La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia)
Ilustraciones, mapas
- Autores:
-
Ramírez Cardona, Álvaro
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82085
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Calidad del aire
Meteorología dinámica
Estado atmosférico - Efectos de la actividad solar
Meteorología urbana y de montañas
Patrones de circulación
Capa límite nocturna
Estabilidad atmosférica
Terreno complejo
Area urbana tropical
Número de Richardson aproximado
Urban and mountain meteorology
Urban and mountain meteorology
Circulation patterns
Nocturnal boundary layer
Atmospheric stability
Complex terrain
Tropical urban area
Bulk Richardson number
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8bb941b6cd1ae33ccc4420449fba4d2a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82085 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
dc.title.translated.eng.fl_str_mv |
The nocturnal atmosphere in a tropical urban area of complex terrain. Case study: Aburrá Valley (Colombia) |
title |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
spellingShingle |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Calidad del aire Meteorología dinámica Estado atmosférico - Efectos de la actividad solar Meteorología urbana y de montañas Patrones de circulación Capa límite nocturna Estabilidad atmosférica Terreno complejo Area urbana tropical Número de Richardson aproximado Urban and mountain meteorology Urban and mountain meteorology Circulation patterns Nocturnal boundary layer Atmospheric stability Complex terrain Tropical urban area Bulk Richardson number |
title_short |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
title_full |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
title_fullStr |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
title_full_unstemmed |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
title_sort |
La atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia) |
dc.creator.fl_str_mv |
Ramírez Cardona, Álvaro |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Mejía, José Fernando (Thesis advisor) |
dc.contributor.author.none.fl_str_mv |
Ramírez Cardona, Álvaro |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Calidad del aire Meteorología dinámica Estado atmosférico - Efectos de la actividad solar Meteorología urbana y de montañas Patrones de circulación Capa límite nocturna Estabilidad atmosférica Terreno complejo Area urbana tropical Número de Richardson aproximado Urban and mountain meteorology Urban and mountain meteorology Circulation patterns Nocturnal boundary layer Atmospheric stability Complex terrain Tropical urban area Bulk Richardson number |
dc.subject.lemb.none.fl_str_mv |
Calidad del aire Meteorología dinámica Estado atmosférico - Efectos de la actividad solar |
dc.subject.proposal.spa.fl_str_mv |
Meteorología urbana y de montañas Patrones de circulación Capa límite nocturna Estabilidad atmosférica Terreno complejo Area urbana tropical Número de Richardson aproximado |
dc.subject.proposal.eng.fl_str_mv |
Urban and mountain meteorology Urban and mountain meteorology Circulation patterns Nocturnal boundary layer Atmospheric stability Complex terrain Tropical urban area Bulk Richardson number |
description |
Ilustraciones, mapas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-24T21:50:28Z |
dc.date.available.none.fl_str_mv |
2022-08-24T21:50:28Z |
dc.date.issued.none.fl_str_mv |
2022-08-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82085 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82085 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., & Degrazia, G. A. (2016). Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(695), 693–702. https://doi.org/10.1002/qj.2693 Acevedo, O. C., Moraes, O. L. L., Degrazia, G. A., & Medeiros, L. E. (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorology, 119(1), 41–55. https://doi.org/10.1007/s10546-005-9019-3 Adler, B., Babia, K., Kalthoff, N., Lohou, F., Lothon, M., Dione, C., Pedruzo-Bagazgoitia, X., & Andersen, H. (2019). Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: An observation-based analysis of conditions and processes. Atmospheric Chemistry and Physics, 19(1), 663–681. https://doi.org/10.5194/acp-19-663-2019 Aliabadi, A., Staebler, R., de Grandpré, J., Zadra, A., & Vaillancourt, P. (2016). Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions : Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under St. February 2016. https://doi.org/10.1080/07055900.2015.1119100 Arduini, G., Arduini, G., Stable, W., Processes, B., & Valleys, A. (2017). Wintertime Stable Boundary-Layer Processes in Alpine Valleys To cite this version : HAL Id : tel-01643685 Processus de la Couche Limite Atmosphérique Stable Hivernale en Vallée Alpine. Área Metropolitana del Valle de Aburrá. (2017). Condiciones especiales del Valle de Aburrá. Factores que incrementan la contaminación en el valle. https://www.metropol.gov.co/ambientales/calidad-del-aire/generalidades/condiciones-especiales Área Metropolitana del Valle de Aburrá. (2020). Informe Anual de Calidad del Aire 2020 Contrato Ciencia y Tecnologıa 871 de 2020. 94. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdf Área Metropolitana del Valle de Aburrá. (2013). Simulación de Procesos Dispersivos en el Valle de Aburrá. 243, 1–74. http://www.metropol.gov.co/CalidadAire/isdocConvenio243/Simulación Aristizabal, E., & Yokota, S. (2008). Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Las Ciecias de La Tierra, 24, 5–18. http://www.revistas.unal.edu.co/index.php/rbct/article/viewArticle/9268 Baklanov, A., Grimmond, C., Mahura, A., & Athanassiadou, M. (2009). Meteorological and air quality models for urban areas. Baklanov, A., Joffre, S. M., Piringer, M., Deserti, M., Middleton, D. R., Tombrou, M., Karppinen, A., Emeis, S., Prior, V., Rotach, M., & Kuchin, A. (2006). Towards estimating the mixing height in urban areas Recent experimental and modelling results - COST 715 Action. Balsley, B. B., Frehlich, R. G., Jensen, M. L., & Meillier, Y. (2006). High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease. Journal of the Atmospheric Sciences, 63(4), 1291–1307. https://doi.org/10.1175/jas3671.1 Balsley, B. B., Tjernström, M., & Svensson, G. (2008). TURBULENCE IN THE NOCTURNAL BOUNDARY LAYER : HIGHLY- STRUCTURED , STRONGLY VARIABLE , AND UBIQUITOUS. January. Banks, R. F., Tiana-Alsina, J., Rocadenbosch, F., & Baldasano, J. M. (2015). Performance Evaluation of the Boundary-Layer Height from Lidar and the Weather Research and Forecasting Model at an Urban Coastal Site in the North-East Iberian Peninsula. Boundary-Layer Meteorology, 157(2), 265–292. https://doi.org/10.1007/s10546-015-0056-2 Banta, R. M. (2008). Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophysica, 56(1), 58–87. https://doi.org/10.2478/s11600-007-0049-8 Banta, R. M., Berri, G., Blumen, W., Carruthers, D. J., Dalu, G. A., Durran, D. R., Egger, J., Garratt, J. R., Hanna, S. R., Hunt, J. C. R., Meroney, R. N., Miller, W., Neff, W. D., Nicolini, M., Paegle, J., Pielke, R. A., Smith, R. B., Strimaitis, D. G., Vukicevic, T., & Whiteman, C. D. (1990). Atmospheric Processes over Complex Terrain. In W. Blumen (Ed.), Atmospheric Processes over Complex Terrain. American Meteorological Society. https://doi.org/10.1007/978-1-935704-25-6 Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004a). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1 Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004b). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1 Banta, R. M., Pichugina, Y. L., & Newsom, R. K. (2003). Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. Journal of the Atmospheric Sciences, 60(20), 2549–2555. https://doi.org/10.1175/1520-0469(2003)060<2549:rbljpa>2.0.co;2 Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10(P2), 216–240. https://doi.org/10.1016/j.uclim.2014.03.011 Basu, S., Holtslag, A. A. M., Caporaso, L., Riccio, A., & Steeneveld, G. J. (2014). Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer. Boundary-Layer Meteorology, 150(3), 515–523. https://doi.org/10.1007/s10546-013-9878-y Battisti, A., Acevedo, O. C., Costa, F. D., Puhales, F. S., Anabor, V., & Degrazia, G. A. (2017). Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorology, 162(3), 523–546. https://doi.org/10.1007/s10546-016-0209-y Bedoya, J., & Martinez, E. (2008). Calidad del Aire en el Valle de Aburrá. Antioquia Colombia. Revista Dina, 158, 7–15. http://www.scielo.org.co/pdf/dyna/v76n158/a01v76n158.pdf Beu, C. M. L., Marques, M. T. A., Nakaema, W. M., Sakagami, Y., Santos, P. A. A., Moreira, A. C. de C. A., & Landulfo, E. (2016). Estimation of turbulence production by nocturnal low level jets in Sao Paulo (Brazil). Remote Sensing Technologies and Applications in Urban Environments, 10008, 1000804. https://doi.org/10.1117/12.2242013 Clements, C. B., Whiteman, C. D., & Horel, J. D. (2003). Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752–768. https://doi.org/10.1175/1520-0450(2003)042<0752:csaeia>2.0.co;2 Conangla, L., & Cuxart, J. (2006). On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Boundary-Layer Meteorology, 118(2), 379–400. https://doi.org/10.1007/s10546-005-0608-y Correa, M., Zuluaga, C., Palacio, C., Pérez, J., & Jiménez, J. (2008). Acoplamiento de la atmósfera libre con el campo de vientos locales en una región tropical de topografía compleja. Cao de estudio: Valle de Aburrá, Antioquia, Colombia. DYNA (Colombia), 76(158), 17–27. http://www.scopus.com/inward/record.url?eid=2-s2.0-75249103588&partnerID=40&md5=e60a6899153e19cf150c93bce39d8f02 Courtney, R. (n.d.). Atmospheric Stability. http://faculty.kutztown.edu/courtney/blackboard/physical/17stability/stability.html Cuxart, J. (2008). Nocturnal basin low-level jets: An integrated study. Acta Geophysica, 56(1), 100–113. https://doi.org/10.2478/s11600-007-0042-2 Cuxart, J., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Redondo, J. M., Cantalapiedra, I. R., & Conangla, L. (2000). Stable atmospheric boundary-layer experiment in spain (sables 98): a report. Sables 98, 337–370. Dai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., & Zhou, M. (2014). Determining Boundary-Layer Height from Aircraft Measurements. Boundary-Layer Meteorology, 152(3), 277–302. https://doi.org/10.1007/s10546-014-9929-z Darby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part II: Transport and Diffusion of Tracer under Stable Conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/jam2367.1 Doran, J. C., Fast, J. D., & Horel, J. (2002). the Vtmx 2000 Campaign. Bulletin of the American Meteorological Society, 83(4), 537–551. https://doi.org/10.1175/1520-0477(2002)083<0537:tvc>2.3.co;2 Duarte, H. F., Leclerc, M. Y., Zhang, G., Durden, D., Kurzeja, R., Parker, M., & Werth, D. (2015). Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Boundary-Layer Meteorology, 156(3), 349–370. https://doi.org/10.1007/s10546-015-0030-z Duine, G. J., Hedde, T., Roubin, P., Durand, P., Lothon, M., Lohou, F., Augustin, P., & Fourmentin, M. (2017). Characterization of valley flows within two confluent valleys under stable conditions: observations from the KASCADE field experiment. Quarterly Journal of the Royal Meteorological Society, 143(705), 1886–1902. https://doi.org/10.1002/qj.3049 Fernando, H. J. S., & Weil, J. C. (2010). Whither the stable boundary layer? Bulletin of the American Meteorological Society, 91(11). https://doi.org/10.1175/2010BAMS2770.1 Flórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana en el balance de energía superficial de una ciudad tropical de montaña. Caso de estudio: Medellín (Colombia). https://doi.org/10.13140/RG.2.2.19932.18562 Fochesatto, G. J. (2015). Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051–2060. https://doi.org/10.5194/amt-8-2051-2015 Galperin, B., Sukoriansky, S., & Anderson, P. S. (2007). On the critical Richardson number in stably stratified turbulence. Atmospheric Science Letters, 8(3), 65–69. https://doi.org/10.1002/asl.153 Garratt, J. (1992). The Atmospheric Boundary Layer. Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2013). The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147(1), 51–82. https://doi.org/10.1007/s10546-012-9771-0 Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., & Guest, P. S. (2005). Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorology, 116(2), 201–235. https://doi.org/10.1007/s10546-004-2729-0 Grachev, A. A., Leo, L. S., Sabatino, S. Di, Fernando, H. J. S., Pardyjak, E. R., & Fairall, C. W. (2016). Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Boundary-Layer Meteorology, 159(3), 469–494. https://doi.org/10.1007/s10546-015-0034-8 Grubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., & Chow, F. K. (2008). THE TERRAIN-INDUCED ROTOR EXPERIMENT. Bulletin of the American Meteorological Society, 89(10), 1513–1534. https://doi.org/10.1175/2008BAMS2487.1 Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G. P., Lolli, S., O’Dowd, C. D., Sauvage, L., Xueref-Rémy, I., Wastine, B., & Feist, D. G. (2012). Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorology, 143(1), 49–75. https://doi.org/10.1007/s10546-011-9643-z Hariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Vijaya Bhaskara Rao, S., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145–146, 27–44. Henao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31(October 2019), 100542. https://doi.org/10.1016/j.uclim.2019.100542 Herrera‐Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote‐sensing and radiosonde observations and the WRF model: the Aburrá Valley case‐study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583 Herrera Mejía, L. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá a partir de la información de sensores remotos y radiosondeos. In Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/51042/1/1128283242.2015.pdf Holzworth, G. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2 Hong, S.-Y., & Pan, H.-L. (1996). Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322–2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 Hu, X. M., Klein, P. M., Xue, M., Lundquist, J. K., Zhang, F., & Qi, Y. (2013). Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma city. Journal of Applied Meteorology and Climatology, 52(8), 1779–1802. https://doi.org/10.1175/JAMC-D-12-0256.1 Isaza, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del Valle de Aburrá. Jaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37(May 2018), 380–397. https://doi.org/10.1002/joc.5009 Jeričević, A., & Grisogono, B. (2006). The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, Series A: Dynamic Meteorology and Oceanography, 58(1), 19–27. https://doi.org/10.1111/j.1600-0870.2006.00153.x Jiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low‐Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934 Jiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical.Caso de estudio: Valle de Aburrá (Colombia). http://hdl.handle.net/10495/5738 Jiménez, M. A., Cuxart, J., & Martínez-Villagrasa, D. (2019). Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Quarterly Journal of the Royal Meteorological Society, 145(718), 356–375. https://doi.org/10.1002/qj.3437 Kaimal, J., & Finnigan, J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. In Notes. OXFORD UNIVERSITY PRESS. Klein, P. M., Hu, X. M., Shapiro, A., & Xue, M. (2016). Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma. Boundary-Layer Meteorology, 158(3), 383–408. https://doi.org/10.1007/s10546-015-0097-6 Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078 Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51–63. https://doi.org/10.1175/BAMS-D-11-00255.1 Lazcano, M. F. (2006). Estudio de las alturas características de la capa límite atmosférica en situaciones estables a partir de sondeos con globo cautivo y de observaciones micrometeorológicas en torre. 5a Asamblea Hispano-Portuguesa de Geodesia y Geofísica, 14–17. Leon, G. E., Zea, J. A., & Eslava, J. A. (2000). Circulación general del tropico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana, 1, 31–38. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero01/01_05.pdf Ma, Y., Yang, Y., Hu, X. M., & Gan, R. (2015). Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. Journal of Meteorological Research, 29(5), 747–763. https://doi.org/10.1007/s13351-015-4101-3 Mahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. Theoretical and Computational Fluid Dynamics, 11(3–4), 263–279. https://doi.org/10.1007/s001620050093 Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary Layer Meteorology. http://www.springerlink.com/index/V22623618852Q404.pdf%5Cnpapers2://publication/uuid/DFF73E3E-4AED-4A33-91B3-AD495B9B6812 Mahrt, L. (2003). Stably Stratified Boundary Layers. In Encyclopedia of Atmospheric Sciences (pp. 298–305). Mahrt, L. (2014). Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, 46(1), 23–45. https://doi.org/10.1146/annurev-fluid-010313-141354 Mahrt, L. (2017a). Directional Shear in the Nocturnal Atmospheric Surface Layer. Boundary-Layer Meteorology, 165(1), 1–7. https://doi.org/10.1007/s10546-017-0270-1 Mahrt, L. (2017b). Heat Flux in the Strong-Wind Nocturnal Boundary Layer. Boundary-Layer Meteorology, 163(2), 161–177. https://doi.org/10.1007/s10546-016-0219-9 Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., & Troen, I. (1979). An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology, 17(2), 247–264. https://doi.org/10.1007/BF00117983 Mahrt, L., Richardson, S., Stauffer, D., & Seaman, N. (2014). Nocturnal wind-directional shear in complex terrain. Quarterly Journal of the Royal Meteorological Society, 140(685), 2393–2400. https://doi.org/10.1002/qj.2369 Mahrt, L., Sun, J., Blumen, W., Delany, T., & Oncley, S. (1998). Nocturnal boundary-layer regimes l. mahrt. 255–278. Mahrt, L., Sun, J., & Stauffer, D. (2015). Dependence of Turbulent Velocities on Wind Speed and Stratification. Boundary-Layer Meteorology, 155(1), 55–71. https://doi.org/10.1007/s10546-014-9992-5 Mathieu, N., Strachan, I. B., Leclerc, M. Y., Karipot, A., & Pattey, E. (2005). Role of low-level jets and boundary-layer properties on the NBL budget technique. Agricultural and Forest Meteorology, 135(1–4), 35–43. https://doi.org/10.1016/j.agrformet.2005.10.001 Mesa, O., Poveda, G., & Carvajal, L. F. (1997). Introducción al clima de Colombia. In Universidad Nacional de Colombia, sede Medellín. Montoya-Duque, E. (2018). Caracterización de la Concentración de Contaminantes del Aire a partir del Estudio de la Dinámica Atmosférica en el Valle de Aburrá. Munkel, C., & Roininen, R. (2010). Investigation of Boundary Layer structures with ceilometer. AMS Annual Meeting, 3–7. http://www.vaisala.com/Vaisala Documents/Scientific papers/Investigation_of_boundary_layer_structures_with_ceilometer_using_a_novel_robust_algorithm.pdf NCEP. (2022). NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. https://doi.org/https://doi.org/10.5065/D65Q4T4Z Nieuwstadt, F. T. M. (1984). The Turbulent Structure of the Stable, Nocturnal Boundary Layer. In Journal of the Atmospheric Sciences (Vol. 41, Issue 14, pp. 2202–2216). https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2 Nisperuza Toledo, D. J. (2015). Propiedades Ópticas de los Aerosoles Atmosféricos en la Región Andina Colombiana Mediante Análisis de Mediciones Remotas: LIDAR, Fotométricas y Satelitales Daniel. http://www.bdigital.unal.edu.co/48465/ Ochoa, A., & Jiménez, J. F. (2008). Ciclo diurno de PM 10 en el Valle de Aburrá. Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/bitstream/handle/unal/7666/Ciclo_diurno_de_PM10_en_el_Valle_de_Aburrá.pdf?sequence=1&isAllowed=y Parker, M. J., & Raman, S. (1993). A case study of the nocturnal boundary layer over a complex terrain. Boundary-Layer Meteorology, 66(3), 303–324. https://doi.org/10.1007/BF00705480 Plocoste, T. (2015). ÉTUDE DE LA DISPERSION NOCTURNE DE POLLUANTS ATMOSPHÉRIQUES ISSUS D’UNE DÉCHARGE D’ORDURES MÉNAGÈRES MISE EN ÉVIDENCE D’UN ÎLOT DE CHALEUR URBAIN (Issue April 2013). https://doi.org/10.13140/2.1.4639.7765 Poulos, B. Y. G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R. O. B., Cuxart, J., Terradellas, E., Balsley, B. E. N., & Jensen, M. (2002). CASES-99 : A Comprehensive Nocturnal Boundary Layer. December 2001. Poveda, G., & Bedoya, M. (2015). Mountain Tropical Rainfall: Evidence of Phase-Locking between the Diurnal, Annual and Interannual Cycles in the Andes of Colombia. December, 1. Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1 Rama Krishna, T. V. B. P. S., Sharan, M., Gopalakrishnan, S. G., & Aditi. (2003). Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. Journal of Applied Meteorology, 42(7), 952–969. https://doi.org/10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2 Rendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1 Richardson, H., Basu, S., & Holtslag, A. A. M. (2013). Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Boundary-Layer Meteorology, 148(1), 93–109. https://doi.org/10.1007/s10546-013-9812-3 Roldán, N., Hoyos, C. D., & Herrera, L. (2017). Direct and Indirect Effects of Precipitation on Particulate Matter Concentration in the Aburrá Valley. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2017AGUFM.A44D..07R/ Saeed, U., Rocadenbosch, F., & Crewell, S. (2016). Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 6895–6906. https://doi.org/10.1109/TGRS.2016.2586298 Sales, M. J. (2016). Modelización de la capa límite planetaria bajo condiciones de forzamiento atmosférico mesoescalar. 126. Schepanski, K., Knippertz, P., Fiedler, S., Timouk, F., & Demarty, J. (2015). The sensitivity of nocturnal low-level jets and near-surface winds over the Sahel to model resolution, initial conditions and boundary-layer set-up. Quarterly Journal of the Royal Meteorological Society, 141(689), 1442–1456. https://doi.org/10.1002/qj.2453 Seaman, N. L., Gaudet, B. J., Stauffer, D. R., Mahrt, L., Richardson, S. J., Zielonka, J. R., & Wyngaard, J. C. (2012). Numerical Prediction of Submesoscale Flow in the Nocturnal Stable Boundary Layer over Complex Terrain. 956–977. https://doi.org/10.1175/MWR-D-11-00061.1 Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7), 1001–1027. https://doi.org/10.1016/S1352-2310(99)00349-0 Serafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Precesses in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102 Serna, L. M., Arias, P. A., & Vieira, S. C. (2018). Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. 42(165), 410-421Serna, L. M., Arias, P. A., Vieira, S. C. Shin, H. H., & Hong, S. Y. (2011). Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139(2), 261–281. https://doi.org/10.1007/s10546-010-9583-z Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D. E., Duda, G. K., Huang, X., Wang, W., & Powers, G. N. (2008). A Description of the Advanced Research WRF Version 3. https://doi.org/10.5065/D68S4MVH Steeneveld, G.-J. (2011). Stable Boundary Layer Issues. Proceedings of Workshop Diurnal Cycles and the Stable Boundary Layer, January 2012, 25–36. https://doi.org/10.1007/978-94-009-3027-8_12 Strang, E. J., & Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. Journal of Fluid Mechanics, 428, 349–386. https://doi.org/10.1017/S0022112000002706 Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Book, 13, 666. https://doi.org/10.1007/978-94-009-3027-8 Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169 Svensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de BruiJBN, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., … Zampieri, M. (2011). Evaluation of the diurnal cycle in the Atmospheric Boundary Layer over land as Represented by a Variety of Single-Column models: The second GABLS EXperiment. Boundary-Layer Thomas, C., Stauffer, D., Zeeman, M., Richardson, S., Seaman, N., & Mahrt, L. (2012). Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions. Boundary-Layer Meteorology, 147(2), 179–199. https://doi.org/10.1007/s10546-012-9782-x Tjernström, M., Balsley, B. B., Svensson, G., & Nappo, C. J. (2009). The effects of critical layers on residual layer turbulence. Journal of the Atmospheric Sciences, 66(2), 468–480. https://doi.org/10.1175/2008JAS2729.1 Tombrou, M., Founda, D., & Boucouvala, D. (1998). Nocturnal boundary layer height prediction from surface routine meteorological data. Meteorology and Atmospheric Physics, 68(3–4), 177–186. https://doi.org/10.1007/BF01030209 Velásquez García, M. P. (2019). Caracterización meteorológica de la atmósfera en presencia de nubes bajas sobre zona plana del Valle en el Aburra. https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/InvestigacionSIATA/Tesis-Caracterizacion-Atmósfera.pdf Velasteguí, A. X. H., Limáico Nieto, C. T., Cahueñas, N. P. P., & Parra, M. I. F. (2018). Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Revista Brasileira de Meteorologia, 33(2), 336–343. https://doi.org/10.1590/0102-7786332015 Viana, S. (2011a). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdf Salmond, J. A., & McKendry, I. G. (2005). A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Progress in Physical Geography, 29(2), 171–188. https://doi.org/10.1191/0309133305pp442ra Viana, S. (2011). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdf Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. Elsevier Science. Wang, W., Mao, F., Gong, W., Pan, Z., & Du, L. (2016). Evaluating the governing factors of variability in nocturnal boundary layer height based on elastic lidar in Wuhan. International Journal of Environmental Research and Public Health, 13(11), 1–12. https://doi.org/10.3390/ijerph13111071 Whiteman, C. D., Lehner, M., Hoch, S. W., Adler, B., Kalthoff, N., & Haiden, T. (2018). Katabatically Driven Cold Air Intrusions into a Basin Atmosphere. Journal of Applied Meteorology and Climatology, 57(2), 435–455. https://doi.org/10.1175/JAMC-D-17-0131.1 Wyngaard, J. C. (1990). Scalar fluxes in the planetary boundary layer - Theory, modeling, and measurement. Boundary-Layer Meteorology, 50(1–4), 49–75. https://doi.org/10.1007/BF00120518 Xing-Sheng, L., Gaynor, J. E., & Kaimal, J. C. (1983). A study of multiple stable layers in the nocturnal lower atmosphere. Boundary-Layer Meteorology, 26(2), 157–168. https://doi.org/10.1007/BF00121540 Yagüe, C., Viana, S., Maqueda, G., Lazcano, M., Morales, G., & Rees, J. M. (2007). A Study on the Nocturnal Atmospheric Boundary Layer : SABLES2006. Física de La Tierra, 19, 37–53. http://revistas.ucm.es/index.php/FITE/article/view/FITE0707110037A/11535 Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1 Yoshino, M. M. (1984). Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal, 8(3), 235–250. https://doi.org/10.1007/BF00446473 Yuval, Levi, Y., Dayan, U., Levy, I., & Broday, D. M. (2020). On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmospheric Research, 231(September 2019), 104675. https://doi.org/10.1016/j.atmosres.2019.104675 Zapata Henao, M. (2015). Análisis del impacto de la interacción suelo-atmósfera en las condiciones meteorológicas del Valle de Aburra utilizando el modelo WRF. http://www.bdigital.unal.edu.co/54503/ Zardi, D., & Whiteman, C. D. (2013). Mountain Weather Research and Forecasting. https://doi.org/10.1007/978-94-007-4098-3 Zhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang, L., & Zhu, T. (2020). Research Progress on Estimation of the Atmospheric Boundary Layer Height. Journal of Meteorological Research, 34(3), 482–498. https://doi.org/10.1007/s13351-020-9910-3 Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., & Chen, J. (2014). On the computation of planetary boundary-layer height using the bulk Richardson number method. Geoscientific Model Development, 7(6), 2599–2611. https://doi.org/10.5194/gmd-7-2599-2014 Zilitinkevich, S., & Baklanov, A. (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorology, 105(3), 389–409. https://doi.org/10.1023/A:1020376832738 Zilitinkevich, S., Esau, I., & Baklanov, A. (2007). Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quarterly Journal of the Royal Meteorological Society, 133(622), 265–271. https://doi.org/10.1002/qj.27 Zou, J., Sun, J., Liu, G., Yuan, R., & Zhang, H. (2018). Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research: Atmospheres, 123(4), 2017–2036. https://doi.org/10.1002/2017JD027041 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
89 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias y Medo Ambiente |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82085/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82085/2/1152442900.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82085/3/1152442900.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 1c83118486b8522a7bb75719c43042a2 d133230c2fcde2a6fdeaf96da8090768 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089419486920704 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Mejía, José Fernando (Thesis advisor)bef708a01979fda20e25724833fbcba8600Ramírez Cardona, Álvaro82f7baf0dba28d0c5c06f357cce73c622022-08-24T21:50:28Z2022-08-24T21:50:28Z2022-08-24https://repositorio.unal.edu.co/handle/unal/82085Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasEsta investigación caracterizó la estructura térmica y dinámica de la capa límite nocturna para el año 2017 en el Valle de Aburrá–Colombia, un área urbana tropical con topografía compleja. Se utilizaron registros provenientes de un radiómetro de microondas, un radar perfilador de vientos, un ceilómetro, estaciones meteorológicas y el modelo WRF-ARW acoplado al modelo de parametrización urbana SLUCM. Este último fue ejecutado con seis esquemas de parametrización distintos de la capa límite atmosférica, para 33 noches distribuidas en el periodo de estudio. Un análisis exploratorio fue ejecutado para identificar procesos espacio-temporales usando variables de estado como los vientos, el número de Richardson aproximado, la temperatura potencial virtual y la intensidad de retrodispersión. Mediante un análisis de sensibilidad de los registros se encontró que el espesor de la capa límite nocturna corresponde a un número de Richardson crítico de 0,5. Además se evaluó el modelo para las horas de la noche y se encontró un desempeño aceptable del esquema de parametrización MYNN. También se identificaron patrones de circulación asociados a un jet de bajo nivel, inversiones térmicas, vientos catabáticos y acoplamiento de los vientos alisios con los vientos orográficos. Se observó que los trimestres junio-julio-agosto y septiembre-octubre-noviembre son más estables dinámicamente, mientras que los trimestres de diciembre-enero-febrero y marzo-abril-mayo lo son más desde el punto de vista estático. Finalmente, se concluye que los espesores de la capa límite nocturna en el Valle de Aburrá son relativamente bajos, con condiciones de velocidades significantes al principio de la noche, pero al final de la noche con velocidades muy cercanas a cero y con una estabilidad atmosférica cada vez fortaleciéndose más por el enfriamiento radiativo. (texto tomado de la fuente)This research characterized the thermal structure and dynamics of the nocturnal boundary layer for the year 2017 in the Aburrá Valley-Colombia, a tropical urban area with complex topography. Records from a microwave radiometer, a wind profiler radar, a ceilometer, meteorological stations, and the WRF-ARW model coupled to the SLUCM urban parameterization model were used. This last one was run with six different atmospheric boundary layer parameterization schemes, for 33 nights distributed in the study period. An exploratory analysis was performed to detect spatio-temporal processes using state variables such as winds, bulk Richardson number, virtual potential temperature and backscatter. Through a sensitivity analysis of the records, it was found that the thickness of the nocturnal boundary layer corresponds to a critical Richardson number of 0,5. In addition, the model was evaluated during night hours and an acceptable performance of the MYNN parameterization scheme was found. Circulation patterns associated with a low-level jet, thermal inversions, katabatic winds and coupling of trade winds with orographic winds were also identified. It was observed that the quarters of june-july-august and september-october-november are more dynamically stable, and whereas those of the december-january-february and march-april-may are more statically stable. Finally, it is concluded that the thicknesses of the nocturnal boundary layer in the Aburrá Valley are relatively low, with significant velocities at the beginning of the night, but at the end of the night with velocities very close to zero and with atmospheric stability becoming increasingly stronger due to radiative cooling.MaestríaMagíster en Ingeniería - Recursos HidráulicosMeteorología urbana y de montañasÁrea Curricular de Medio Ambiente89 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosDepartamento de Geociencias y Medo AmbienteFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresCalidad del aireMeteorología dinámicaEstado atmosférico - Efectos de la actividad solarMeteorología urbana y de montañasPatrones de circulaciónCapa límite nocturnaEstabilidad atmosféricaTerreno complejoArea urbana tropicalNúmero de Richardson aproximadoUrban and mountain meteorologyUrban and mountain meteorologyCirculation patternsNocturnal boundary layerAtmospheric stabilityComplex terrainTropical urban areaBulk Richardson numberLa atmósfera nocturna en un área urbana tropical de terreno complejo. Caso de estudio: el Valle de Aburrá (Colombia)The nocturnal atmosphere in a tropical urban area of complex terrain. Case study: Aburrá Valley (Colombia)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAcevedo, O. C., Mahrt, L., Puhales, F. S., Costa, F. D., Medeiros, L. E., & Degrazia, G. A. (2016). Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 142(695), 693–702. https://doi.org/10.1002/qj.2693Acevedo, O. C., Moraes, O. L. L., Degrazia, G. A., & Medeiros, L. E. (2006). Intermittency and the exchange of scalars in the nocturnal surface layer. Boundary-Layer Meteorology, 119(1), 41–55. https://doi.org/10.1007/s10546-005-9019-3Adler, B., Babia, K., Kalthoff, N., Lohou, F., Lothon, M., Dione, C., Pedruzo-Bagazgoitia, X., & Andersen, H. (2019). Nocturnal low-level clouds in the atmospheric boundary layer over southern West Africa: An observation-based analysis of conditions and processes. Atmospheric Chemistry and Physics, 19(1), 663–681. https://doi.org/10.5194/acp-19-663-2019Aliabadi, A., Staebler, R., de Grandpré, J., Zadra, A., & Vaillancourt, P. (2016). Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under Statically Stable Conditions : Comparison of Estimated Atmospheric Boundary Layer Mixing Height in the Arctic and Southern Great Plains under St. February 2016. https://doi.org/10.1080/07055900.2015.1119100Arduini, G., Arduini, G., Stable, W., Processes, B., & Valleys, A. (2017). Wintertime Stable Boundary-Layer Processes in Alpine Valleys To cite this version : HAL Id : tel-01643685 Processus de la Couche Limite Atmosphérique Stable Hivernale en Vallée Alpine.Área Metropolitana del Valle de Aburrá. (2017). Condiciones especiales del Valle de Aburrá. Factores que incrementan la contaminación en el valle. https://www.metropol.gov.co/ambientales/calidad-del-aire/generalidades/condiciones-especialesÁrea Metropolitana del Valle de Aburrá. (2020). Informe Anual de Calidad del Aire 2020 Contrato Ciencia y Tecnologıa 871 de 2020. 94. https://www.metropol.gov.co/ambiental/calidad-del-aire/informes_red_calidaddeaire/Informe-Anual-Aire-2020.pdfÁrea Metropolitana del Valle de Aburrá. (2013). Simulación de Procesos Dispersivos en el Valle de Aburrá. 243, 1–74. http://www.metropol.gov.co/CalidadAire/isdocConvenio243/SimulaciónAristizabal, E., & Yokota, S. (2008). Evolución geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Las Ciecias de La Tierra, 24, 5–18. http://www.revistas.unal.edu.co/index.php/rbct/article/viewArticle/9268Baklanov, A., Grimmond, C., Mahura, A., & Athanassiadou, M. (2009). Meteorological and air quality models for urban areas.Baklanov, A., Joffre, S. M., Piringer, M., Deserti, M., Middleton, D. R., Tombrou, M., Karppinen, A., Emeis, S., Prior, V., Rotach, M., & Kuchin, A. (2006). Towards estimating the mixing height in urban areas Recent experimental and modelling results - COST 715 Action.Balsley, B. B., Frehlich, R. G., Jensen, M. L., & Meillier, Y. (2006). High-Resolution In Situ Profiling through the Stable Boundary Layer: Examination of the SBL Top in Terms of Minimum Shear, Maximum Stratification, and Turbulence Decrease. Journal of the Atmospheric Sciences, 63(4), 1291–1307. https://doi.org/10.1175/jas3671.1Balsley, B. B., Tjernström, M., & Svensson, G. (2008). TURBULENCE IN THE NOCTURNAL BOUNDARY LAYER : HIGHLY- STRUCTURED , STRONGLY VARIABLE , AND UBIQUITOUS. January.Banks, R. F., Tiana-Alsina, J., Rocadenbosch, F., & Baldasano, J. M. (2015). Performance Evaluation of the Boundary-Layer Height from Lidar and the Weather Research and Forecasting Model at an Urban Coastal Site in the North-East Iberian Peninsula. Boundary-Layer Meteorology, 157(2), 265–292. https://doi.org/10.1007/s10546-015-0056-2Banta, R. M. (2008). Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophysica, 56(1), 58–87. https://doi.org/10.2478/s11600-007-0049-8Banta, R. M., Berri, G., Blumen, W., Carruthers, D. J., Dalu, G. A., Durran, D. R., Egger, J., Garratt, J. R., Hanna, S. R., Hunt, J. C. R., Meroney, R. N., Miller, W., Neff, W. D., Nicolini, M., Paegle, J., Pielke, R. A., Smith, R. B., Strimaitis, D. G., Vukicevic, T., & Whiteman, C. D. (1990). Atmospheric Processes over Complex Terrain. In W. Blumen (Ed.), Atmospheric Processes over Complex Terrain. American Meteorological Society. https://doi.org/10.1007/978-1-935704-25-6Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004a). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004b). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part I: Evolution and Effects on Local Flows. Journal of Applied Meteorology, 43(10), 1348–1365. https://doi.org/10.1175/JAM2142.1Banta, R. M., Pichugina, Y. L., & Newsom, R. K. (2003). Relationship between Low-Level Jet Properties and Turbulence Kinetic Energy in the Nocturnal Stable Boundary Layer. Journal of the Atmospheric Sciences, 60(20), 2549–2555. https://doi.org/10.1175/1520-0469(2003)060<2549:rbljpa>2.0.co;2Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10(P2), 216–240. https://doi.org/10.1016/j.uclim.2014.03.011Basu, S., Holtslag, A. A. M., Caporaso, L., Riccio, A., & Steeneveld, G. J. (2014). Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer. Boundary-Layer Meteorology, 150(3), 515–523. https://doi.org/10.1007/s10546-013-9878-yBattisti, A., Acevedo, O. C., Costa, F. D., Puhales, F. S., Anabor, V., & Degrazia, G. A. (2017). Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorology, 162(3), 523–546. https://doi.org/10.1007/s10546-016-0209-yBedoya, J., & Martinez, E. (2008). Calidad del Aire en el Valle de Aburrá. Antioquia Colombia. Revista Dina, 158, 7–15. http://www.scielo.org.co/pdf/dyna/v76n158/a01v76n158.pdfBeu, C. M. L., Marques, M. T. A., Nakaema, W. M., Sakagami, Y., Santos, P. A. A., Moreira, A. C. de C. A., & Landulfo, E. (2016). Estimation of turbulence production by nocturnal low level jets in Sao Paulo (Brazil). Remote Sensing Technologies and Applications in Urban Environments, 10008, 1000804. https://doi.org/10.1117/12.2242013Clements, C. B., Whiteman, C. D., & Horel, J. D. (2003). Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah. Journal of Applied Meteorology, 42(6), 752–768. https://doi.org/10.1175/1520-0450(2003)042<0752:csaeia>2.0.co;2Conangla, L., & Cuxart, J. (2006). On the turbulence in the upper part of the low-level jet: An experimental and numerical study. Boundary-Layer Meteorology, 118(2), 379–400. https://doi.org/10.1007/s10546-005-0608-yCorrea, M., Zuluaga, C., Palacio, C., Pérez, J., & Jiménez, J. (2008). Acoplamiento de la atmósfera libre con el campo de vientos locales en una región tropical de topografía compleja. Cao de estudio: Valle de Aburrá, Antioquia, Colombia. DYNA (Colombia), 76(158), 17–27. http://www.scopus.com/inward/record.url?eid=2-s2.0-75249103588&partnerID=40&md5=e60a6899153e19cf150c93bce39d8f02Courtney, R. (n.d.). Atmospheric Stability. http://faculty.kutztown.edu/courtney/blackboard/physical/17stability/stability.htmlCuxart, J. (2008). Nocturnal basin low-level jets: An integrated study. Acta Geophysica, 56(1), 100–113. https://doi.org/10.2478/s11600-007-0042-2Cuxart, J., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Redondo, J. M., Cantalapiedra, I. R., & Conangla, L. (2000). Stable atmospheric boundary-layer experiment in spain (sables 98): a report. Sables 98, 337–370.Dai, C., Wang, Q., Kalogiros, J. A., Lenschow, D. H., Gao, Z., & Zhou, M. (2014). Determining Boundary-Layer Height from Aircraft Measurements. Boundary-Layer Meteorology, 152(3), 277–302. https://doi.org/10.1007/s10546-014-9929-zDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal Low-Level Jet in a Mountain Basin Complex. Part II: Transport and Diffusion of Tracer under Stable Conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/jam2367.1Doran, J. C., Fast, J. D., & Horel, J. (2002). the Vtmx 2000 Campaign. Bulletin of the American Meteorological Society, 83(4), 537–551. https://doi.org/10.1175/1520-0477(2002)083<0537:tvc>2.3.co;2Duarte, H. F., Leclerc, M. Y., Zhang, G., Durden, D., Kurzeja, R., Parker, M., & Werth, D. (2015). Impact of Nocturnal Low-Level Jets on Near-Surface Turbulence Kinetic Energy. Boundary-Layer Meteorology, 156(3), 349–370. https://doi.org/10.1007/s10546-015-0030-zDuine, G. J., Hedde, T., Roubin, P., Durand, P., Lothon, M., Lohou, F., Augustin, P., & Fourmentin, M. (2017). Characterization of valley flows within two confluent valleys under stable conditions: observations from the KASCADE field experiment. Quarterly Journal of the Royal Meteorological Society, 143(705), 1886–1902. https://doi.org/10.1002/qj.3049Fernando, H. J. S., & Weil, J. C. (2010). Whither the stable boundary layer? Bulletin of the American Meteorological Society, 91(11). https://doi.org/10.1175/2010BAMS2770.1Flórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana en el balance de energía superficial de una ciudad tropical de montaña. Caso de estudio: Medellín (Colombia). https://doi.org/10.13140/RG.2.2.19932.18562Fochesatto, G. J. (2015). Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051–2060. https://doi.org/10.5194/amt-8-2051-2015Galperin, B., Sukoriansky, S., & Anderson, P. S. (2007). On the critical Richardson number in stably stratified turbulence. Atmospheric Science Letters, 8(3), 65–69. https://doi.org/10.1002/asl.153Garratt, J. (1992). The Atmospheric Boundary Layer.Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2013). The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147(1), 51–82. https://doi.org/10.1007/s10546-012-9771-0Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., & Guest, P. S. (2005). Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorology, 116(2), 201–235. https://doi.org/10.1007/s10546-004-2729-0Grachev, A. A., Leo, L. S., Sabatino, S. Di, Fernando, H. J. S., Pardyjak, E. R., & Fairall, C. W. (2016). Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum. Boundary-Layer Meteorology, 159(3), 469–494. https://doi.org/10.1007/s10546-015-0034-8Grubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., & Chow, F. K. (2008). THE TERRAIN-INDUCED ROTOR EXPERIMENT. Bulletin of the American Meteorological Society, 89(10), 1513–1534. https://doi.org/10.1175/2008BAMS2487.1Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G. P., Lolli, S., O’Dowd, C. D., Sauvage, L., Xueref-Rémy, I., Wastine, B., & Feist, D. G. (2012). Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe. Boundary-Layer Meteorology, 143(1), 49–75. https://doi.org/10.1007/s10546-011-9643-zHariprasad, K. B. R. R., Srinivas, C. V., Singh, A. B., Vijaya Bhaskara Rao, S., Baskaran, R., & Venkatraman, B. (2014). Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site. Atmospheric Research, 145–146, 27–44.Henao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31(October 2019), 100542. https://doi.org/10.1016/j.uclim.2019.100542Herrera‐Mejía, L., & Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote‐sensing and radiosonde observations and the WRF model: the Aburrá Valley case‐study. Quarterly Journal of the Royal Meteorological Society, 145(723), 2641–2665. https://doi.org/10.1002/qj.3583Herrera Mejía, L. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá a partir de la información de sensores remotos y radiosondeos. In Universidad Nacional de Colombia. http://www.bdigital.unal.edu.co/51042/1/1128283242.2015.pdfHolzworth, G. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2Hong, S.-Y., & Pan, H.-L. (1996). Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Monthly Weather Review, 124(10), 2322–2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2Hu, X. M., Klein, P. M., Xue, M., Lundquist, J. K., Zhang, F., & Qi, Y. (2013). Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma city. Journal of Applied Meteorology and Climatology, 52(8), 1779–1802. https://doi.org/10.1175/JAMC-D-12-0256.1Isaza, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del Valle de Aburrá.Jaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37(May 2018), 380–397. https://doi.org/10.1002/joc.5009Jeričević, A., & Grisogono, B. (2006). The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, Series A: Dynamic Meteorology and Oceanography, 58(1), 19–27. https://doi.org/10.1111/j.1600-0870.2006.00153.xJiménez‐Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low‐Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934Jiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical.Caso de estudio: Valle de Aburrá (Colombia). http://hdl.handle.net/10495/5738Jiménez, M. A., Cuxart, J., & Martínez-Villagrasa, D. (2019). Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Quarterly Journal of the Royal Meteorological Society, 145(718), 356–375. https://doi.org/10.1002/qj.3437Kaimal, J., & Finnigan, J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. In Notes. OXFORD UNIVERSITY PRESS.Klein, P. M., Hu, X. M., Shapiro, A., & Xue, M. (2016). Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma. Boundary-Layer Meteorology, 158(3), 383–408. https://doi.org/10.1007/s10546-015-0097-6Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models. Boundary-Layer Meteorology, 101(3), 329–358. https://doi.org/10.1023/A:1019207923078Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., & Horst, T. W. (2013). The persistent cold-air pool study. Bulletin of the American Meteorological Society, 94(1), 51–63. https://doi.org/10.1175/BAMS-D-11-00255.1Lazcano, M. F. (2006). Estudio de las alturas características de la capa límite atmosférica en situaciones estables a partir de sondeos con globo cautivo y de observaciones micrometeorológicas en torre. 5a Asamblea Hispano-Portuguesa de Geodesia y Geofísica, 14–17.Leon, G. E., Zea, J. A., & Eslava, J. A. (2000). Circulación general del tropico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana, 1, 31–38. http://ciencias.bogota.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero01/01_05.pdfMa, Y., Yang, Y., Hu, X. M., & Gan, R. (2015). Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF. Journal of Meteorological Research, 29(5), 747–763. https://doi.org/10.1007/s13351-015-4101-3Mahrt, L. (1998). Stratified atmospheric boundary layers and breakdown of models. Theoretical and Computational Fluid Dynamics, 11(3–4), 263–279. https://doi.org/10.1007/s001620050093Mahrt, L. (1999). Stratified Atmospheric Boundary Layers. Boundary Layer Meteorology. http://www.springerlink.com/index/V22623618852Q404.pdf%5Cnpapers2://publication/uuid/DFF73E3E-4AED-4A33-91B3-AD495B9B6812Mahrt, L. (2003). Stably Stratified Boundary Layers. In Encyclopedia of Atmospheric Sciences (pp. 298–305).Mahrt, L. (2014). Stably Stratified Atmospheric Boundary Layers. Annual Review of Fluid Mechanics, 46(1), 23–45. https://doi.org/10.1146/annurev-fluid-010313-141354Mahrt, L. (2017a). Directional Shear in the Nocturnal Atmospheric Surface Layer. Boundary-Layer Meteorology, 165(1), 1–7. https://doi.org/10.1007/s10546-017-0270-1Mahrt, L. (2017b). Heat Flux in the Strong-Wind Nocturnal Boundary Layer. Boundary-Layer Meteorology, 163(2), 161–177. https://doi.org/10.1007/s10546-016-0219-9Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., & Troen, I. (1979). An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Meteorology, 17(2), 247–264. https://doi.org/10.1007/BF00117983Mahrt, L., Richardson, S., Stauffer, D., & Seaman, N. (2014). Nocturnal wind-directional shear in complex terrain. Quarterly Journal of the Royal Meteorological Society, 140(685), 2393–2400. https://doi.org/10.1002/qj.2369Mahrt, L., Sun, J., Blumen, W., Delany, T., & Oncley, S. (1998). Nocturnal boundary-layer regimes l. mahrt. 255–278.Mahrt, L., Sun, J., & Stauffer, D. (2015). Dependence of Turbulent Velocities on Wind Speed and Stratification. Boundary-Layer Meteorology, 155(1), 55–71. https://doi.org/10.1007/s10546-014-9992-5Mathieu, N., Strachan, I. B., Leclerc, M. Y., Karipot, A., & Pattey, E. (2005). Role of low-level jets and boundary-layer properties on the NBL budget technique. Agricultural and Forest Meteorology, 135(1–4), 35–43. https://doi.org/10.1016/j.agrformet.2005.10.001Mesa, O., Poveda, G., & Carvajal, L. F. (1997). Introducción al clima de Colombia. In Universidad Nacional de Colombia, sede Medellín.Montoya-Duque, E. (2018). Caracterización de la Concentración de Contaminantes del Aire a partir del Estudio de la Dinámica Atmosférica en el Valle de Aburrá.Munkel, C., & Roininen, R. (2010). Investigation of Boundary Layer structures with ceilometer. AMS Annual Meeting, 3–7. http://www.vaisala.com/Vaisala Documents/Scientific papers/Investigation_of_boundary_layer_structures_with_ceilometer_using_a_novel_robust_algorithm.pdfNCEP. (2022). NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. https://doi.org/https://doi.org/10.5065/D65Q4T4ZNieuwstadt, F. T. M. (1984). The Turbulent Structure of the Stable, Nocturnal Boundary Layer. In Journal of the Atmospheric Sciences (Vol. 41, Issue 14, pp. 2202–2216). https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2Nisperuza Toledo, D. J. (2015). Propiedades Ópticas de los Aerosoles Atmosféricos en la Región Andina Colombiana Mediante Análisis de Mediciones Remotas: LIDAR, Fotométricas y Satelitales Daniel. http://www.bdigital.unal.edu.co/48465/Ochoa, A., & Jiménez, J. F. (2008). Ciclo diurno de PM 10 en el Valle de Aburrá. Universidad Nacional de Colombia, Sede Medellín. https://repositorio.unal.edu.co/bitstream/handle/unal/7666/Ciclo_diurno_de_PM10_en_el_Valle_de_Aburrá.pdf?sequence=1&isAllowed=yParker, M. J., & Raman, S. (1993). A case study of the nocturnal boundary layer over a complex terrain. Boundary-Layer Meteorology, 66(3), 303–324. https://doi.org/10.1007/BF00705480Plocoste, T. (2015). ÉTUDE DE LA DISPERSION NOCTURNE DE POLLUANTS ATMOSPHÉRIQUES ISSUS D’UNE DÉCHARGE D’ORDURES MÉNAGÈRES MISE EN ÉVIDENCE D’UN ÎLOT DE CHALEUR URBAIN (Issue April 2013). https://doi.org/10.13140/2.1.4639.7765Poulos, B. Y. G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R. O. B., Cuxart, J., Terradellas, E., Balsley, B. E. N., & Jensen, M. (2002). CASES-99 : A Comprehensive Nocturnal Boundary Layer. December 2001.Poveda, G., & Bedoya, M. (2015). Mountain Tropical Rainfall: Evidence of Phase-Locking between the Diurnal, Annual and Interannual Cycles in the Andes of Colombia. December, 1.Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1Rama Krishna, T. V. B. P. S., Sharan, M., Gopalakrishnan, S. G., & Aditi. (2003). Mean structure of the nocturnal boundary layer under strong and weak wind conditions: EPRI case study. Journal of Applied Meteorology, 42(7), 952–969. https://doi.org/10.1175/1520-0450(2003)042<0952:MSOTNB>2.0.CO;2Rendón, A. M., Salazar, J. F., Palacio, C. A., & Wirth, V. (2015). Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. Journal of Applied Meteorology and Climatology, 54(2), 302–321. https://doi.org/10.1175/JAMC-D-14-0111.1Richardson, H., Basu, S., & Holtslag, A. A. M. (2013). Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Boundary-Layer Meteorology, 148(1), 93–109. https://doi.org/10.1007/s10546-013-9812-3Roldán, N., Hoyos, C. D., & Herrera, L. (2017). Direct and Indirect Effects of Precipitation on Particulate Matter Concentration in the Aburrá Valley. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2017AGUFM.A44D..07R/Saeed, U., Rocadenbosch, F., & Crewell, S. (2016). Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 6895–6906. https://doi.org/10.1109/TGRS.2016.2586298Sales, M. J. (2016). Modelización de la capa límite planetaria bajo condiciones de forzamiento atmosférico mesoescalar. 126.Schepanski, K., Knippertz, P., Fiedler, S., Timouk, F., & Demarty, J. (2015). The sensitivity of nocturnal low-level jets and near-surface winds over the Sahel to model resolution, initial conditions and boundary-layer set-up. Quarterly Journal of the Royal Meteorological Society, 141(689), 1442–1456. https://doi.org/10.1002/qj.2453Seaman, N. L., Gaudet, B. J., Stauffer, D. R., Mahrt, L., Richardson, S. J., Zielonka, J. R., & Wyngaard, J. C. (2012). Numerical Prediction of Submesoscale Flow in the Nocturnal Stable Boundary Layer over Complex Terrain. 956–977. https://doi.org/10.1175/MWR-D-11-00061.1Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., & Tercier, P. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmospheric Environment, 34(7), 1001–1027. https://doi.org/10.1016/S1352-2310(99)00349-0Serafin, S., Adler, B., Cuxart, J., De Wekker, S., Gohm, A., Grisogono, B., Kalthoff, N., Kirshbaum, D., Rotach, M., Schmidli, J., Stiperski, I., Večenaj, Ž., & Zardi, D. (2018). Exchange Precesses in the Atmospheric Boundary Layer Over Mountainous Terrain. Atmosphere, 9(3), 102. https://doi.org/10.3390/atmos9030102Serna, L. M., Arias, P. A., & Vieira, S. C. (2018). Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. 42(165), 410-421Serna, L. M., Arias, P. A., Vieira, S. C.Shin, H. H., & Hong, S. Y. (2011). Intercomparison of Planetary Boundary-Layer Parametrizations in the WRF Model for a Single Day from CASES-99. Boundary-Layer Meteorology, 139(2), 261–281. https://doi.org/10.1007/s10546-010-9583-zSkamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D. E., Duda, G. K., Huang, X., Wang, W., & Powers, G. N. (2008). A Description of the Advanced Research WRF Version 3. https://doi.org/10.5065/D68S4MVHSteeneveld, G.-J. (2011). Stable Boundary Layer Issues. Proceedings of Workshop Diurnal Cycles and the Stable Boundary Layer, January 2012, 25–36. https://doi.org/10.1007/978-94-009-3027-8_12Strang, E. J., & Fernando, H. J. S. (2001). Entrainment and mixing in stratified shear flows. Journal of Fluid Mechanics, 428, 349–386. https://doi.org/10.1017/S0022112000002706Stull, R. B. (1988). An Introduction to Boundary Layer Meteorology. Book, 13, 666. https://doi.org/10.1007/978-94-009-3027-8Sun, J., Lenschow, D. H., Burns, S. P., Banta, R. M., Newsom, R. K., Coulter, R., Frasier, S., Ince, T., Nappo, C., Balsley, B. B., Jensen, M., Mahrt, L., Miller, D., & Skelly, B. (2004). Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Boundary-Layer Meteorology, 110(2), 255–279. https://doi.org/10.1023/A:1026097926169Svensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de BruiJBN, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., … Zampieri, M. (2011). Evaluation of the diurnal cycle in the Atmospheric Boundary Layer over land as Represented by a Variety of Single-Column models: The second GABLS EXperiment. Boundary-LayerThomas, C., Stauffer, D., Zeeman, M., Richardson, S., Seaman, N., & Mahrt, L. (2012). Non-stationary Generation of Weak Turbulence for Very Stable and Weak-Wind Conditions. Boundary-Layer Meteorology, 147(2), 179–199. https://doi.org/10.1007/s10546-012-9782-xTjernström, M., Balsley, B. B., Svensson, G., & Nappo, C. J. (2009). The effects of critical layers on residual layer turbulence. Journal of the Atmospheric Sciences, 66(2), 468–480. https://doi.org/10.1175/2008JAS2729.1Tombrou, M., Founda, D., & Boucouvala, D. (1998). Nocturnal boundary layer height prediction from surface routine meteorological data. Meteorology and Atmospheric Physics, 68(3–4), 177–186. https://doi.org/10.1007/BF01030209Velásquez García, M. P. (2019). Caracterización meteorológica de la atmósfera en presencia de nubes bajas sobre zona plana del Valle en el Aburra. https://www.metropol.gov.co/ambiental/calidad-del-aire/Biblioteca-aire/InvestigacionSIATA/Tesis-Caracterizacion-Atmósfera.pdfVelasteguí, A. X. H., Limáico Nieto, C. T., Cahueñas, N. P. P., & Parra, M. I. F. (2018). Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Revista Brasileira de Meteorologia, 33(2), 336–343. https://doi.org/10.1590/0102-7786332015Viana, S. (2011a). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdfSalmond, J. A., & McKendry, I. G. (2005). A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Progress in Physical Geography, 29(2), 171–188. https://doi.org/10.1191/0309133305pp442raViana, S. (2011). Estudio de los procesos físicos que tienen lugar en la capa límite atmosférica nocturna a partir de campañas experimentales de campo [Universidad Complutense de Madrid]. http://eprints.ucm.es/16375/1/T32889.pdfWallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey. Elsevier Science.Wang, W., Mao, F., Gong, W., Pan, Z., & Du, L. (2016). Evaluating the governing factors of variability in nocturnal boundary layer height based on elastic lidar in Wuhan. International Journal of Environmental Research and Public Health, 13(11), 1–12. https://doi.org/10.3390/ijerph13111071Whiteman, C. D., Lehner, M., Hoch, S. W., Adler, B., Kalthoff, N., & Haiden, T. (2018). Katabatically Driven Cold Air Intrusions into a Basin Atmosphere. Journal of Applied Meteorology and Climatology, 57(2), 435–455. https://doi.org/10.1175/JAMC-D-17-0131.1Wyngaard, J. C. (1990). Scalar fluxes in the planetary boundary layer - Theory, modeling, and measurement. Boundary-Layer Meteorology, 50(1–4), 49–75. https://doi.org/10.1007/BF00120518Xing-Sheng, L., Gaynor, J. E., & Kaimal, J. C. (1983). A study of multiple stable layers in the nocturnal lower atmosphere. Boundary-Layer Meteorology, 26(2), 157–168. https://doi.org/10.1007/BF00121540Yagüe, C., Viana, S., Maqueda, G., Lazcano, M., Morales, G., & Rees, J. M. (2007). A Study on the Nocturnal Atmospheric Boundary Layer : SABLES2006. Física de La Tierra, 19, 37–53. http://revistas.ucm.es/index.php/FITE/article/view/FITE0707110037A/11535Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1Yoshino, M. M. (1984). Thermal belt and cold air drainage on the mountain slope and cold air lake in the basin at quiet, clear night. GeoJournal, 8(3), 235–250. https://doi.org/10.1007/BF00446473Yuval, Levi, Y., Dayan, U., Levy, I., & Broday, D. M. (2020). On the association between characteristics of the atmospheric boundary layer and air pollution concentrations. Atmospheric Research, 231(September 2019), 104675. https://doi.org/10.1016/j.atmosres.2019.104675Zapata Henao, M. (2015). Análisis del impacto de la interacción suelo-atmósfera en las condiciones meteorológicas del Valle de Aburra utilizando el modelo WRF. http://www.bdigital.unal.edu.co/54503/Zardi, D., & Whiteman, C. D. (2013). Mountain Weather Research and Forecasting. https://doi.org/10.1007/978-94-007-4098-3Zhang, H., Zhang, X., Li, Q., Cai, X., Fan, S., Song, Y., Hu, F., Che, H., Quan, J., Kang, L., & Zhu, T. (2020). Research Progress on Estimation of the Atmospheric Boundary Layer Height. Journal of Meteorological Research, 34(3), 482–498. https://doi.org/10.1007/s13351-020-9910-3Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., & Chen, J. (2014). On the computation of planetary boundary-layer height using the bulk Richardson number method. Geoscientific Model Development, 7(6), 2599–2611. https://doi.org/10.5194/gmd-7-2599-2014Zilitinkevich, S., & Baklanov, A. (2002). Calculation of the height of the stable boundary layer in practical applications. Boundary-Layer Meteorology, 105(3), 389–409. https://doi.org/10.1023/A:1020376832738Zilitinkevich, S., Esau, I., & Baklanov, A. (2007). Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quarterly Journal of the Royal Meteorological Society, 133(622), 265–271. https://doi.org/10.1002/qj.27Zou, J., Sun, J., Liu, G., Yuan, R., & Zhang, H. (2018). Vertical Variation of the Effects of Atmospheric Stability on Turbulence Statistics Within the Roughness Sublayer Over Real Urban Canopy. Journal of Geophysical Research: Atmospheres, 123(4), 2017–2036. https://doi.org/10.1002/2017JD027041EstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82085/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1152442900.2022.pdf1152442900.2022.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf9776393https://repositorio.unal.edu.co/bitstream/unal/82085/2/1152442900.2022.pdf1c83118486b8522a7bb75719c43042a2MD52THUMBNAIL1152442900.2022.pdf.jpg1152442900.2022.pdf.jpgGenerated Thumbnailimage/jpeg3662https://repositorio.unal.edu.co/bitstream/unal/82085/3/1152442900.2022.pdf.jpgd133230c2fcde2a6fdeaf96da8090768MD53unal/82085oai:repositorio.unal.edu.co:unal/820852023-08-07 23:03:57.403Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |