics Proceedings 312-317 (2020), pp. 180–184 J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez. In: Journal of High Energy Physics 04.240 (2021). arXiv:2101.09169v2 [hep-ph]. URL: https://doi.org/10.1007/JHEP04%282021%29240 V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 256.107478 (2020). arXiv:2001.04407 V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 207 (2016). arXiv:1601.01167, pp. 432–444 R. Mertig, M. Böhm, and A. Denner. In: Computer Physics Communications 64.3 (1991), pp. 345–359. URL: https://doi.org/10.1016/0010-4655(91)90130-D B. Ananthanarayan et al. In: Physical Review Letters 127.151601 (2021). arXiv:2012.15108 [hep-th]. URL: https://doi.org/10.1103/PhysRevLett.127.151601 A. I. Davydychev. In: Physics Letters B 263.1 (1991), pp. 107–111. URL: https://doi.org/10.1016/0370-2693(91)91715-8 A. I. Davydychev. In: Journal of Mathematical Physics 32.1052 (1991). URL: doi:10.1063/1.529383 Stanley J. Brodsky and J. D. Sullivan. In: Physical Review 156.5 (1967), pp. 1644–1647 Janis Aldins, Stanley J. Brodsky, and Toichiro Kinoshita. In: Physical Review D 1.8 (1970) Marc Knecht and Nyffeler Andreas. In: Physical Review D 65.073034 (2002) Fred Jegerlehner. STMP – The Anomalous Magnetic Moment of the Muon. Vol. 274. Springer, 2017 F. E. Low. In: Physical Review 110.4 (1958), pp. 974–977 T. Blum et al. In: Physical Review Letters 124.132002 (2020). arXiv:1911.08123 [hep-lat] E.-H. Chao et al. In: European Physical Journal C 81.651 (2021). arXiv:2104.02632 [hep-lat] V. Pascalutsa, V. Pauk, and M. Vanderhaeghen. In: Physical Review D 85.116001 (2012). 1204.0740 V. Pauk and M. Vanderhaeghen. In: Physical Review D 90.11 (2014) J. Green et al. In: Physical Review Letters 115.222003 (2015). 1507.01577 I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). 1611.04646 F. Hagelstein and V. Pascalutsa. In: Physical Review Letters 120.072002 (2018). 1710.04571 . Peskin and D. Schroeder. An introduction to quantum field theory. Addison–Wesley Publishing Company, 1995 M. Sugawara and A. Kanazawa. In: Physical Review 123.1895 (1961). URL: https://doi.org/10.1103/PhysRev.123.1895 S. Mandelstam. In: Physical Review 112.4 (1958) Robert Karplus and Maurice Neuman. In: Physical Review 80.3 (1950), pp. 380–385 W. Bardeen and W. Tung. In: Physical Review 173.5 (1968), pp. 1423–1433 R. Tarrach. In: Nuov. Cim. A 28 (1975), 409––422. URL: https://doi.org/10.1007/BF02894857 Harry Bateman et al. Higher Trascendental Functions – Volume 1. McGraw–Hill, 1953 James D. Bjorken. In: Journal of Mathematical Physics 5.2 (1964), pp. 192–198 (Particle Data Group) R. L. Workman et al. In: Progress of Theoretical and Experimental Physics 2022.083C01 (2022) P. Masjuan and P. Sanchez-Puertas. In: Physical Review Letters D95.054026 (2017). arXiv:1701.05829 [hep-ph] M. Hoferichter et al. In: European Physical Journal C74.3180 (2014) M. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph] G. A. Baker. Essentials of Padé Approximants. First. New York: Academic Press, 1975 P. Masjuan and S. Peris. In: Physical Review Letters B686.307 (2010). arXiv:0903.0294 [hep-ph] C. Hanhart et al. In: European Physical Journal C73.2668 (2013). arXiv:1307.5654 [hep-ph], Erratum: Eur. Phys. J. C75, 242 (2015) C.-W. Xiao et al. In: European Physical Journal C81.1002 (2021). arXiv:1509.02194 [hep-ph] Simon Holz et al. In: European Physical Journal C82.434 (2022). arXiv:2202.05846 [hep-ph] A. D. Martin and T. D. Spearman. Elementary Particle Theory. North Holland Publishing Company, 1970 I. Danilkin, O. Deineka, and M. Vanderhaeghen. In: Physical Review Letters D96.114018 (2017). arXiv:1709.08595 [hep-ph] O. Deineka, I. Danilkin, and M. Vanderhaeghen. In: European Physical Journal Web Conference 199.02005 (2019). arXiv:1808.04117 [hep-ph] V. Pauk and M. Vanderhaeghen. In: European Physical Journal C74.3008 (2014). arXiv:1401.0832 [hep-ph] I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). arXiv:1611.04646 [hep-ph] M. Knecht et al. In: Physical Review Letters B787.111 (2018). arXiv:1808.03848 [hep-ph]. R. N. Cahn. In: Physical Review Letters D35.3342 (1987) R. N. Cahn. In: Physical Review Letters D37.833 (1988) [L3 Collaboration] P. Achard et al. In: Physical Review Letters B526.269 (2002) [L3 Collaboration] P. Achard et al. In: JHEP 0703.018 (2007) P. Roig and P. Sanchez-Puertas. In: Physical Review D 101.074019 (2020). arXiv:1910.02881 [hep-ph] Gernot Eichmann et al. In: (2014). arXiv:1411.7876v2 [hep-ph] G. P. Lepage and S. J. Brodsky. In: Physics Letters B 87.359 (1979) G. P. Lepage and S. J. Brodsky. In: Physical Review D 22.2157 (1980) V. A. Nesterenko and A. V. Radyushkin. In: Soviet Journal of Nuclear Physics 38.284 (1983) V. A. Novikov et al. In: Nuclear Physics B 237.3 (1984), pp. 525–550 A. S. Gorsky. In: Soviet Journal of Nuclear Physics 46.537 (1987) A. V. Manohar. In: Physics Letters B 244.101 (1990) M. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph] M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018). arXiv:1805.01471 [hep-ph] Kenneth Wilson. In: Physical Review 179.1499 (1969) Steven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1996 B. L. Ioffe and A. V. Smilga. In: Nuclear Physics B 232 (1984), pp. 109–142. URL: doi:10.1016/0550-3213(84)90364-X A. Czarnecki, W. J. Marciano, and A. Vainshtein. In: Physical Review D 67.073006 (2003). arXiv:hep-ph/0212229 V. A. Novikov et al. In: Fortschritte der Physik 32.11 (1984), pp. 585–622 M. A. Shifman, A. I Vainshtein, and V. I. Zakharov. In: Nuclear Physics B 147 (1979), pp. 385–518 M. A. Shifman et al. In: Physics Letters B 77.1 (1978), pp. 80–83. URL: https://doi.org/10.1016/0370-2693(78)90206-X V. Fock. In: Physikalische Zeitschrift der Sowjetunion 12 (1937), pp. 404–425 M. A. Shifman. In: Nuclear Physics B173.1 (1980), pp. 13–31 R. Strichartz. A guide to distribution theory and Fourier transform. World Scientific Publishing Company, 2003 L. F. Abbott. In: Acta Physica Polonica B13.1–2 (1981). https://www.actaphys.uj.edu.pl/R/13/1/33/pdf, pp. 33–50 Y. Aoki et al. In: The European Physical Journal C 82.869 (2022). arXiv:2111.09849v2 [hep-lat] H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 467–481. URL: https://doi.org/10.1103/PhysRevD.12.467 H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 482–488. URL: https://doi.org/10.1103/PhysRevD.12.482 H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.10 (1975), pp. 3159–3180. URL: https://doi.org/10.1103/PhysRevD.12.3159 Giampiero Passarino and Martinus Veltman. In: Nuclear Physics B 160.1 (1979), pp. 151–207. URL: https://doi.org/10.1016/0550-3213(79)90234-7 R. Keith Ellis et al. In: Physics Reports 518.4–5 (2012), pp. 141–250. URL: https://doi.org/10.1016/j.physrep.2012.01.008 Dima Bardin and Giampiero Passarino. The Standard Model in the Making: Precision Study of the Elecroweak Interactions. Clarendon Press, Oxford, 1999 É. É. Boos and A. I. Davydychev. In: Theoretical and Mathematical Physics 89 (1991), 1052––1064. URL: https://doi.org/10.1007/BF01016805 Sumit Banik and Samuel Friot. In: (2022). arXiv:2212.11839 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2212.11839 O. N. Zhdanov and A. K. Tsikh. In: Siberian Mathematical Journal 39.2 (1998), pp. 245–260. URL: https://doi.org/10.1007/BF02677509 Oleg Igorevich Marichev. Methods for Computing Integrals of Special Functions. Minsk, 1978 Henri Skoda and Jean-Marie Trepreau, eds. Aspects of Mathematics: Contributions to Complex Analysis and Analytic Geometry. Vol. E26. Springer, 1994, pp. 233–241 Kasper J. Larsen and Robbert Rietkerk. In: Computer Physics Communications 222 (2018). arXiv:1701.01040 [hep-th], pp. 250–262. URL: https://doi.org/10.1016/j.cpc.2017.08.025 P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley and Sons, 1978 M. Passare, A .K. Tsikh, and A. A. Cheshel. In: Theoretical and Mathematical Physics 109 (1996), 1544––1555. URL: https://doi.org/10.1007/BF02073871 E. W. Barnes. In: Proceedings of the London Mathematical Society s2-5 (1907), pp. 59–116 H. M. Srivastava and Per W. Karlsson. Multiple Gaussian Hypergeometric Series. John Wiley and Sons, 1985 J. Horn. In: Mathematische Annalen 34 (1889), 544––600. URL: https://doi.org/10.1007/BF01443681 Samuel Friot and David Greynat. In: Journal of Mathematical Physics 53.023508 (2012). arXiv:1107.0328 [math-ph]. URL: https://doi.org/10.1063/1.3679686 A. K. Tsikh. Translations of Mathematical Monographs: Multidimensional Residues and Their Applications. Vol. 103. American Mathematical Society, 1992 Khiem Hong Phan and Dzung Tri Tran. In: Progress of Theoretical and Experimental Physics 2019.6 (2019). arXiv:1904.07430 [hep-ph]. URL: https://doi.org/10.1093/ptep/ptz050 Lucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966 K. Melnikov and A. Vainshtein. In: Physical Review D 70.113006 (2004). arXiv:hep-ph/0312226. URL: https://doi.org/10.1103/PhysRevD.70.113006 Luigi Cappiello et al. In: Physical Review D 102.016009 (2020). arXiv:1912.02779 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.102.016009 Josef Leutgeb and Anton Rebhan. In: Physical Review D 101.114015 (2020). arXiv:1912.01596 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.114015 Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: (2022). arXiv:2211.17183 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2211.17183 Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: EPJ Web of Conferences 274.06010 (2022). arXiv:2211.04068 [hep-ph]. URL: https://doi.org/10.1051/epjconf/202227406010 E. V. Shuryak and A. I. Vainshtein. In: Nuclear Physics B 201.1 (1982), pp. 141–158. URL: https://doi.org/10.1016/0550-3213(82)90377-7 A. J. Macfarlane. In: Communications in Mathematical Physics 2 (1966), pp. 133–146. URL: https://doi.org/10.1007/BF01773348 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83744/6/1007436748.2023.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/83744/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83744/5/1007436748.2023.pdf |
bitstream.checksum.fl_str_mv |
1526f94a34604e9b9aee08626905ba03 eb34b1cf90b7e1103fc9dfd26be24b4a 79666ac1fd6473a9a91c214268411421 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089629428613120 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fazio, Angelo Raffaele3294e9948346151aa529488ff66aba54Reyes Rojas, Edilson Alfonso047be5506431d63e60cfb709082a6fb4Melo Porras, Daniel Gerardoc387f178532c3976b34fee74077b4ca2Grupo de Campos y Particulas2023-04-19T21:23:05Z2023-04-19T21:23:05Z2023https://repositorio.unal.edu.co/handle/unal/83744Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Hadronic Light by Light (HLbL) scattering is not the biggest hadronic contribution to the muon’s anomalous magnetic moment, but it has the biggest relative uncertainty of all the contributions to that observable. With the tension between the Standard Model value prediction and the measurement at 4.2 σ, theoretical physicists have set their sights on reducing the HLbL contribution’s uncertainty to reduce the tension or push it beyond the discovery threshold. In such scenario, the high energy contribution of HLbL scattering to anomalous magnetic moment of the muon plays an important role. The aim of the research developed in this thesis is to study the HLbL leading order contribution in the maximally symmetric high energy region well above the hadronic threshold limit. This is achieved by performing an operator product expansion of the HLbL tensor, which we do systematically in the background field method. We consider our approach very efficient, also because it allows a straightforward renormalization of the field theoretical results. Our approach is also original and at the best of our knowledge not available in literature. The massless quark loop is the leading term and we compute it without neglecting its tensor structure. To this end, we use a tensor–loop–integral decomposition that does not in- troduce kinematic singularities. The resulting scalar loop integrals with shifted dimensions are computed with their full mass dependence using a Mellin–Barnes representation. Our original method of computation for the quark loop provides an independent check of recent literature results. Furthermore, by conserving the full tensor structure of the amplitude, we are able to perform an explicit check of a proposed kinematic–singularity–free tensor decomposition for the HLbL scattering amplitude that plays a central role in the dispersive computation in the low–energy regime. (Texto tomado de la fuente)La dispersión HLbL no es la contribución hadrónica más grande para el momento magnético anómalo del muon, pero esta tiene la incertidumbre relativa más grande de todas las contribuciones a ese observable. Con la tensión entre la valor predicho por el Modelo Estándar y las mediciones actualmente en 4.2 σ, los físico teóricos se han centrado en reducir la incertidumbre de la contribución HLbL para reducir la tensión o llevarla más allá del umbral de descubrimiento. En tal escenario, la contribución de alta energía de la dispersión HLbL al momento magnético anómalo del muon juega un papel importante. El objetivo de la investigación desarrollada en esta tesis es estudiar la contribución HLbL de primer orden en la región de alta energía máximamente simétrica muy por encima del límite del umbral hadrónico. Esto se logra al realizar una expansión de productos de operadores del tensor HLbL, la cual realizamos sistemáticamente con el método de campos de fondo. Consideramos nuestra aproximación al problema muy eficiente, entre otras razones, porque esta permite la renormalización directa de los resultados de teoría de campos. Nuestro método es también original y, hasta nuestro mejor conocimiento, no se encuentra en la literatura. El quark loop sin masa es el primer término de la expansión y lo calculamos sin dejar de lado su estructura tensorial. Para lograrlo, usamos un método de descomposición tensorial de integrales de loop que no introduce singularidades cinemáticas. Las integrales escalares de loop resultantes con dimensiones modificadas son calculadas considerando toda su dependencia de la masa y utilizando la representación de Mellin-Barnes. Nuestro método original de cálculo para el quark loop proporciona una verificación independiente de los resultados publicados recientemente en la literatura. Más aún, al conservar la estructura tensorial completa de la amplitud, podemos llevar a cabo una verificación explícita de una descomposición libre de singularidades cinemáticas para la dispersión HLbL que juega un papel central en los cálculos dispersivos del régimen de baja energía.Maestríaix, 113 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaPartículas (física nuclear)Espectroscopia de electronesParticles (Nuclear physics)Electron spectroscopyAnomalous magnetic moment of the muonHLbLMellin-BarnesOPEHypergeometric seriesMultivariate residuesKinematic singularitiesShort distance constraints from HLbL contribution to the muon anomalous magnetic momentLímites de corta distancia de la contribución HLbL al momento magnético anómalo del muonTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMD. Hanneke, S. Hoogerheide, and G. Gabrielse. In: Physical Review A 83.052122 (2011)D. Hanneke, S. Fogwell, and G. Gabrielse. In: Physical Review A 100.120801 (2008)T. Aoyama, T. Kinoshita, and M.Nio. In: Physical Review D 97.036001 (2018)G. W. Bennet et al. In: Physical Review D 73.072003 (2006)B.Abi et al. In: Physical Review Letters 126.141801 (2021)T. Aoyama et al. In: Physics Reports 887 (2020), pp. 1–166G. Colangelo et al. In: (2022). arXiv:2203.15810 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2203.15810J. Grange et al. In: (2015). arXiv:1501.06858 [physics.ins-det]. URL: https://doi.org/10.48550/arXiv.1501.06858S. J. Brodsky and E. de Rafael. In: Physical Review 168.1620 (1968)B. E. Lautrup and E. de Rafael. In: Physical Review 174.1835 (1968)V.L. Ivanov et al. In: ArXiv 2008.05548 (2020)E. V. Abakumovaa, M. N. Achasova, and V. E. Blinova. In: Nuclear Instruments and Methods 651 (2011), pp. 21–29F. Ambrosino et al. In: Physical Letters B 670.285 (2009)B. Aubert et al. In: Physical Review Letters 103.231801 (2009)R. Alemany, M. Davier, and A. Hoecker. In: European Physical Journal C2.123 (1998)G. Abbiendi et al. In: European Physical Journal C 139 (2017), p. 77P. Banerjee et al. In: European Physical Journal C 80.591 (2020)Sz. Borsanyi et al. In: Nature 593 (2021), pp. 51–55Alexei Bazavov et al. In: (2023). arXiv:2301.08274 [hep-lat]. URL: https://doi.org/10.48550/arXiv.2301.08274E. De Rafael. In: Inference Review 6.3 (2021). URL: https://inference-review.com/article/muons-and-new-physicsG. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 74 (2015)G. Colangelo, M. Hoferichter, M. Procura, et al. In: JHEP 161 (2017)M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018)G. Colangelo et al. In: Physical Review Letters 118.232001 (2017)M. Hayakawa, T. Kinoshita, and A. I. Sanda. In: Physical Review Letters 75.790 (1995)J. Bijnens, E. de Rafael, and H. Zheng. “Low-Energy Behaviour of Two-Point Functions of Quark Currents”. In: Zeitschrift für Physik C Particles and Fields 62 (1994), pp. 437–454G. Colangelo, M.Hoferichter, M. Procura, et al. In: JHEP 91 (2014)Johan Bijnens et al. In: JHEP 2003.0304 (2003). arXiv:hep-ph/0304222. URL: https://doi.org/10.1088/1126-6708/2003/04/055M. Knecht and A. Nyffeler. In: The European Physical Journal C 21 (2001). arXiv:hep-ph/0106034, 659––678. URL: https://doi.org/10.1007/s100520100755G. Colangelo et al. In: Physical Review D 101.051501 (2020). arXiv:1910.11881 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.051501Gilberto Colangelo et al. In: JHEP 2020.101 (2020). arXiv:1910.13432 [hep-ph]. URL: https://doi.org/10.1007/JHEP03%282020%29101Gilberto Colangelo et al. In: The European Physical Journal C 81.702 (2021). arXiv:2106.13222 [hep-ph]. URL: https://doi.org/10.1140/epjc/s10052-021-09513-xJ. Bijnens, N. Hermansson-Truedsson, and A. Rodriguez-Sanchez. In: Physical Letters B 798.134994 (2019). arXiv:1908.03331 [hep-ph]J. Bijnens et al. In: Nuclear and Particle Physics Proceedings 312-317 (2020), pp. 180–184J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez. In: Journal of High Energy Physics 04.240 (2021). arXiv:2101.09169v2 [hep-ph]. URL: https://doi.org/10.1007/JHEP04%282021%29240V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 256.107478 (2020). arXiv:2001.04407V. Shtabovenko, R. Mertig, and F. Orellana. In: Computer Physics Communications 207 (2016). arXiv:1601.01167, pp. 432–444R. Mertig, M. Böhm, and A. Denner. In: Computer Physics Communications 64.3 (1991), pp. 345–359. URL: https://doi.org/10.1016/0010-4655(91)90130-DB. Ananthanarayan et al. In: Physical Review Letters 127.151601 (2021). arXiv:2012.15108 [hep-th]. URL: https://doi.org/10.1103/PhysRevLett.127.151601A. I. Davydychev. In: Physics Letters B 263.1 (1991), pp. 107–111. URL: https://doi.org/10.1016/0370-2693(91)91715-8A. I. Davydychev. In: Journal of Mathematical Physics 32.1052 (1991). URL: doi:10.1063/1.529383Stanley J. Brodsky and J. D. Sullivan. In: Physical Review 156.5 (1967), pp. 1644–1647Janis Aldins, Stanley J. Brodsky, and Toichiro Kinoshita. In: Physical Review D 1.8 (1970)Marc Knecht and Nyffeler Andreas. In: Physical Review D 65.073034 (2002)Fred Jegerlehner. STMP – The Anomalous Magnetic Moment of the Muon. Vol. 274. Springer, 2017F. E. Low. In: Physical Review 110.4 (1958), pp. 974–977T. Blum et al. In: Physical Review Letters 124.132002 (2020). arXiv:1911.08123 [hep-lat]E.-H. Chao et al. In: European Physical Journal C 81.651 (2021). arXiv:2104.02632 [hep-lat]V. Pascalutsa, V. Pauk, and M. Vanderhaeghen. In: Physical Review D 85.116001 (2012). 1204.0740V. Pauk and M. Vanderhaeghen. In: Physical Review D 90.11 (2014)J. Green et al. In: Physical Review Letters 115.222003 (2015). 1507.01577I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). 1611.04646F. Hagelstein and V. Pascalutsa. In: Physical Review Letters 120.072002 (2018). 1710.04571. Peskin and D. Schroeder. An introduction to quantum field theory. Addison–Wesley Publishing Company, 1995M. Sugawara and A. Kanazawa. In: Physical Review 123.1895 (1961). URL: https://doi.org/10.1103/PhysRev.123.1895S. Mandelstam. In: Physical Review 112.4 (1958)Robert Karplus and Maurice Neuman. In: Physical Review 80.3 (1950), pp. 380–385W. Bardeen and W. Tung. In: Physical Review 173.5 (1968), pp. 1423–1433R. Tarrach. In: Nuov. Cim. A 28 (1975), 409––422. URL: https://doi.org/10.1007/BF02894857Harry Bateman et al. Higher Trascendental Functions – Volume 1. McGraw–Hill, 1953James D. Bjorken. In: Journal of Mathematical Physics 5.2 (1964), pp. 192–198(Particle Data Group) R. L. Workman et al. In: Progress of Theoretical and Experimental Physics 2022.083C01 (2022)P. Masjuan and P. Sanchez-Puertas. In: Physical Review Letters D95.054026 (2017). arXiv:1701.05829 [hep-ph]M. Hoferichter et al. In: European Physical Journal C74.3180 (2014)M. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]G. A. Baker. Essentials of Padé Approximants. First. New York: Academic Press, 1975P. Masjuan and S. Peris. In: Physical Review Letters B686.307 (2010). arXiv:0903.0294 [hep-ph]C. Hanhart et al. In: European Physical Journal C73.2668 (2013). arXiv:1307.5654 [hep-ph], Erratum: Eur. Phys. J. C75, 242 (2015)C.-W. Xiao et al. In: European Physical Journal C81.1002 (2021). arXiv:1509.02194 [hep-ph]Simon Holz et al. In: European Physical Journal C82.434 (2022). arXiv:2202.05846 [hep-ph]A. D. Martin and T. D. Spearman. Elementary Particle Theory. North Holland Publishing Company, 1970I. Danilkin, O. Deineka, and M. Vanderhaeghen. In: Physical Review Letters D96.114018 (2017). arXiv:1709.08595 [hep-ph]O. Deineka, I. Danilkin, and M. Vanderhaeghen. In: European Physical Journal Web Conference 199.02005 (2019). arXiv:1808.04117 [hep-ph]V. Pauk and M. Vanderhaeghen. In: European Physical Journal C74.3008 (2014). arXiv:1401.0832 [hep-ph]I. Danilkin and M. Vanderhaeghen. In: Physical Review D 95.014019 (2017). arXiv:1611.04646 [hep-ph]M. Knecht et al. In: Physical Review Letters B787.111 (2018). arXiv:1808.03848 [hep-ph].R. N. Cahn. In: Physical Review Letters D35.3342 (1987)R. N. Cahn. In: Physical Review Letters D37.833 (1988)[L3 Collaboration] P. Achard et al. In: Physical Review Letters B526.269 (2002)[L3 Collaboration] P. Achard et al. In: JHEP 0703.018 (2007)P. Roig and P. Sanchez-Puertas. In: Physical Review D 101.074019 (2020). arXiv:1910.02881 [hep-ph]Gernot Eichmann et al. In: (2014). arXiv:1411.7876v2 [hep-ph]G. P. Lepage and S. J. Brodsky. In: Physics Letters B 87.359 (1979)G. P. Lepage and S. J. Brodsky. In: Physical Review D 22.2157 (1980)V. A. Nesterenko and A. V. Radyushkin. In: Soviet Journal of Nuclear Physics 38.284 (1983)V. A. Novikov et al. In: Nuclear Physics B 237.3 (1984), pp. 525–550A. S. Gorsky. In: Soviet Journal of Nuclear Physics 46.537 (1987)A. V. Manohar. In: Physics Letters B 244.101 (1990)M. Hoferichter et al. In: JHEP 10.141 (2018). arXiv:1808.04823 [hep-ph]M. Hoferichter et al. In: Physical Review Letters 121.112002 (2018). arXiv:1805.01471 [hep-ph]Kenneth Wilson. In: Physical Review 179.1499 (1969)Steven Weinberg. The Quantum Theory of Fields. Cambridge University Press, 1996B. L. Ioffe and A. V. Smilga. In: Nuclear Physics B 232 (1984), pp. 109–142. URL: doi:10.1016/0550-3213(84)90364-XA. Czarnecki, W. J. Marciano, and A. Vainshtein. In: Physical Review D 67.073006 (2003). arXiv:hep-ph/0212229V. A. Novikov et al. In: Fortschritte der Physik 32.11 (1984), pp. 585–622M. A. Shifman, A. I Vainshtein, and V. I. Zakharov. In: Nuclear Physics B 147 (1979), pp. 385–518M. A. Shifman et al. In: Physics Letters B 77.1 (1978), pp. 80–83. URL: https://doi.org/10.1016/0370-2693(78)90206-XV. Fock. In: Physikalische Zeitschrift der Sowjetunion 12 (1937), pp. 404–425M. A. Shifman. In: Nuclear Physics B173.1 (1980), pp. 13–31R. Strichartz. A guide to distribution theory and Fourier transform. World Scientific Publishing Company, 2003L. F. Abbott. In: Acta Physica Polonica B13.1–2 (1981). https://www.actaphys.uj.edu.pl/R/13/1/33/pdf, pp. 33–50Y. Aoki et al. In: The European Physical Journal C 82.869 (2022). arXiv:2111.09849v2 [hep-lat]H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 467–481. URL: https://doi.org/10.1103/PhysRevD.12.467H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.2 (1975), pp. 482–488. URL: https://doi.org/10.1103/PhysRevD.12.482H. Kluberg-Stern and J. B. Zuber. In: Physical Review D 12.10 (1975), pp. 3159–3180. URL: https://doi.org/10.1103/PhysRevD.12.3159Giampiero Passarino and Martinus Veltman. In: Nuclear Physics B 160.1 (1979), pp. 151–207. URL: https://doi.org/10.1016/0550-3213(79)90234-7R. Keith Ellis et al. In: Physics Reports 518.4–5 (2012), pp. 141–250. URL: https://doi.org/10.1016/j.physrep.2012.01.008Dima Bardin and Giampiero Passarino. The Standard Model in the Making: Precision Study of the Elecroweak Interactions. Clarendon Press, Oxford, 1999É. É. Boos and A. I. Davydychev. In: Theoretical and Mathematical Physics 89 (1991), 1052––1064. URL: https://doi.org/10.1007/BF01016805Sumit Banik and Samuel Friot. In: (2022). arXiv:2212.11839 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2212.11839O. N. Zhdanov and A. K. Tsikh. In: Siberian Mathematical Journal 39.2 (1998), pp. 245–260. URL: https://doi.org/10.1007/BF02677509Oleg Igorevich Marichev. Methods for Computing Integrals of Special Functions. Minsk, 1978Henri Skoda and Jean-Marie Trepreau, eds. Aspects of Mathematics: Contributions to Complex Analysis and Analytic Geometry. Vol. E26. Springer, 1994, pp. 233–241Kasper J. Larsen and Robbert Rietkerk. In: Computer Physics Communications 222 (2018). arXiv:1701.01040 [hep-th], pp. 250–262. URL: https://doi.org/10.1016/j.cpc.2017.08.025P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley and Sons, 1978M. Passare, A .K. Tsikh, and A. A. Cheshel. In: Theoretical and Mathematical Physics 109 (1996), 1544––1555. URL: https://doi.org/10.1007/BF02073871E. W. Barnes. In: Proceedings of the London Mathematical Society s2-5 (1907), pp. 59–116H. M. Srivastava and Per W. Karlsson. Multiple Gaussian Hypergeometric Series. John Wiley and Sons, 1985J. Horn. In: Mathematische Annalen 34 (1889), 544––600. URL: https://doi.org/10.1007/BF01443681Samuel Friot and David Greynat. In: Journal of Mathematical Physics 53.023508 (2012). arXiv:1107.0328 [math-ph]. URL: https://doi.org/10.1063/1.3679686A. K. Tsikh. Translations of Mathematical Monographs: Multidimensional Residues and Their Applications. Vol. 103. American Mathematical Society, 1992Khiem Hong Phan and Dzung Tri Tran. In: Progress of Theoretical and Experimental Physics 2019.6 (2019). arXiv:1904.07430 [hep-ph]. URL: https://doi.org/10.1093/ptep/ptz050Lucy Joan Slater. Generalized Hypergeometric Functions. Cambridge University Press, 1966K. Melnikov and A. Vainshtein. In: Physical Review D 70.113006 (2004). arXiv:hep-ph/0312226. URL: https://doi.org/10.1103/PhysRevD.70.113006Luigi Cappiello et al. In: Physical Review D 102.016009 (2020). arXiv:1912.02779 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.102.016009Josef Leutgeb and Anton Rebhan. In: Physical Review D 101.114015 (2020). arXiv:1912.01596 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.101.114015Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: (2022). arXiv:2211.17183 [hep-ph]. URL: https://doi.org/10.48550/arXiv.2211.17183Johan Bijnens, Nils Hermansson-Truedsson, and Antonio Rodríguez-Sánchez. In: EPJ Web of Conferences 274.06010 (2022). arXiv:2211.04068 [hep-ph]. URL: https://doi.org/10.1051/epjconf/202227406010E. V. Shuryak and A. I. Vainshtein. In: Nuclear Physics B 201.1 (1982), pp. 141–158. URL: https://doi.org/10.1016/0550-3213(82)90377-7A. J. Macfarlane. In: Communications in Mathematical Physics 2 (1966), pp. 133–146. URL: https://doi.org/10.1007/BF01773348EstudiantesInvestigadoresTHUMBNAIL1007436748.2023.pdf.jpg1007436748.2023.pdf.jpgGenerated Thumbnailimage/jpeg4548https://repositorio.unal.edu.co/bitstream/unal/83744/6/1007436748.2023.pdf.jpg1526f94a34604e9b9aee08626905ba03MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83744/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1007436748.2023.pdf1007436748.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf822365https://repositorio.unal.edu.co/bitstream/unal/83744/5/1007436748.2023.pdf79666ac1fd6473a9a91c214268411421MD55unal/83744oai:repositorio.unal.edu.co:unal/837442023-08-02 23:03:58.972Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |