Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz

ilustraciones, gráficas, tablas

Autores:
Otero Jiménez, Vanessa
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81291
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81291
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Cascarilla de arroz
Enmiendas del suelo
Biotecnología vegetal
Rice husks
Soil amendments
Plant biotechnology
Residuos agrícolas
Degradación
Enzimas
Microorganismos
Ciclos biogeoquímicos
Tamo de arroz
NGS
Agricultural residues
Degradation
Enzymes
Microorganisms
Biogeochemical cycles
Rice straw
Next generation sequencing
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_8b3a0110ef89611e2d979b3b100f2e01
oai_identifier_str oai:repositorio.unal.edu.co:unal/81291
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
dc.title.translated.eng.fl_str_mv Determination of the effect of using rice straw on the structure and function of microbial community in rice crop soils
title Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
spellingShingle Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
630 - Agricultura y tecnologías relacionadas
Cascarilla de arroz
Enmiendas del suelo
Biotecnología vegetal
Rice husks
Soil amendments
Plant biotechnology
Residuos agrícolas
Degradación
Enzimas
Microorganismos
Ciclos biogeoquímicos
Tamo de arroz
NGS
Agricultural residues
Degradation
Enzymes
Microorganisms
Biogeochemical cycles
Rice straw
Next generation sequencing
title_short Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
title_full Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
title_fullStr Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
title_full_unstemmed Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
title_sort Determinación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arroz
dc.creator.fl_str_mv Otero Jiménez, Vanessa
dc.contributor.advisor.none.fl_str_mv Uribe Vélez, Daniel
Barreto Hernández, Emiliano
dc.contributor.author.none.fl_str_mv Otero Jiménez, Vanessa
dc.contributor.researchgroup.spa.fl_str_mv Microbiología Agrícola
Centro de Bioinformática
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Cascarilla de arroz
Enmiendas del suelo
Biotecnología vegetal
Rice husks
Soil amendments
Plant biotechnology
Residuos agrícolas
Degradación
Enzimas
Microorganismos
Ciclos biogeoquímicos
Tamo de arroz
NGS
Agricultural residues
Degradation
Enzymes
Microorganisms
Biogeochemical cycles
Rice straw
Next generation sequencing
dc.subject.agrovoc.spa.fl_str_mv Cascarilla de arroz
Enmiendas del suelo
Biotecnología vegetal
dc.subject.agrovoc.eng.fl_str_mv Rice husks
Soil amendments
Plant biotechnology
dc.subject.proposal.spa.fl_str_mv Residuos agrícolas
Degradación
Enzimas
Microorganismos
Ciclos biogeoquímicos
Tamo de arroz
dc.subject.proposal.eng.fl_str_mv NGS
Agricultural residues
Degradation
Enzymes
Microorganisms
Biogeochemical cycles
Rice straw
Next generation sequencing
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-26
dc.date.accessioned.none.fl_str_mv 2022-03-22T12:15:56Z
dc.date.available.none.fl_str_mv 2022-03-22T12:15:56Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81291
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81291
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abarca, C., Martinez, A., Caro, M., & Quintero, R. (1992). Optimización del proceso de fermentación para producir Bacillus thuringiensis Var. Aisawai. Universidad: Ciencia y Tecnología, 2(3), 51–56. http://www.ibt.unam.mx/alfredo/OptimizacionBthuringiensis.pdf
Abarenkov, K., Henrik Nilsson, R., Larsson, K., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., & Kõljalg, U. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
Abin, C. A., & Hollibaugh, J. T. (2016). Draft genome sequence for the type strain Vulcanibacillus modesticaldus BR, a strictly anaerobic, moderately thermophilic, and nitratereducing bacterium isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Genome Announcements, 4(6), 6–7. https://doi.org/10.1128/genomeA.01246-16
Abril, D., Navarro, E. A., & Abril, A. J. (2009). La paja de arroz, consecuencias de su manejo y alternativas de aprovechamiento. Revista de La Facultad de Agronomía, 17(January), 69–79.
Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35(1), 35–45. https://doi.org/10.1016/j.apsoil.2006.05.012
Adeolu, M., Alnajar, S., Naushad, S., & Gupta, R. S. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599. https://doi.org/10.1099/ijsem.0.001485
Agronet. (2019, August 2). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Ahmed, A. I., Omer, A. M., Ibrahim, A. I., & Agha, M. K. (2018). Brevibacillus Spp. in Agroecology: The Beneficial Impacts in Biocontrol of Plant Pathogens and Soil Bioremediation. Fungal Genomics & Biology, 08(02). https://doi.org/10.4172/2165-8056.1000157
Alam, S. . (1981). S . M . Alam Atomic Energy Agricultural Research Centre , Tandojam , Rice plants were grown in solution culture for a period of five weeks at pH ’ s ranging from 3 . 5 to 8 . 5 . Maximum dry matter was obtained at pH 5 . 5 , but substantial reductions in. 4, 247–260.
Alberto, M. C. R., Wassmann, R., Gummert, M., Buresh, R. J., Quilty, J. R., Correa, T. Q., Centeno, C. A. R., & Oca, G. M. (2015). Straw incorporated after mechanized harvesting of irrigated rice affects net emissions of CH4 and CO2 based on eddy covariance measurements. Field Crops Research, 184, 162–175. https://doi.org/10.1016/j.fcr.2015.10.004
Alef, K., & Nannipieri, P. (1995). Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry (pp. 311–373). Elsevier. https://doi.org/10.1016/B978-012513840-6/50022-7
Allison, S. D., & Martiny, J. B. H. (2009). Resistance, resilience, and redundancy in microbial communities. In the Light of Evolution, 2, 149–166. https://doi.org/10.17226/12501
Alvira, P., Negro, M., & Ballesteros, M. (2011). Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw.
Ambavaram, M. M. R., Krishnan, A., Trijatmiko, K. R., & Pereira, A. (2011). Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiology, 155(2), 916–931. https://doi.org/10.1104/pp.110.168641
Anasontzis, G. E., Thuy, N. T., Hang, D. T. M., Huong, H. T., Thanh, D. T., Hien, D. D., Thanh, V. N., & Olsson, L. (2017). Rice straw hydrolysis using secretomes from novel fungal isolates from Vietnam. Biomass and Bioenergy, 99, 11–20. https://doi.org/10.1016/j.biombioe.2017.02.008
Aulakh, M. S., Wassmann, R., Bueno, C., Kreuzwieser, J., & Rennenberg, H. (2001). Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 3(2), 139–148. https://doi.org/10.1055/s-2001-12905
Bacilio-jiménez, M., Aguilar-flores, S., Ventura-zapata, E., Pérez, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277.
Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72(2), 169–180. https://doi.org/10.1016/S0167-1987(03)00086-2
Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198. https://doi.org/10.1016/j.soilbio.2016.03.017
Banning, N. C., Maccarone, L. D., Fisk, L. M., & Murphy, D. V. (2015). Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Scientific Reports, 5(March), 1–8. https://doi.org/10.1038/srep11146
Bao, Y., Feng, Y., Stegen, J. C., Wu, M., Chen, R., Liu, W., Zhang, J., Li, Z., & Lin, X. (2020). Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil Biology and Biochemistry, 148(September 2019), 107866. https://doi.org/10.1016/j.soilbio.2020.107866
Barrera, S. E., Sarango-Flóres, S.-W., & Montenegro-Gómez, S.-P. (2019). The phyllosphere microbiome and its potential application in horticultural crops. A review. Revista Colombiana de Ciencias Hortícolas, 13(3), 384–396. https://doi.org/10.17584/rcch.2019v13i3.8405
Bastida, F., Torres, I. F., Hernández, T., & García, C. (2017). The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biology and Biochemistry, 113, 173–183. https://doi.org/10.1016/j.soilbio.2017.06.012
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
Bernaola, L., Cange, G., Way, M. O., Gore, J., Hardke, J., & Stout, M. (2018). Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Rice Science, 25(3), 169–174. https://doi.org/10.1016/j.rsci.2018.02.006
Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5(MAY), 1–14. https://doi.org/10.3389/fmicb.2014.00219
Bhattacharyya, P., & Barman, D. (2018). Crop Residue Management and Greenhouse Gases Emissions in Tropical Rice Lands. Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions, 323–335. https://doi.org/10.1016/B978-0-12-812128-3.00021-5
Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079
Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecology Letters, 16(SUPPL.1), 128–139. https://doi.org/10.1111/ele.12109
Blaud, A., Menon, M., van der Zaan, B., Lair, G. J., & Banwart, S. A. (2017). Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition. In Advances in Agronomy (1st ed., Vol. 142). Elsevier Inc. https://doi.org/10.1016/bs.agron.2016.10.006
Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310
Böhme, L., Langer, U., & Böhme, F. (2005). Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 109(1–2), 141–152. https://doi.org/10.1016/j.agee.2005.01.017
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
Borsetto, C., Amos, G. C. A., Da Rocha, U. N., Mitchell, A. L., Finn, R. D., Laidi, R. F., Vallin, C., Pearce, D. A., Newsham, K. K., & Wellington, E. M. H. (2019). Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome, 7(1), 1–11. https://doi.org/10.1186/s40168-019-0692-8
Bowles, T. M., Acosta-Martínez, V., Calderón, F., & Jackson, L. E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68, 252–262. https://doi.org/10.1016/j.soilbio.2013.10.004
Boyce, R., Chilana, P., & Rose, T. M. (2009). iCODEHOP: A new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp379
Breidenbach, B., & Conrad, R. (2015). Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Frontiers in Microbiology, 5(DEC), 1–16. https://doi.org/10.3389/fmicb.2014.00752
Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J., & Imberty, A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology, 16(2), 29–37. https://doi.org/10.1093/glycob/cwj016
Brown, M. V., Philip, G. K., Bunge, J. A., Smith, M. C., Bissett, A., Lauro, F. M., Fuhrman, J. A., & Donachie, S. P. (2009). Microbial community structure in the North Pacific ocean. ISME Journal, 3(12), 1374–1386. https://doi.org/10.1038/ismej.2009.86
Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6, 1–14. https://doi.org/10.1038/sdata.2019.7
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
Bustin, S. A. (2000). Absolute quantification of mrna using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25(2), 169–193. https://doi.org/10.1677/jme.0.0250169
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869
Carreño-Carreño, J. del P. (2019). Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/76023/1018449897.2019.pdf?sequence=1&isAllowed=y
Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-Buck, D., Mendes, L. W., van Ijcken, W. F. J., Gomez-Exposito, R., Elsayed, S. S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J. N., Mendes, R., van Wezel, G. P., Medema, M. H., & Raaijmakers, J. M. (2019). Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 366(6465), 606–612. https://doi.org/10.1126/science.aaw9285
Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., de Souza, E., Zorita, M. D., de-Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(4), 461–479. https://doi.org/10.1007/s00374-020-01463-y
Castilla, A. (2012). Manejo productivo de los residuos de la cosecha de arroz. Revista Arroz, 60(500), 10–17.
Characterization, S., & Turbe-doan, A. (2019). crossm Quinone-Dependent Member of Auxiliary Activity Family 12 of the Carbohydrate-Active Enzymes Database : Functional and. 85(24), 1–15.
Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk Density as related to Soil Texture, Organic Matter Content and available total Nutrients of Coimbatore Soil. International Journal of Scientific and Research Publications, 3(1), 2250–3153. www.ijsrp.org
Chen, S., Zheng, X., Wang, D., Chen, L., Xu, C., & Zhang, X. (2012). Effect of Long-Term Paddy-Upland Yearly Rotations on Rice ( Oryza sativa ) Yield , Soil Properties , and Bacteria Community Diversity. 2012. https://doi.org/10.1100/2012/279641
Chen, X., Jiang, N., Chen, Z., Tian, J., Sun, N., Xu, M., & Chen, L. (2017). Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 119. https://doi.org/10.1016/j.apsoil.2017.06.019
Chhabra, V., & Mehta, C. M. (2019). Rice straw management for sustainable agriculture-a review. Plant Archives, 19, 47–49.
Chialva, M., Ghignone, S., Cozzi, P., Lazzari, B., Bonfante, P., Abbruscato, P., & Lumini, E. (2020). Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 96(9), 1–16. https://doi.org/10.1093/femsec/fiaa146
Chivenge, P., Rubianes, F., Chin, D. Van, & Thach, T. Van. (2020). Sustainable Rice Straw Management. In M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management. Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8
Choi, J., Bach, E., Lee, J., Flater, J., Dooley, S., Howe, A., & Hofmockel, K. S. (2018). Spatial structuring of cellulase gene abundance and activity in soil. Frontiers in Environmental Science, 6(OCT), 1–10. https://doi.org/10.3389/fenvs.2018.00107
Cimermancic, P., Medema, M. H., Claesen, J., Kurita, K., Wieland Brown, L. C., Mavrommatis, K., Pati, A., Godfrey, P. A., Koehrsen, M., Clardy, J., Birren, B. W., Takano, E., Sali, A., Linington, R. G., & Fischbach, M. A. (2014). Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 158(2), 412–421. https://doi.org/10.1016/j.cell.2014.06.034
Cleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3), 229–240. https://doi.org/10.1007/s10533-006-9065-z
Conrad, R. (2007). Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy, 96(07), 1–63. https://doi.org/10.1016/S0065-2113(07)96005-8
Conrad, R. (2009). The global methane cycle: Recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
Cruz-Ramírez, C. A., Gómez-Ramírez, L. F., & Uribe-Vélez, D. (2017). Manejo biológico del tamo de arroz bajo diferentes relaciones C:N empleando co-inóculos microbianos y promotores de crecimiento vegetal. Revista Colombiana de Biotecnología, 19(2), 47–62. https://doi.org/10.15446/rev.colomb.biote.v19n2.70168
D’haeseleer, P., Gladden, J. M., Allgaier, M., Chain, P. S. G., Tringe, S. G., Malfatti, S. A., T., J., & Singer, S. W. (2013). Proteogenomic Analysis of a Thermophilic BacterialConsortium Adapted to Deconstruct Switchgrass.
Dai, Z., Liu, G., Chen, H., Chen, C., Wang, J., Ai, S., Wei, D., Li, D., Ma, B., Tang, C., Brookes, P. C., & Xu, J. (2020). Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME Journal, 14(3), 757–770. https://doi.org/10.1038/s41396-019-0567-9
Das, A. C. (1963). Ecology of soil fungi of rice fields 1. Succession of fungi on rice roots 2. Association of soil fungi with organic matter. Transactions of the British Mycological Society, 46(3), 431–443. https://doi.org/10.1016/s0007-1536(63)80037-6
Das, S., Bhattacharyya, P., & Adhya, T. K. (2011). Impact of elevated CO2, flooding, and temperature interaction on heterotrophic nitrogen fixation in tropical rice soils. Biology and Fertility of Soils, 47(1), 25–30. https://doi.org/10.1007/s00374-010-0496-2
de Souza, W. R. (2013). Microbial Degradation of Lignocellulosic Biomass. Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization. https://doi.org/10.5772/54325
de Vries, M. (2018). Functional and phylogenetic diversity of cellulase genes in agricultural soil under two different tillage treatments. 1–166. https://mediatum.ub.tum.de/doc/1437155/file.pdf
Debode, J., De Tender, C., Cremelie, P., Lee, A. S., Kyndt, T., Muylle, H., De Swaef, T., & Vandecasteele, B. (2018). Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control. Frontiers in Plant Science, 9(February). https://doi.org/10.3389/fpls.2018.00213
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/AEM.03006-05
Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295
Ding, L. J., Cui, H. L., Nie, S. A., Long, X. E., Duan, G. L., & Zhu, Y. G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 95(5), 1–13. https://doi.org/10.1093/femsec/fiz040
Dobermann, A., & Fairhurst, T. H. (2002). Rice straw management. Better Crops International, 16(January), 7–11.
Dobermann, Achim, & Fairhurst, T. (2000). Arroz: Desórdenes Nutricionales y Manejo de Nutrientes. 214.
Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2018). Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00033-5
Douglas, G., Maffei, V., Zaneveld, J., Yurgel, S., Brown, J., Taylor, C., Huttenhower, C., & Langille, M. (2019). PICRUSt2: An improved and customizable approach for metagenome inference. PICRUSt2: An Improved and Extensible Approach for Metagenome Inference, June, 672295. https://doi.org/10.1101/672295
Draganova, D., Valcheva, I., & Kuzmanova, Y. (2019). Effect of wheat straw and cellulose degrading fungi of genus Trichoderma on soil respiration and cellulase, betaglucosidase and soil carbon content. January. https://doi.org/10.15547/ast.2018.04.064
Dror, B., Jurkevitch, E., & Cytryn, E. (2020). State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities-A review. Soil Biology and Biochemistry, 147(April). https://doi.org/10.1016/j.soilbio.2020.107838
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381
Edwards, J. A., Santos-Medellín, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., Phillips, G., & Sundaresan, V. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 16(2), 1–28. https://doi.org/10.1371/journal.pbio.2003862
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8), E911–E920. https://doi.org/10.1073/PNAS.1414592112
Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., Sundaresan, V., & Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112
Edwards, J., Santos-Medellín, C., Nguyen, B., Kilmer, J., Liechty, Z., Veliz, E., Ni, J., Phillips, G., & Sundaresan, V. (2019). Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biology, 20(1), 1–14. https://doi.org/10.1186/s13059-019-1825-x
Eichorst, S. A., & Kuske, C. R. (2012). Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Applied and Environmental Microbiology, 78(7), 2316–2327. https://doi.org/10.1128/AEM.07313-11
Eichorst, S. A., Trojan, D., Roux, S., Herbold, C., Rattei, T., & Woebken, D. (2018). Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environmental Microbiology, 20(3), 1041–1063. https://doi.org/10.1111/1462-2920.14043
Eiland, F., Klamer, M., Lind, A. M., Leth, M., & Bååth, E. (2001). Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41(3), 272–280. https://doi.org/10.1007/s002480000071
Eivazi, F., & Tabatabai, M. A. (1977). Phosphates in soils. Soil Biology and Biochemistry, 9(1969), 167–172.
Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601–606. https://doi.org/10.1016/0038-0717(88)90141-1
Eivazi, F., & Tabatabai, M. A. (1990). Factors affecting glucosidase and galactosidase activities in soils. Soil Biology and Biochemistry, 22(7), 891–897. https://doi.org/10.1016/0038-0717(90)90126-K
Ekenler, M., & Tabatabai, M. A. (2003). Effects of liming and tillage systems on microbial biomass and glycosidases in soils. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-003-0664-8
Ekwue, E. I. (1990). Organic-matter effects on soil strength properties. Soil and Tillage Research, 16(3), 289–297. https://doi.org/10.1016/0167-1987(90)90102-J
El-Sobky, E. S. E. A. (2017). Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat (Triticum aestivum L.). Annals of Agricultural Sciences, 62(1), 113–120. https://doi.org/10.1016/j.aoas.2017.05.007
Elsas, J. D. van, Trevors, J. T., Jansson, J. K., & Nannipieri, P. (2006). Modern Soil Microbiology. In J. D. van Elsas, J. T. Trevors, J. K. Jansson, & P. Nannipieri (Eds.), Modern Soil Microbiology, Second Edition (3rd Editio). CRC Press. https://doi.org/10.1201/9781420015201
Eyre, A. W., Wang, M., Oh, Y., & Dean, R. A. (2019). Identification and characterization of the core rice seed microbiome. In Phytobiomes Journal (Vol. 3, Issue 2). https://doi.org/10.1094/PBIOMES-01-19-0009-R
FAOSTAT. (2020). FAOSTAT. http://www.fao.org/faostat/es/#data/QI
Fedearroz. (2020). Fedearroz. http://www.fedearroz.com.co/new/apr_public.php
Ferrando, L., & Fernández Scavino, A. (2015). Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiology Ecology, 91(9), 1–12. https://doi.org/10.1093/femsec/fiv104
Fierer, N., A.Bradford, M., & B.Jackson, R. (2007). TOWARD AN ECOLOGICAL CLASSIFICATION OF SOIL BACTERIA Edited by Foxit Reader. Ecology, 88(6), 1354–1364.
Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME Journal, 6(5), 1007–1017. https://doi.org/10.1038/ismej.2011.159
Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35(6), 837–843. https://doi.org/10.1016/S0038-0717(03)00123-8
Frankenberger, W. T., & Bingham, F. T. (1982). Influence of Salinity on Soil Enzyme Activities. Soil Science Society of America Journal, 46(6), 1173–1177. https://doi.org/10.2136/sssaj1982.03615995004600060011x
Fraser, T. D., Lynch, D. H., Bent, E., Entz, M. H., & Dunfield, K. E. (2015). Soil bacterial phoD gene abundance and expression in response toapplied phosphorus and long-term management. Soil Biology and Biochemistry, 88(May), 137–147. https://doi.org/10.1016/j.soilbio.2015.04.014
Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554–1558. https://doi.org/10.1016/j.envpol.2009.01.004
Gallardo, C. A., Baldrian, P., & López-mondéjar, R. (2020). Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass.
Gallego, V., García, M. T., & Ventosa, A. (2005). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, 55(1), 281–287. https://doi.org/10.1099/ijs.0.63319-0
Garbeva, P., Van Elsas, J. D., & Van Veen, J. A. (2008). Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil, 302(1–2), 19–32. https://doi.org/10.1007/s11104-007-9432-0
Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(29), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15(2), 283–306. https://doi.org/10.4067/s0718-95162015005000022
Gianfreda, Liliana, Rao, M. A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1–3), 265–279. https://doi.org/10.1016/j.scitotenv.2004.10.005
Good, A. I. J. (1953). Biometrika Trust The Population Frequencies of Species and the Estimation of Population Parameters THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS. Biometrika, 40(3), 237–264.
Grant, C., Bittman, S., Montreal, M., Plenchette, C., & Morel, C. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1), 3–14. https://doi.org/10.4141/P03-182
Gredner, B. (2010). Effect of rice straw application on hydrolytic enzyme activities in Chinese paddy soils. World, August, 13–16.
Grum-Grzhimaylo, A. A., Georgieva, M. L., Bondarenko, S. A., Debets, A. J. M., & Bilanenko, E. N. (2016). On the diversity of fungi from soda soils. Fungal Diversity, 76(1), 27–74. https://doi.org/10.1007/s13225-015-0320-2
Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: Multiplicity of biological roles. Applied Microbiology and Biotechnology, 85(5), 1241–1249. https://doi.org/10.1007/s00253-009-2331-y
Guo, B., Liang, Y., Li, Z., & Han, F. (2009). Phosphorus adsorption and bioavailability in a paddy soil amended with pig manure compost and decaying rice straw. Communications in Soil Science and Plant Analysis, 40(13–14), 2185–2199. https://doi.org/10.1080/00103620902960666
Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., Lei, Q., & Zhou, W. (2020). Analysis of microbial utilization of rice straw in paddy soil using a DNA-SIP approach. Soil Science Society of America Journal, 84(1), 99–114. https://doi.org/10.1002/saj2.20019
Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., & Zhou, W. (2018). Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-018-20293-5
Gupta, P. K., Sahai, S., Singh, N., Dixit, C. K., Singh, D. P., Sharma, C., Tiwari, M. K., Gupta, R. K., & Garg, S. C. (2004). Residue burning in rice-wheat cropping system: Causes and implications. Current Science, 87(12), 1713–1717.
Gweon, H. S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D. S., Griffiths, R. I., & Schonrogge, K. (2015). PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 6(8), 973–980. https://doi.org/10.1111/2041-210X.12399
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. NRC Canada Can. J. Microbiol, 43, 895–914. www.nrcresearchpress.com
Ham, J. H., Melanson, R. A., & Rush, M. C. (2011). Burkholderia glumae: Next major pathogen of rice? Molecular Plant Pathology, 12(4), 329–339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W., & Li, X. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal, 14(8), 1915–1928. https://doi.org/10.1038/s41396-020-0648-9
Hardoim, P. R., Andreote, F. D., Reinhold-Hurek, B., Sessitsch, A., van Overbeek, L. S., & van Elsas, J. D. (2011). Rice root-associated bacteria: Insights into community structures across10 cultivars. FEMS Microbiology Ecology, 77(1), 154–164. https://doi.org/10.1111/j.1574-6941.2011.01092.x
He, J. Z., Liu, X. Z., Zheng, Y., Shen, J. P., & Zhang, L. M. (2010). Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 46(3), 283–291. https://doi.org/10.1007/s00374-009-0426-3
Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F., & Taylor, M. (2017). crossm Condition. Applied and Environmental Microbiology, 83(1), 1–13.
Hernández León, F. A. (2016). VARIEDAD FL - FEDEARROZ 68 EN LA ZONA ABSORCIÓN DE NUTRIENTES DE LA DEL ARIARI-META. REVISTA ARROZ, 64(521), 4–12. http://www.fedearroz.com.co/revistanew/arroz521.pdf
Hernández, M., Dumont, M. G., Yuan, Q., & Conrad, R. (2015). Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Applied and Environmental Microbiology, 81(6), 2244–2253. https://doi.org/10.1128/AEM.03209-14
Hesse, C. N., Mueller, R. C., Vuyisich, M., Gallegos-Graves, L. V., Gleasner, C. D., Zak, D. R., & Kuske, C. R. (2015). Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Frontiers in Microbiology, 6(APR), 1–15. https://doi.org/10.3389/fmicb.2015.00337
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411
Holtsmark, I., Eijsink, V. G. H., & Brurberg, M. B. (2008). Bacteriocins from plant pathogenic bacteria. FEMS Microbiology Letters, 280(1), 1–7. https://doi.org/10.1111/j.1574-6968.2007.01010.x
Hong, S.-B., Kim, D.-H., Park, I.-C., Samson, R. A., & Shin, H.-D. (2010). Isolation and Identification of Aspergillus Section Fumigati Strains from Arable Soil in Korea . Mycobiology, 38(1), 1. https://doi.org/10.4489/myco.2010.38.1.001
Hori, T., Müller, A., Igarashi, Y., Conrad, R., & Friedrich, M. W. (2010). Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13 C-acetate probing. ISME Journal, 4(2), 267–278. https://doi.org/10.1038/ismej.2009.100
Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z., & Yin, Y. (2018). dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research, 46(D1), D516–D521. https://doi.org/10.1093/nar/gkx894
Hubell, S. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87(6), 1387–1398.
Huhndorf, S. M., Miller, A. N., & Fernández, F. A. (2004). Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia, 96(2), 368–387. https://doi.org/10.1080/15572536.2005.11832982
Hung, D. T., Hughes, H. J., Keck, M., & Sauer, D. (2019). Rice-residue management practices of smallholder farms in Vietnam and their effects on nutrient fluxes in the soil-plant system. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061641
Hung, N. Van, Maguyon-Detras, M. C., Migo, M. V., Quilloy, R., Balingbing, C., Chivenge, P., & Gummert, M. (2020). Rice Straw Overview: Availability, Properties, and Management Practices. Sustainable Rice Straw Management, 1–13. https://doi.org/10.1007/978-3-030-32373-8_1
Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17(3), 377–386. https://doi.org/10.1101/gr.5969107
Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H., & Jin, Z. J. (2012). Microbial community dynamics and function associatedwith rhizosphere over periods of rice growth. Plant, Soil and Environment, 58(2), 55–61. https://doi.org/10.17221/390/2010-pse
Hyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-119
Ichikawa, S., Nishida, A., Yasui, S., & Karita, S. (2017). Characterization of lignocellulose particles during lignocellulose solubilization by Clostridium thermocellum. Bioscience, Biotechnology and Biochemistry, 81(10), 2028–2033. https://doi.org/10.1080/09168451.2017.1364619
Imchen, M., Kumavath, R., Vaz, A. B. M., Góes-Neto, A., Barh, D., Ghosh, P., Kozyrovska, N., Podolich, O., & Azevedo, V. (2019). 16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages. Frontiers in Microbiology, 10(September), 1–15. https://doi.org/10.3389/fmicb.2019.02103
Ito, O., Ella, E., & Kawano, N. (1999). Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crops Research, 64(1–2), 75–90. https://doi.org/10.1016/S0378-4290(99)00052-0
Ivanova, A. A., Zhelezova, A. D., Chernov, T. I., & Dedysh, S. N. (2020). Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils. PLoS ONE, 15(3), 1–19. https://doi.org/10.1371/journal.pone.0230157
Jenkins M., B., Bexter L., L., Miles R. Jr., T., & Miles R., T. (1998). Combustion Properties of Biomass Flash. Fuel Processing Technology, 54, 17–46.
Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11(7), 1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.x
Jiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., & Jia, Z. (2015). pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 81(November), 9–16. https://doi.org/10.1016/j.soilbio.2014.10.025
Jiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 4(2), 1–16. https://doi.org/10.1128/msystems.00313-18
Jiménez, D. J., Chaves-Moreno, D., & Van Elsas, J. D. (2015). Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Scientific Reports, 5, 1–16. https://doi.org/10.1038/srep13845
Jiménez, D. J., de Lima Brossi, M. J., Schückel, J., Kračun, S. K., Willats, W. G. T., & van Elsas, J. D. (2016). Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Applied Microbiology and Biotechnology, 100(24), 10463–10477. https://doi.org/10.1007/s00253-016-7713-3
Jiménez, D. J., Dini-Andreote, F., & Van Elsas, J. D. (2014). Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnology for Biofuels, 7(1). https://doi.org/10.1186/1754-6834-7-92
Jiménez, D. J., Korenblum, E., & Van Elsas, J. D. (2014). Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Applied Microbiology and Biotechnology, 98(6), 2789–2803. https://doi.org/10.1007/s00253-013-5253-7
Jin, Z., Shah, T., Zhang, L., Liu, H., Peng, S., & Nie, L. (2020). Effect of straw returning on soil organic carbon in rice – wheat rotation system : A review. December 2019, 1–13. https://doi.org/10.1002/fes3.200
Kanasugi, M., Sarkodee-Addo, E., Omari, R. A., Dastogeer, K. M. G., Fujii, Y., Abebrese, S. O., Bam, R., Asuming-Brempong, S., & Okazaki, S. (2020). Exploring rice root microbiome; The variation, specialization and interaction of bacteria and fungi in six tropic Savanna Regions in Ghana. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145835
Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/BF00257924
Kato, H., Mori, H., Maruyama, F., Toyoda, A., Oshima, K., Endo, R., Fuchu, G., Miyakoshi, M., Dozono, A., Ohtsubo, Y., Nagata, Y., Hattori, M., Fujiyama, A., Kurokawa, K., & Tsuda, M. (2015). Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance. DNA Research, 22(6), 413–424. https://doi.org/10.1093/dnares/dsv023
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Frontiers in Microbiology, 7(MAY), 1–16. https://doi.org/10.3389/fmicb.2016.00744
Kielak, A. M., Cipriano, M. A. P., & Kuramae, E. E. (2016). Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Archives of Microbiology, 198(10), 987–993. https://doi.org/10.1007/s00203-016-1260-2
Kim, H., & Lee, Y. H. (2020). The rice microbiome: A model platform for crop holobiome. Phytobiomes Journal, 4(1), 5–18. https://doi.org/10.1094/PBIOMES-07-19-0035-RVW
Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Von Mering, C., & Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME Journal, 6(7), 1378–1390. https://doi.org/10.1038/ismej.2011.192
Knoblauch R, Ernani PR, Deschamps FC, Gatiboni LC, Walker TW, Lourenço KS, A. A. & M. A. (2014). RICE STRAW INCORPORATED JUST BEFORE SOIL FLOODING INCREASES ACETIC ACID FORMATION AND DECREASES AVAILABLE NITROGEN. 38, 177–184.
Kont, R., Kurašin, M., Teugjas, H., & Väljamäe, P. (2013). Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6(1), 1–14. https://doi.org/10.1186/1754-6834-6-135
Kotur, Z., Siddiqi, Y. M., & Glass, A. D. M. (2013). Characterization of nitrite uptake in Arabidopsis thaliana: Evidence for a nitrite-specific transporter. New Phytologist, 200(1), 201–210. https://doi.org/10.1111/nph.12358
Kovaleva, O. L., Merkel, A. Y., Novikov, A. A., Baslerov, R. V., Toshchakov, S. V., & Bonch-Osmolovskaya, E. A. (2015). Tepidisphaera mucosa gen. Nov., sp. nov., a moderately thermophilic member of the class phycisphaerae in the phylum Planctomycetes, and proposal of a new family, tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 65(2), 549–555. https://doi.org/10.1099/ijs.0.070151-0
Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391–406. https://doi.org/10.1007/s13353-013-0173-x
Kulichevskaya, I. S., Suzina, N. E., Liesack, W., & Dedysh, S. N. (2010). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the acidobacteria. International Journal of Systematic and Evolutionary Microbiology, 60(2), 301–306. https://doi.org/10.1099/ijs.0.013250-0
Kumar, M., Kour, D., Yadav, A. N., Saxena, R., Rai, P. K., Jyoti, A., & Tomar, R. S. (2019). Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia, 74(3), 287–308. https://doi.org/10.2478/s11756-019-00190-6
Kumari, A., Kapoor, K. K., Kundu, B. S., & Mehta, R. K. (2008). Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization. Plant, Soil and Environment, 54(2), 72–77. https://doi.org/10.17221/2783-pse
Kuramae, E. E., Hillekens, R. H. E., de Hollander, M., van der Heijden, M. G. A., van den Berg, M., van Straalen, N. M., & Kowalchuk, G. A. (2013). Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. FEMS Microbiology Ecology, 84(3), 519–531. https://doi.org/10.1111/1574-6941.12080
Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9
Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83(February), 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025
Ladd, J. N., & Butler, J. H. A. (1972). Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry, 4(1), 19–30. https://doi.org/10.1016/0038-0717(72)90038-7
Lanoiselet, V. M., Cother, E. J., Ash, G. J., Hind-Lanoiselet, T. L., Murray, G. M., & Harper, J. D. I. (2005). Prevalence and survival, with emphasis on stubble burning, of Rhizoctonia spp., causal agents of sheath diseases of rice in Australia. Australasian Plant Pathology, 34(2), 135–142. https://doi.org/10.1071/AP05010
Le Cocq, K., Gurr, S. J., Hirsch, P. R., & Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469–473. https://doi.org/10.1111/mpp.12483
Le Roux, X., Poly, F., Currey, P., Commeaux, C., Hai, B., Nicol, G. W., Prosser, J. I., Schloter, M., Attard, E., & Klumpp, K. (2008). Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME Journal, 2(2), 221–232. https://doi.org/10.1038/ismej.2007.109
Lee, J., & Cho, K. (2004). Relationships between methane production and sulfate reduction in reclaimed rice field soils. Korean Journal of Biological Sciences, 8(4), 281–288. https://doi.org/10.1080/12265071.2004.9647761
Lee, Y. H., Ko, S. J., Cha, K. H., & Park, E. W. (2015). BGRcast: A disease forecast model to support decision-making for chemical sprays to control bacterial grain rot of rice. Plant Pathology Journal, 31(4), 350–362. https://doi.org/10.5423/PPJ.OA.07.2015.0136
Li, H. Y., Wang, H., Wang, H. T., Xin, P. Y., Xu, X. H., Ma, Y., Liu, W. P., Teng, C. Y., Jiang, C. L., Lou, L. P., Arnold, W., Cralle, L., Zhu, Y. G., Chu, J. F., Gilbert, J. A., & Zhang, Z. J. (2018). The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, 6(1), 1–16. https://doi.org/10.1186/s40168-018-0561-x
Li, S., Wang, Z. hui, Miao, Y. fang, & Li, S. qing. (2014). Soil Organic Nitrogen and Its Contribution to Crop Production. Journal of Integrative Agriculture, 13(10), 2061–2080. https://doi.org/10.1016/S2095-3119(14)60847-9
Li, X., Wang, H., Li, X., Li, X., & Zhang, H. (2019). Shifts in bacterial community composition increase with depth in three soil types from paddy fields in China. Pedobiologia, 77(February). https://doi.org/10.1016/j.pedobi.2019.150589
Li, Y., Chapman, S. J., Nicol, G. W., & Yao, H. (2018). Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 116(January), 290–301. https://doi.org/10.1016/j.soilbio.2017.10.023
Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), 625–645. https://doi.org/10.1016/S0168-6445(00)00050-4
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Cesar Ignacio-Espinosa, J., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A. M., Coppola, L., Cornejo-Castillo, F. M., … Raes, J. (2015). 24 Silvia G. Acinas, 12 Shinichi Sunagawa, 17 Peer Bork. Science, 10(6237), 1–10. www.sciencemag.org
Limmer, C., & Drake, H. L. (1996). Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: Aerobic and anaerobic differentials. Soil Biology and Biochemistry, 28(2), 177–183. https://doi.org/10.1016/0038-0717(95)00118-2
Lin, H. C., & Fukushima, Y. (2016). Rice cultivation methods and their sustainability aspects: Organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability (Switzerland), 8(6). https://doi.org/10.3390/su8060529
Lin, J. T., Goldman, B. S., & Stewart, V. (1993). Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. Journal of Bacteriology, 175(8), 2370–2378. https://doi.org/10.1128/jb.175.8.2370-2378.1993
Linhardt, R. J., Galliher, P. M., & Cooney, C. L. (1987). Polysaccharide lyases. Applied Biochemistry and Biotechnology, 12(2), 135–176. https://doi.org/10.1007/BF02798420
Lou, Y., Xu, M., Wang, W., Sun, X., & Zhao, K. (2011). Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil and Tillage Research, 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007
Louca, S., Polz, M. F., Mazel, F., Albright, M. B. N., Huber, J. A., O’Connor, M. I., Ackermann, M., Hahn, A. S., Srivastava, D. S., Crowe, S. A., Doebeli, M., & Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nature Ecology and Evolution, 2(6), 936–943. https://doi.org/10.1038/s41559-018-0519-1
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8
Lozupone, C., Faust, K., Raes, J., Faith, J. J., Frank, D. N., Zaneveld, J., Gordon, J. I., & Knight, R. (2012). Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 22(10), 1974–1984. https://doi.org/10.1101/gr.138198.112
Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. Del, Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., & Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/10.1038/nature11237
Luo, G., Ling, N., Nannipieri, P., Chen, H., Raza, W., Wang, M., Guo, S., & Shen, Q. (2017). Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biology and Fertility of Soils, 53(4), 375–388. https://doi.org/10.1007/s00374-017-1183-3
Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., Chen, W., & Huang, Q. (2016). Microbial communities play important roles in modulating paddy soil fertility. Scientific Reports, 6(February), 1–12. https://doi.org/10.1038/srep20326
Lupatini, M., Suleiman, A. K. A., Jacques, R. J. S., Antoniolli, Z. I., de Siqueira Ferreira, A., Kuramae, E. E., & Roesch, L. F. W. (2014). Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2(MAY), 1–11. https://doi.org/10.3389/fenvs.2014.00010
Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J. A., Faust, K., Knight, R., Jansson, J. K., Cardona, C., Röttjers, L., & Xu, J. (2020). Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 8(1), 1–12. https://doi.org/10.1186/s40168-020-00857-2
Maarastawi, S. A., Frindte, K., Geer, R., Kröber, E., & Knief, C. (2018). Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize. Soil Biology and Biochemistry, 127, 200–212. https://doi.org/10.1016/j.soilbio.2018.09.028
Maarastawi, S. A., Frindte, K., Linnartz, M., & Knief, C. (2018). Crop rotation and straw application impact microbial communities in Italian and Philippine Soils and the rhizosphere of Zea mays. Frontiers in Microbiology, 9(JUN), 1–17. https://doi.org/10.3389/fmicb.2018.01295
Marentes, F., Vanegas, J., Luna, J. N., & Uribe-Vélez, D. (2011). Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta (D. Uribe-Vélez & L. M. Melgarejo (eds.); Primera ed). Editorial Universidad Nacional de Colombia. https://www.uneditorial.com/ecologia-de-microorganismos-rizosfericos-asociados-a-cultivos-de-arroz-de-tolima-y-meta-agropecuario.html
Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., & Peñuelas, J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-01418-8
Martínez-Hidalgo, P., & Hirsch, A. M. (2017). The nodule microbiome: N2fixing rhizobia do not live alone. Phytobiomes Journal, 1(2), 70–82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW
Mašínová, T., Yurkov, A., & Baldrian, P. (2018). Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology, 34, 10–19. https://doi.org/10.1016/j.funeco.2018.03.005
Medema, M. H., Blin, K., Cimermancic, P., De Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., & Breitling, R. (2011). AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39(SUPPL. 2), 339–346. https://doi.org/10.1093/nar/gkr466
Mekasha, S., Tuveng, T. R., Askarian, F., Choudhary, S., Schmidt-Dannert, C., Niebisch, A., Modregger, J., Vaaje-Kolstad, G., & Eijsink, V. G. H. (2020). A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 295(27), 9134–9146. https://doi.org/10.1074/jbc.ra120.013040
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097–1100. https://doi.org/10.1126/science.1203980
Merlin, C., Besaury, L., Niepceron, M., Mchergui, C., Riah, W., Bureau, F., Gattin, I., & Bodilis, J. (2014). Real-time PCR for quantification in soil of glycoside hydrolase family 6 cellulase genes. Letters in Applied Microbiology, 59(3), 284–291. https://doi.org/10.1111/lam.12273
Midha, S., Bansal, K., Sharma, S., Kumar, N., Patil, P. P., Chaudhry, V., & Patil, P. B. (2016). Genomic resource of rice seed associated bacteria. Frontiers in Microbiology, 6(JAN), 1–8. https://doi.org/10.3389/fmicb.2015.01551
Minamisawa, K., Imaizumi-Anraku, H., Bao, Z., Shinoda, R., Okubo, T., & Ikeda, S. (2016). Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes and Environments, 31(1), 4–10. https://doi.org/10.1264/jsme2.ME15180
Mueller, G. M., & Schmit, J. P. (2007). Fungal biodiversity: What do we know? What can we predict? Biodiversity and Conservation, 16(1), 1–5. https://doi.org/10.1007/s10531-006-9117-7
Müller, T., & Ruppel, S. (2014). Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiology Ecology, 87(1), 2–17. https://doi.org/10.1111/1574-6941.12198
Murase, J., Shibata, M., Lee, C. G., Watanabe, T., Asakawa, S., & Kimura, M. (2012). Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing. FEMS Microbiology Ecology, 79(2), 371–379. https://doi.org/10.1111/j.1574-6941.2011.01224.x
Murillo-Antolinez, L. M. (2018). 2018_Tesis final_Laura Murillo. UNiversidad El Bosque.
Murphy, B. (2015). Key soil functional properties affected by soil organic matter - Evidence from published literature. IOP Conference Series: Earth and Environmental Science, 25(1). https://doi.org/10.1088/1755-1315/25/1/012008
NAAS. (2017). Innovative viable solution to rice residue burning in rice-wheat cropping system through concurrent use of super straw management system-fitted combines and turbo happy seeder. Policy Brief No. 2, 1–16. http://naasindia.org/documents/CropBurning.pdf
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.x
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2017). Landmark Papers Microbial diversity and soil functions. European Journal of Soil Science, 68(1), 12–26. http://doi.wiley.com/10.1111/ejss.4_12398
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M. C., & Marinari, S. (2012). Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils, 48(7), 743–762. https://doi.org/10.1007/s00374-012-0723-0
Nannipieri, P, Giagnoni, L., Landi, L., & Renella, G. (2011). Phosphorus in Action. 26, 215–243. https://doi.org/10.1007/978-3-642-15271-9
Nannipieri, Paolo. (2006). Role of Stabilised Enzymes in Microbial Ecology and Enzyme Extraction from Soil with Potential Applications in Soil Proteomics. Nucleic Acids and Proteins in Soil, 8, 75–94. https://doi.org/10.1007/3-540-29449-x_4
Navarrete, Acácio A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607–621. https://doi.org/10.1111/1574-6941.12018
Navarrete, Acacio A., Tsai, S. M., Mendes, L. W., Faust, K., De Hollander, M., Cassman, N. A., Raes, J., Van Veen, J. A., & Kuramae, E. E. (2015). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24(10), 2433–2448. https://doi.org/10.1111/mec.13172
Nelkner, J., Henke, C., Lin, T. W., Pätzold, W., Hassa, J., Jaenicke, S., Grosch, R., Pühler, A., Sczyrba, A., & Schlüter, A. (2019). Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes, 10(6). https://doi.org/10.3390/genes10060424
Nemergut, D. R., Townsend, A. R., Sattin, S. R., Freeman, K. R., Fierer, N., Neff, J. C., Bowman, W. D., Schadt, C. W., Weintraub, M. N., & Schmidt, S. K. (2008). The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: Implications for carbon and nitrogen cycling. Environmental Microbiology, 10(11), 3093–3105. https://doi.org/10.1111/j.1462-2920.2008.01735.x
Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. I. (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10(11), 2966–2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x
Nie, San’an, Lei, X., Zhao, L., Brookes, P. C., Wang, F., Chen, C., Yang, W., & Xing, S. (2018). Fungal communities and functions response to long-term fertilization in paddy soils. Applied Soil Ecology, 130(August), 251–258. https://doi.org/10.1016/j.apsoil.2018.06.008
Nie, San’An, Li, H., Yang, X., Zhang, Z., Weng, B., Huang, F., Zhu, G. B., & Zhu, Y. G. (2015). Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME Journal, 9(9), 2059–2067. https://doi.org/10.1038/ismej.2015.25
Nilsson, R. Henrik, Wurzbacher, C., Bahram, M., Coimbra, V. R. M., Larsson, E., Tedersoo, L., Eriksson, J., Ritter, C. D., Svantesson, S., Sánchez-García, M., Ryberg, M., Kristiansson, E., & Abarenkov, K. (2016). Top 50 most wanted fungi. MycoKeys, 12, 29–40. https://doi.org/10.3897/mycokeys.12.7553
Nilsson, Rolf Henrik, Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259–D264. https://doi.org/10.1093/nar/gky1022
Nsenga Kumwimba, M., & Meng, F. (2019). Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. Science of the Total Environment, 659, 419–441. https://doi.org/10.1016/j.scitotenv.2018.12.236
Pandey, A. K., Gaind, S., Ali, A., & Nain, L. (2009). Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation, 20(3), 293–306. https://doi.org/10.1007/s10532-008-9221-3
Pandit, P. S., Ranade, D. R., Dhakephalkar, P. K., & Rahalkar, M. C. (2016). A pmoA-based study reveals dominance of yet uncultured Type I methanotrophs in rhizospheres of an organically fertilized rice field in India. 3 Biotech, 6(2), 1–6. https://doi.org/10.1007/s13205-016-0453-3
Panhwar, Q. A., Naher, U. A., Shamshuddin, J., Othman, R., & Latif, M. A. (2014). Correction: Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS ONE, 9(12). https://doi.org/10.1371/journal.pone.0097241
Pansu, M., & Gautheyrou, J. (2006). Handbook of Soil Analysis. In Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31211-6
Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/bioinformatics/btu494
Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., Henault, C., Lemanceau, P., Péan, M., Boiry, S., Fontaine, S., & Maron, P. A. (2013). Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of Soil Priming Effect. Ecosystems, 16(5), 810–822. https://doi.org/10.1007/s10021-013-9650-7
Paul, Ε. Α., & Clark, F. E. (1989). Soil Microbiology and Biochemistry. Elsevier. https://doi.org/10.1016/C2009-0-02814-1
Pedregosa, F., Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., & Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1), 29–33. https://doi.org/10.1145/2786984.2786995
Phy, C., Dejbhimon, K., Tulaphitak, D., Lawongsa, P., Thammasom, N., & Saenjan, P. (2014). Rice Straw Amendment and Sulfate Affecting Methane Production and Chemical Properties in Paddy Soils.
Piotrowska, A., & Koper, J. (2010). Soil β-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. Journal of Elementology, 15(3), 593–600. https://doi.org/10.5601/jelem.2010.15.3.593-600
Piotrowska, A., & Koper, J. (2013). Soil β-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. Journal of Elemntology, 15(3/2010), 593–600. https://doi.org/10.5601/jelem.2010.15.3.593-600
Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L., & Valiati, V. H. (2018). Bacterial Community of the Rice Floodwater Using Cultivation-Independent Approaches. International Journal of Microbiology, 2018. https://doi.org/10.1155/2018/6280484
Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152(1), 95–103. https://doi.org/10.1016/S0923-2508(00)01172-4
Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenco, J., & Paine, R. T. (1996). Challenges in the Quest for Keystones. BioScience, 46(8), 609–620. https://doi.org/10.2307/1312990
Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 20(11), 523–531. https://doi.org/10.1016/j.tim.2012.08.001
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 590–596. https://doi.org/10.1093/nar/gks1219
Quevedo Amaya, Y. M., Beltrán Medina, J. I., & Barragán Quijano, E. (2019). Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Revista Facultad Nacional de Agronomia Medellin, 72(1), 8699–8706. https://doi.org/10.15446/rfnam.v72n1.72076
R Core Team. (2019). R: The R Project for Statistical Computing. In R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
Ragot, S. A., Kertesz, M. A., & Bünemann, E. K. (2015). phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology, 81(20), 7281–7289. https://doi.org/10.1128/AEM.01823-15
Rawat, S. R., Männistö, M. K., Bromberg, Y., & Häggblom, M. M. (2012). Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiology Ecology, 82(2), 341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.x
Rawway, M., Ali, S. G., & Badawy, A. S. (2018). Isolation and Identification of Cellulose Degrading Bacteria from Different Sources at Assiut Governorate (Upper Egypt). Journal of Ecology of Health & Environment, 6(1), 15–24. https://doi.org/10.18576/jehe/060103
Reay, D. S., & Nedwell, D. B. (2004). Methane oxidation in temperate soils: Effects of inorganic N. Soil Biology and Biochemistry, 36(12), 2059–2065. https://doi.org/10.1016/j.soilbio.2004.06.002
Reicosky, D. C., & Wilts, A. R. (2005). CROP-RESIDUE MANAGEMENT. Encyclopedia of Soils in the Environment, 4, 334–338. https://doi.org/10.1016/B0-12-348530-4/00254-X
Ren, Z., You, W., Wu, S., Poetsch, A., & Xu, C. (2019). Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1522-8
Rho, M., Tang, H., & Ye, Y. (2010). FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Research, 38(20), 1–12. https://doi.org/10.1093/nar/gkq747
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016(10), 1–22. https://doi.org/10.7717/peerj.2584
Roman-Reyna, V., Pinili, D., Borja, F. ., I.L., Q., & S.C., G. (2019). The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions.
Rovira, P., & Ramón Vallejo, V. (2002). Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial. Soil Biology and Biochemistry, 34(3), 327–339. https://doi.org/10.1016/S0038-0717(01)00186-9
S. P. DENG and M. A. TABATABAI. (1994). Cellulase Activity. International Cenological Codex, 26(1990), 1–11.
Sakurai, M., Wasaki, J., Tomizawa, Y., Shinano, T., & Osaki, M. (2008). Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science and Plant Nutrition, 54(1), 62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.x
Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., Peix, A., & Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37(8), 1123–1131. https://doi.org/10.1016/j.ecoleng.2011.02.007
Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresan, V. (2017). Drought Stress Results in a Compartment-Specific Restructuring of. MBio, 8(4: 8:e00764-17), 1–15. http://www.ncbi.nlm.nih.gov/pubmed/28720730%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5516253
Sarkodee-Addo, E., Yasuda, M., Lee, C. G., Kanasugi, M., Fujii, Y., Omari, R. A., Abebrese, S. O., Bam, R., Asuming-Brempong, S., Golam Dastogeer, K. M., & Okazaki, S. (2020). Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of regional locations and soil factors on diversity and community assembly. Agronomy, 10(4). https://doi.org/10.3390/agronomy10040559
Schimel, J. P., & Bennett, J. B. (2004). Nitrogen Mineralization: Challenges of a Changing Paradigm. Ecology, 85(3), 591–602. https://doi.org/10.1890/03-8024
Schinner, F., & Mersi, W. V. O. N. (1990). and Invertase Activity in Soil : an Improved Method. 3–7.
Schinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22(4), 511–515. https://doi.org/10.1016/0038-0717(90)90187-5
Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., Shindo, K., Sandmann, G., & Bode, H. B. (2016). Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. ChemBioChem, 17(3), 247–253. https://doi.org/10.1002/cbic.201500474
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60
Serrano-Silva, N., Sarria-Guzmán, Y., Dendooven, L., & Luna-Guido, M. (2014). Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere, 24(3), 291–307. https://doi.org/10.1016/S1002-0160(14)60016-3
Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., Rahalkar, M., Hurek, T., Sarkar, A., Bodrossy, L., Van Overbeek, L., Brar, D., Van Elsas, J. D., & Reinhold-Hurek, B. (2012). Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Molecular Plant-Microbe Interactions, 25(1), 28–36. https://doi.org/10.1094/MPMI-08-11-0204
Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnology, 2013, 1–7. https://doi.org/10.5402/2013/985685
Shade, A., & Handelsman, J. (2012). Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology, 14(1), 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.x
Shade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010
Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., & Handelsman, J. (2012). Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology, 3(DEC), 1–19. https://doi.org/10.3389/fmicb.2012.00417
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709
Sharrar, A. M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E. P., & Banfield, J. F. (2020). Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. MBio, 11(3), 1–17. https://doi.org/10.1128/mBio.00416-20
Shew, A. M., Durand-morat, A., Nalley, L. L., Zhou, X., Rojas, C., & Greg, T. (2019). Warming increases Bacterial Panicle Blight ( Burkholderia glumae ) occurrences and impacts on USA rice production. 1–18. https://doi.org/10.1371/journal.pone.0219199
Shiau, Y. J., Lin, C. W., Cai, Y., Jia, Z., Lin, Y. Te, & Chiu, C. Y. (2020). Niche differentiation of active methane-oxidizing bacteria in estuarine mangrove forest soils in taiwan. Microorganisms, 8(8), 1–15. https://doi.org/10.3390/microorganisms8081248
Simonet, P., Grosjean, M. C., Misra, A. K., Nazaret, S., Cournoyer, B., & Normand, P. (1991). Frankia genus-specific characterization by polymerase chain reaction. Applied and Environmental Microbiology, 57(11), 3278–3286. https://doi.org/10.1128/aem.57.11.3278-3286.1991
Sinclair, L., Osman, O. A., Bertilsson, S., & Eiler, A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the illumina platform. PLoS ONE, 10(2), 1–18. https://doi.org/10.1371/journal.pone.0116955
Snedecor, G. W. (George W., & Cochran, W. G. (William G. (1989). Statistical methods. Iowa State University Press.
Sneh Goyal & S.S. Sindhu. (2011). Composting of rice straw using different inocula and analysi of compost quality (pp. 126–138).
Song, N., Xu, H., Yan, Z., Yang, T., Wang, C., & Jiang, H. L. (2019). Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renewable Energy, 138(February), 861–869. https://doi.org/10.1016/j.renene.2019.01.121
Sood, M., Kapoor, D., Kumar, V., & Sheteiwy, M. S. (2020). Trichoderma : The “ Secrets ” of a Multitalented.
Spence, C., Alff, E., Johnson, C., Ramos, C., Donofrio, N., Sundaresan, V., & Bais, H. (2014). Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/1471-2229-14-130
Sterkenburg, E., Bahr, A., Brandström Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2015). Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist, 207(4), 1145–1158. https://doi.org/10.1111/nph.13426
Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome – From an agriculture perspective. Frontiers in Plant Science, 6(OCTOBER), 1–7. https://doi.org/10.3389/fpls.2015.00909
Sugano, A., Tsuchimoto, H., Tun, C. C., Asakawa, S., & Kimura, M. (2005). Succession and phylogenetic profile of eukaryotic communities in rice straw incorporated into a rice field: Estimation by PCR-DGGE and sequence analyses. Soil Science and Plant Nutrition, 53(5), 585–594. https://doi.org/10.1111/j.1747-0765.2007.00187.x
Suleiman, A. K. A., Gonzatto, R., Aita, C., Lupatini, M., Jacques, R. J. S., Kuramae, E. E., Antoniolli, Z. I., & Roesch, L. F. W. (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biology and Biochemistry, 97, 71–82. https://doi.org/10.1016/j.soilbio.2016.03.002
Sutherland, I. W. (1995). Polysaccharide lyases. FEMS Microbiology Reviews, 16(4), 323–347. https://doi.org/10.1016/0168-6445(95)00020-D
Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301–307. https://doi.org/10.1016/0038-0717(69)90012-1
TAKEUCHI, S. (1987). Importance and problems of disposal of crop residues containing pathogens of plant diseases. JARQ. Japan Agricultural Research Quarterly, 21(2), 102–108.
Tarafdar, J. C., Yadav, R. S., & Meena, S. C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal sources. Journal of Plant Nutrition and Soil Science, 164(3), 279–282. https://doi.org/10.1002/1522-2624(200106)164:3<279::AID-JPLN279>3.0.CO;2-L
The Cazypedia Consortium, Davies, G., Gilbert, H., Henrissat, B., Svensson, B., Vocadlo, D., & Williams, S. (2018). Ten years of CAZypedia: A living encyclopedia of carbohydrate-active enzymes. Glycobiology, 28(1), 3–8. https://doi.org/10.1093/glycob/cwx089
Tian, J., Dippold, M., Pausch, J., Blagodatskaya, E., Fan, M., Li, X., & Kuzyakov, Y. (2013). Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biology and Biochemistry, 65, 195–203. https://doi.org/10.1016/j.soilbio.2013.05.021
Tipayarom, D., & Oanh, N. T. K. (2007). Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region. ScienceAsia, 33(3), 339–345. https://doi.org/10.2306/scienceasia1513-1874.2007.33.339
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1
Trujillo, M. E., Riesco, R., Benito, P., & Carro, L. (2015). Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Frontiers in Microbiology, 6(DEC), 1–15. https://doi.org/10.3389/fmicb.2015.01341
Tung, N. S., Cu, N. X., & Hai, N. X. (2016). ARPN Journal of Agricultural and Biological Science IMPACT OF RICE STRAW BURNING METHODS ON SOIL TEMPERATURE AND MICROORGANISM IMPACT OF RICE STRAW BURNING METHODS ON SOIL TEMPERATURE AND MICROORGANISM DISTRIBUTION. ARPN Journal of Agricultural and Biological Science I, 23(4), 157–160.
Utobo, E. B., & Tewari, L. (2015). Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research, 13(1), 147–169. https://doi.org/10.15666/aeer/1301_147169
Vaksmaa, A., van Alen, T. A., Ettwig, K. F., Lupotto, E., Valè, G., Jetten, M. S. M., & Lüke, C. (2017). Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Frontiers in Microbiology, 8(NOV), 1–15. https://doi.org/10.3389/fmicb.2017.02127
Van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15(1), 13–24. https://doi.org/10.1016/S0929-1393(00)00068-8
van der Lelie, D., Taghavi, S., McCorkle, S. M., Li, L. L., Malfatti, S. A., Monteleone, D., Donohoe, B. S., Ding, S. Y., Adney, W. S., Himmel, M. E., & Tringe, S. G. (2012). The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036740
Van Groenigen, K. J., Osenberg, C. W., & Hungate, B. A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO 2. Nature, 475(7355), 214–216. https://doi.org/10.1038/nature10176
Vanegas, J., Landazabal, G., Melgarejo, L. M., Beltran, M., & Uribe-Vélez, D. (2013). Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah. European Journal of Soil Biology, 55, 1–8. https://doi.org/10.1016/j.ejsobi.2012.10.008
Veres, Z., Kotroczó, Z., Fekete, I., Tóth, J. A., Lajtha, K., Townsend, K., & Tóthmérész, B. (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18–23. https://doi.org/10.1016/j.apsoil.2015.03.006
Viborg, A. H., Terrapon, N., Lombard, V., Michel, G., Czjzek, M., Henrissat, B., & Brumer, H. (2019). A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). Journal of Biological Chemistry, 294(44), 15973–15986. https://doi.org/10.1074/jbc.RA119.010619
Vranova, V., Rejsek, K., & Formanek, P. (2013). Proteolytic activity in soil: A review. Applied Soil Ecology, 70, 23–32. https://doi.org/10.1016/j.apsoil.2013.04.003
Walsh, E., & McDonnell, K. P. (2012). The influence of added organic matter on soil physical, chemical, and biological properties: A small-scale and short-time experiment using straw. Archives of Agronomy and Soil Science, 58(SUPPL.), 17–20. https://doi.org/10.1080/03650340.2012.697999
Wang, M., Eyre, A. W., Thon, M. R., Oh, Y., & Dean, R. A. (2020). Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Frontiers in Microbiology, 11(September), 1–21. https://doi.org/10.3389/fmicb.2020.559728
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07
Wang, W., Luo, X., Chen, Y., Ye, X., Wang, H., Cao, Z., Ran, W., & Cui, Z. (2019). Succession of composition and function of soil bacterial communities during key rice growth stages. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00421
Wang, Y., Xu, L., Gu, Y. Q., & Coleman-Derr, D. (2016). MetaCoMET: A web platform for discovery and visualization of the core microbiome. Bioinformatics, 32(22), 3469–3470. https://doi.org/10.1093/bioinformatics/btw507
Waqas, M., Khan, A. L., & Lee, I. J. (2014). Bioactive chemical constituents produced by endophytes and effects on rice plant growth. Journal of Plant Interactions, 9(1), 478–487. https://doi.org/10.1080/17429145.2013.860562
Watanabe, T., Luu, H. M., Nguyen, N. H., Ito, O., & Inubushi, K. (2013). Combined effects of the continual application of composted rice straw and chemical fertilizer on rice yield under a double rice cropping system in the Mekong Delta, Vietnam. Japan Agricultural Research Quarterly, 47(4), 397–404. https://doi.org/10.6090/jarq.47.397
Weber, S., Stubner, S., & Conrad, R. (2001). Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Applied and Environmental Microbiology, 67(3), 1318–1327. https://doi.org/10.1128/AEM.67.3.1318-1327.2001
Williams, R. J., Howe, A., & Hofmockel, K. S. (2014). Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology, 5(JULY), 1–10. https://doi.org/10.3389/fmicb.2014.00358
Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12(5), 452–461. https://doi.org/10.1111/j.1461-0248.2009.01303.x
Wongwilaiwalin, S., Laothanachareon, T., Mhuantong, W., Tangphatsornruang, S., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2013). Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Applied Microbiology and Biotechnology, 97(20), 8941–8954. https://doi.org/10.1007/s00253-013-4699-y
Wu, Y., Zaiden, N., & Cao, B. (2018). The core- and pan-genomic analyses of the genus Comamonas: From environmental adaptation to potential virulence. Frontiers in Microbiology, 9(DEC), 1–12. https://doi.org/10.3389/fmicb.2018.03096
Yadav, R., & Tarafdar, J. (2001). Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils, 34(3), 140–143. https://doi.org/10.1007/s003740100376
Yadvinder-Singh, Bijay-Singh, & Timsina, J. (2005). Crop Residue Management for Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. Advances in Agronomy, 85, 269–407. https://doi.org/10.1016/S0065-2113(04)85006-5
Yao, H., Chen, X., Yang, J., Li, J., Hong, J., Hu, Y., & Mao, X. (2020). Effects and mechanisms of phosphate activation in paddy soil by phosphorus activators. Sustainability (Switzerland), 12(9), 1–15. https://doi.org/10.3390/su12093917
Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(W1), 445–451. https://doi.org/10.1093/nar/gks479
Yoshida, M., Ishii, S., Otsuka, S., & Senoo, K. (2009). Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biology and Biochemistry, 41(10), 2044–2051. https://doi.org/10.1016/j.soilbio.2009.07.012
Young and Crawford. (2004). Interactions and Self-Organization in the Soil-Microbe Complex Author ( s ): I . M . Young and J . W . Crawford Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/3837024. 304(5677), 1634–1637.
Yu, Y., Wu, M., Petropoulos, E., Zhang, J., Nie, J., Liao, Y., Li, Z., Lin, X., & Feng, Y. (2019). Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 656, 625–633. https://doi.org/10.1016/j.scitotenv.2018.11.359
Yuan, C. L., Zhang, L. M., Wang, J. T., Hu, H. W., Shen, J. P., Cao, P., & He, J. Z. (2019). Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 19(1), 23–37. https://doi.org/10.1007/s11368-018-1997-0
Yuan, C., Zhang, L., Hu, H., Wang, J., Shen, J., & He, J. (2018). The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. Journal of Soils and Sediments, 18(5), 1795–1805. https://doi.org/10.1007/s11368-018-1924-4
Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnology for Biofuels, 11(1), 1–13. https://doi.org/10.1186/s13068-018-1045-8
Zhan, Y., Liu, W., Bao, Y., Zhang, J., Petropoulos, E., Li, Z., Lin, X., & Feng, Y. (2018). Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-26375-8
Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., & Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 46(W1), W95–W101. https://doi.org/10.1093/nar/gky418
Zhang, L., Chen, W., Burger, M., Yang, L., Gong, P., & Wu, Z. (2015). Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field. PLoS ONE, 10(2), 1–13. https://doi.org/10.1371/journal.pone.0118371
Zhang, L. M., Offre, P. R., He, J. Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17240–17245. https://doi.org/10.1073/pnas.1004947107
Zhang, Y., Schoch, C. L., Fournier, J., Crous, P. W., de Gruyter, J., Woudenberg, J. H. C., Hirayama, K., Tanaka, K., Pointing, S. B., Spatafora, J. W., & Hyde, K. D. (2009). Multi-locus phylogeny of Pleosporales: A taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology, 64, 85–102. https://doi.org/10.3114/sim.2009.64.04
Zhao, X., Yuan, G., Wang, H., Lu, D., Chen, X., & Zhou, J. (2019). Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030133
Zheng, Y., Huang, R., Wang, B. Z., Bodelier, P. L. E., & Jia, Z. J. (2014). Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences, 11(12), 3353–3368. https://doi.org/10.5194/bg-11-3353-2014
Zhou-qi, C., Bo, Z., Guan-lin, X., Bin, L., & Shi-wen, H. (2016). Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight. Rice Science, 23(3), 111–118. https://doi.org/10.1016/j.rsci.2016.01.007
Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van Nostrand, J. D., & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2(2), 106–110. https://doi.org/10.1038/nclimate1331
Zhu, H., Wang, Z. X., Luo, X. M., Song, J. X., & Huang, B. (2014). Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. Journal of Agricultural Science, 152(5), 741–748. https://doi.org/10.1017/S002185961300035X
Zhu, L., Hu, N., Zhang, Z., Xu, J., Tao, B., & Meng, Y. (2015). Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 135, 283–289. https://doi.org/10.1016/j.catena.2015.08.008
Žifčáková, L., Větrovský, T., Lombard, V., Henrissat, B., Howe, A., & Baldrian, P. (2017). Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome, 5(1), 122. https://doi.org/10.1186/s40168-017-0340-0
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 198 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Departamento de Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81291/1/52516013.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81291/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81291/3/52516013.2021.pdf.jpg
bitstream.checksum.fl_str_mv 1ac1cafb4868ae4054be454f9f212fd4
8153f7789df02f0a4c9e079953658ab2
55a8b01ac643611b3605c3ee75375bdd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089213989093376
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Uribe Vélez, Danielc0920b12ebab2c68a158bdb7410eaee1Barreto Hernández, Emilianob7a2cae2c08b5d6a549e173576c6c82dOtero Jiménez, Vanessa0b01f711cecc754d1f2e296ab1022dc7Microbiología AgrícolaCentro de Bioinformática2022-03-22T12:15:56Z2022-03-22T12:15:56Z2021-08-26https://repositorio.unal.edu.co/handle/unal/81291Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLos residuos agrícolas son precursores de la materia orgánica del suelo. Su descomposición en campo permite el ingreso de carbono y otros nutrientes al sistema, sin embargo, también puede favorecer la proliferación de patógenos. Entre las alternativas al manejo de los residuos se encuentran la quema, y su incorporación al suelo. Sin embargo, el impacto de las consecuencias de estas estrategias sobre la comunidad microbiana y su potencial funcional, es limitado. En este estudio se buscó determinar el efecto de la aplicación de cuatro estrategias de manejo de residuos sobre la estructura y función de las comunidades microbianas asociadas a los ciclos biogeoquímicos de carbono, nitrógeno y fósforo. Se implementó un ensayo en campo con un diseño de bloques incompletos al azar, haciendo toma de muestras de suelo en cuatro tiempos, durante un ciclo de cultivo, incluso desde la preparación del terreno previo a la siembra. Se caracterizó el suelo mediante análisis físico-químicos y enzimáticos, se describieron las comunidades microbianas usando secuenciación NGS, y se determinaron parámetros biológicos (productividad y el estado fitosanitario) del cultivo de arroz. Se identificó un efecto del manejo del tamo del arroz y el tiempo de muestreo sobre la estructura y función de la comunidad microbiana especialmente en los tiempos de degradación y floración. Este estudio evidenció que las estrategias del uso del tamo ya sea en cobertura o incorporado con o sin la ayuda de microorganismos, son una opción adecuada para la disposición final del tamo de arroz. (Texto tomado de la fuente)Agricultural residues are precursors of soil organic matter. Its decomposition in the field allows the entry of carbon and other nutrients into the system; however, it can also favor the proliferation of pathogens. Among the alternatives to waste management are, burning and, its incorporation into the soil. However, the impact of the consequences of these strategies on the microbial community and their functional potential is limited. This study sought to determine the effect of the application of four rice straw management strategies on the structure and function of the microbial communities associated with the biogeochemical cycles of carbon, nitrogen, and phosphorus. A field trial was implemented with a random incomplete block design, taking soil samples four times, during a cultivation cycle, even from the preparation of the land prior to sowing. The soil was characterized by physicochemical and enzymatic analyzes, the microbial communities were described using NGS sequencing. Also, biological parameters (productivity and phytosanitary status) of the rice crop were determined. An effect of rice straw management and sampling time on the structure and function of the microbial community was identified, especially in degradation and flowering times. This study showed that the strategies of using the straw, either in mulch or incorporated in the soil with or without microorganisms, are an adequate option for the final disposal of the rice straw.DoctoradoDoctor en Ciencias - BiologíaEcología Microbianaxx, 198 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaDepartamento de BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasCascarilla de arrozEnmiendas del sueloBiotecnología vegetalRice husksSoil amendmentsPlant biotechnologyResiduos agrícolasDegradaciónEnzimasMicroorganismosCiclos biogeoquímicosTamo de arrozNGSAgricultural residuesDegradationEnzymesMicroorganismsBiogeochemical cyclesRice strawNext generation sequencingDeterminación del efecto del manejo del tamo de arroz sobre la estructura y función de la comunidad microbiana en suelos de cultivo de arrozDetermination of the effect of using rice straw on the structure and function of microbial community in rice crop soilsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbarca, C., Martinez, A., Caro, M., & Quintero, R. (1992). Optimización del proceso de fermentación para producir Bacillus thuringiensis Var. Aisawai. Universidad: Ciencia y Tecnología, 2(3), 51–56. http://www.ibt.unam.mx/alfredo/OptimizacionBthuringiensis.pdfAbarenkov, K., Henrik Nilsson, R., Larsson, K., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., & Kõljalg, U. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.xAbin, C. A., & Hollibaugh, J. T. (2016). Draft genome sequence for the type strain Vulcanibacillus modesticaldus BR, a strictly anaerobic, moderately thermophilic, and nitratereducing bacterium isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Genome Announcements, 4(6), 6–7. https://doi.org/10.1128/genomeA.01246-16Abril, D., Navarro, E. A., & Abril, A. J. (2009). La paja de arroz, consecuencias de su manejo y alternativas de aprovechamiento. Revista de La Facultad de Agronomía, 17(January), 69–79.Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., & Pérez-Alegría, L. (2007). Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35(1), 35–45. https://doi.org/10.1016/j.apsoil.2006.05.012Adeolu, M., Alnajar, S., Naushad, S., & Gupta, R. S. (2016). Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575–5599. https://doi.org/10.1099/ijsem.0.001485Agronet. (2019, August 2). Estadísticas home. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1Ahmed, A. I., Omer, A. M., Ibrahim, A. I., & Agha, M. K. (2018). Brevibacillus Spp. in Agroecology: The Beneficial Impacts in Biocontrol of Plant Pathogens and Soil Bioremediation. Fungal Genomics & Biology, 08(02). https://doi.org/10.4172/2165-8056.1000157Alam, S. . (1981). S . M . Alam Atomic Energy Agricultural Research Centre , Tandojam , Rice plants were grown in solution culture for a period of five weeks at pH ’ s ranging from 3 . 5 to 8 . 5 . Maximum dry matter was obtained at pH 5 . 5 , but substantial reductions in. 4, 247–260.Alberto, M. C. R., Wassmann, R., Gummert, M., Buresh, R. J., Quilty, J. R., Correa, T. Q., Centeno, C. A. R., & Oca, G. M. (2015). Straw incorporated after mechanized harvesting of irrigated rice affects net emissions of CH4 and CO2 based on eddy covariance measurements. Field Crops Research, 184, 162–175. https://doi.org/10.1016/j.fcr.2015.10.004Alef, K., & Nannipieri, P. (1995). Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry (pp. 311–373). Elsevier. https://doi.org/10.1016/B978-012513840-6/50022-7Allison, S. D., & Martiny, J. B. H. (2009). Resistance, resilience, and redundancy in microbial communities. In the Light of Evolution, 2, 149–166. https://doi.org/10.17226/12501Alvira, P., Negro, M., & Ballesteros, M. (2011). Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw.Ambavaram, M. M. R., Krishnan, A., Trijatmiko, K. R., & Pereira, A. (2011). Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiology, 155(2), 916–931. https://doi.org/10.1104/pp.110.168641Anasontzis, G. E., Thuy, N. T., Hang, D. T. M., Huong, H. T., Thanh, D. T., Hien, D. D., Thanh, V. N., & Olsson, L. (2017). Rice straw hydrolysis using secretomes from novel fungal isolates from Vietnam. Biomass and Bioenergy, 99, 11–20. https://doi.org/10.1016/j.biombioe.2017.02.008Aulakh, M. S., Wassmann, R., Bueno, C., Kreuzwieser, J., & Rennenberg, H. (2001). Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 3(2), 139–148. https://doi.org/10.1055/s-2001-12905Bacilio-jiménez, M., Aguilar-flores, S., Ventura-zapata, E., Pérez, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277.Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research, 72(2), 169–180. https://doi.org/10.1016/S0167-1987(03)00086-2Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., & Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188–198. https://doi.org/10.1016/j.soilbio.2016.03.017Banning, N. C., Maccarone, L. D., Fisk, L. M., & Murphy, D. V. (2015). Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Scientific Reports, 5(March), 1–8. https://doi.org/10.1038/srep11146Bao, Y., Feng, Y., Stegen, J. C., Wu, M., Chen, R., Liu, W., Zhang, J., Li, Z., & Lin, X. (2020). Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil Biology and Biochemistry, 148(September 2019), 107866. https://doi.org/10.1016/j.soilbio.2020.107866Barrera, S. E., Sarango-Flóres, S.-W., & Montenegro-Gómez, S.-P. (2019). The phyllosphere microbiome and its potential application in horticultural crops. A review. Revista Colombiana de Ciencias Hortícolas, 13(3), 384–396. https://doi.org/10.17584/rcch.2019v13i3.8405Bastida, F., Torres, I. F., Hernández, T., & García, C. (2017). The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? Soil Biology and Biochemistry, 113, 173–183. https://doi.org/10.1016/j.soilbio.2017.06.012Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001Bernaola, L., Cange, G., Way, M. O., Gore, J., Hardke, J., & Stout, M. (2018). Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Rice Science, 25(3), 169–174. https://doi.org/10.1016/j.rsci.2018.02.006Berry, D., & Widder, S. (2014). Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5(MAY), 1–14. https://doi.org/10.3389/fmicb.2014.00219Bhattacharyya, P., & Barman, D. (2018). Crop Residue Management and Greenhouse Gases Emissions in Tropical Rice Lands. Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions, 323–335. https://doi.org/10.1016/B978-0-12-812128-3.00021-5Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767–4774. https://doi.org/10.1016/j.biortech.2009.10.079Bissett, A., Brown, M. V., Siciliano, S. D., & Thrall, P. H. (2013). Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecology Letters, 16(SUPPL.1), 128–139. https://doi.org/10.1111/ele.12109Blaud, A., Menon, M., van der Zaan, B., Lair, G. J., & Banwart, S. A. (2017). Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition. In Advances in Agronomy (1st ed., Vol. 142). Elsevier Inc. https://doi.org/10.1016/bs.agron.2016.10.006Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310Böhme, L., Langer, U., & Böhme, F. (2005). Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture, Ecosystems and Environment, 109(1–2), 141–152. https://doi.org/10.1016/j.agee.2005.01.017Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9Borsetto, C., Amos, G. C. A., Da Rocha, U. N., Mitchell, A. L., Finn, R. D., Laidi, R. F., Vallin, C., Pearce, D. A., Newsham, K. K., & Wellington, E. M. H. (2019). Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome, 7(1), 1–11. https://doi.org/10.1186/s40168-019-0692-8Bowles, T. M., Acosta-Martínez, V., Calderón, F., & Jackson, L. E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry, 68, 252–262. https://doi.org/10.1016/j.soilbio.2013.10.004Boyce, R., Chilana, P., & Rose, T. M. (2009). iCODEHOP: A new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp379Breidenbach, B., & Conrad, R. (2015). Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Frontiers in Microbiology, 5(DEC), 1–16. https://doi.org/10.3389/fmicb.2014.00752Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J., & Imberty, A. (2006). Structures and mechanisms of glycosyltransferases. Glycobiology, 16(2), 29–37. https://doi.org/10.1093/glycob/cwj016Brown, M. V., Philip, G. K., Bunge, J. A., Smith, M. C., Bissett, A., Lauro, F. M., Fuhrman, J. A., & Donachie, S. P. (2009). Microbial community structure in the North Pacific ocean. ISME Journal, 3(12), 1374–1386. https://doi.org/10.1038/ismej.2009.86Bukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16s rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6, 1–14. https://doi.org/10.1038/sdata.2019.7Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009Bustin, S. A. (2000). Absolute quantification of mrna using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25(2), 169–193. https://doi.org/10.1677/jme.0.0250169Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869Carreño-Carreño, J. del P. (2019). Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/76023/1018449897.2019.pdf?sequence=1&isAllowed=yCarrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., De Hollander, M., Ruiz-Buck, D., Mendes, L. W., van Ijcken, W. F. J., Gomez-Exposito, R., Elsayed, S. S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J. N., Mendes, R., van Wezel, G. P., Medema, M. H., & Raaijmakers, J. M. (2019). Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 366(6465), 606–612. https://doi.org/10.1126/science.aaw9285Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., de Souza, E., Zorita, M. D., de-Bashan, L., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(4), 461–479. https://doi.org/10.1007/s00374-020-01463-yCastilla, A. (2012). Manejo productivo de los residuos de la cosecha de arroz. Revista Arroz, 60(500), 10–17.Characterization, S., & Turbe-doan, A. (2019). crossm Quinone-Dependent Member of Auxiliary Activity Family 12 of the Carbohydrate-Active Enzymes Database : Functional and. 85(24), 1–15.Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk Density as related to Soil Texture, Organic Matter Content and available total Nutrients of Coimbatore Soil. International Journal of Scientific and Research Publications, 3(1), 2250–3153. www.ijsrp.orgChen, S., Zheng, X., Wang, D., Chen, L., Xu, C., & Zhang, X. (2012). Effect of Long-Term Paddy-Upland Yearly Rotations on Rice ( Oryza sativa ) Yield , Soil Properties , and Bacteria Community Diversity. 2012. https://doi.org/10.1100/2012/279641Chen, X., Jiang, N., Chen, Z., Tian, J., Sun, N., Xu, M., & Chen, L. (2017). Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 119. https://doi.org/10.1016/j.apsoil.2017.06.019Chhabra, V., & Mehta, C. M. (2019). Rice straw management for sustainable agriculture-a review. Plant Archives, 19, 47–49.Chialva, M., Ghignone, S., Cozzi, P., Lazzari, B., Bonfante, P., Abbruscato, P., & Lumini, E. (2020). Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 96(9), 1–16. https://doi.org/10.1093/femsec/fiaa146Chivenge, P., Rubianes, F., Chin, D. Van, & Thach, T. Van. (2020). Sustainable Rice Straw Management. In M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management. Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8Choi, J., Bach, E., Lee, J., Flater, J., Dooley, S., Howe, A., & Hofmockel, K. S. (2018). Spatial structuring of cellulase gene abundance and activity in soil. Frontiers in Environmental Science, 6(OCT), 1–10. https://doi.org/10.3389/fenvs.2018.00107Cimermancic, P., Medema, M. H., Claesen, J., Kurita, K., Wieland Brown, L. C., Mavrommatis, K., Pati, A., Godfrey, P. A., Koehrsen, M., Clardy, J., Birren, B. W., Takano, E., Sali, A., Linington, R. G., & Fischbach, M. A. (2014). Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 158(2), 412–421. https://doi.org/10.1016/j.cell.2014.06.034Cleveland, C. C., Nemergut, D. R., Schmidt, S. K., & Townsend, A. R. (2007). Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry, 82(3), 229–240. https://doi.org/10.1007/s10533-006-9065-zConrad, R. (2007). Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy, 96(07), 1–63. https://doi.org/10.1016/S0065-2113(07)96005-8Conrad, R. (2009). The global methane cycle: Recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1(5), 285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.xCruz-Ramírez, C. A., Gómez-Ramírez, L. F., & Uribe-Vélez, D. (2017). Manejo biológico del tamo de arroz bajo diferentes relaciones C:N empleando co-inóculos microbianos y promotores de crecimiento vegetal. Revista Colombiana de Biotecnología, 19(2), 47–62. https://doi.org/10.15446/rev.colomb.biote.v19n2.70168D’haeseleer, P., Gladden, J. M., Allgaier, M., Chain, P. S. G., Tringe, S. G., Malfatti, S. A., T., J., & Singer, S. W. (2013). Proteogenomic Analysis of a Thermophilic BacterialConsortium Adapted to Deconstruct Switchgrass.Dai, Z., Liu, G., Chen, H., Chen, C., Wang, J., Ai, S., Wei, D., Li, D., Ma, B., Tang, C., Brookes, P. C., & Xu, J. (2020). Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME Journal, 14(3), 757–770. https://doi.org/10.1038/s41396-019-0567-9Das, A. C. (1963). Ecology of soil fungi of rice fields 1. Succession of fungi on rice roots 2. Association of soil fungi with organic matter. Transactions of the British Mycological Society, 46(3), 431–443. https://doi.org/10.1016/s0007-1536(63)80037-6Das, S., Bhattacharyya, P., & Adhya, T. K. (2011). Impact of elevated CO2, flooding, and temperature interaction on heterotrophic nitrogen fixation in tropical rice soils. Biology and Fertility of Soils, 47(1), 25–30. https://doi.org/10.1007/s00374-010-0496-2de Souza, W. R. (2013). Microbial Degradation of Lignocellulosic Biomass. Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization. https://doi.org/10.5772/54325de Vries, M. (2018). Functional and phylogenetic diversity of cellulase genes in agricultural soil under two different tillage treatments. 1–166. https://mediatum.ub.tum.de/doc/1437155/file.pdfDebode, J., De Tender, C., Cremelie, P., Lee, A. S., Kyndt, T., Muylle, H., De Swaef, T., & Vandecasteele, B. (2018). Trichoderma-inoculated miscanthus straw can replace peat in strawberry cultivation, with beneficial effects on disease control. Frontiers in Plant Science, 9(February). https://doi.org/10.3389/fpls.2018.00213DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072. https://doi.org/10.1128/AEM.03006-05Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295Ding, L. J., Cui, H. L., Nie, S. A., Long, X. E., Duan, G. L., & Zhu, Y. G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 95(5), 1–13. https://doi.org/10.1093/femsec/fiz040Dobermann, A., & Fairhurst, T. H. (2002). Rice straw management. Better Crops International, 16(January), 7–11.Dobermann, Achim, & Fairhurst, T. (2000). Arroz: Desórdenes Nutricionales y Manejo de Nutrientes. 214.Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2018). Role of soil enzymes in sustainable crop production. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813280-7.00033-5Douglas, G., Maffei, V., Zaneveld, J., Yurgel, S., Brown, J., Taylor, C., Huttenhower, C., & Langille, M. (2019). PICRUSt2: An improved and customizable approach for metagenome inference. PICRUSt2: An Improved and Extensible Approach for Metagenome Inference, June, 672295. https://doi.org/10.1101/672295Draganova, D., Valcheva, I., & Kuzmanova, Y. (2019). Effect of wheat straw and cellulose degrading fungi of genus Trichoderma on soil respiration and cellulase, betaglucosidase and soil carbon content. January. https://doi.org/10.15547/ast.2018.04.064Dror, B., Jurkevitch, E., & Cytryn, E. (2020). State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities-A review. Soil Biology and Biochemistry, 147(April). https://doi.org/10.1016/j.soilbio.2020.107838Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381Edwards, J. A., Santos-Medellín, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., Phillips, G., & Sundaresan, V. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 16(2), 1–28. https://doi.org/10.1371/journal.pbio.2003862Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., & Sundaresan, V. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 112(8), E911–E920. https://doi.org/10.1073/PNAS.1414592112Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., Sundaresan, V., & Jeffery, L. D. (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920. https://doi.org/10.1073/pnas.1414592112Edwards, J., Santos-Medellín, C., Nguyen, B., Kilmer, J., Liechty, Z., Veliz, E., Ni, J., Phillips, G., & Sundaresan, V. (2019). Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biology, 20(1), 1–14. https://doi.org/10.1186/s13059-019-1825-xEichorst, S. A., & Kuske, C. R. (2012). Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Applied and Environmental Microbiology, 78(7), 2316–2327. https://doi.org/10.1128/AEM.07313-11Eichorst, S. A., Trojan, D., Roux, S., Herbold, C., Rattei, T., & Woebken, D. (2018). Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environmental Microbiology, 20(3), 1041–1063. https://doi.org/10.1111/1462-2920.14043Eiland, F., Klamer, M., Lind, A. M., Leth, M., & Bååth, E. (2001). Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecology, 41(3), 272–280. https://doi.org/10.1007/s002480000071Eivazi, F., & Tabatabai, M. A. (1977). Phosphates in soils. Soil Biology and Biochemistry, 9(1969), 167–172.Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601–606. https://doi.org/10.1016/0038-0717(88)90141-1Eivazi, F., & Tabatabai, M. A. (1990). Factors affecting glucosidase and galactosidase activities in soils. Soil Biology and Biochemistry, 22(7), 891–897. https://doi.org/10.1016/0038-0717(90)90126-KEkenler, M., & Tabatabai, M. A. (2003). Effects of liming and tillage systems on microbial biomass and glycosidases in soils. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-003-0664-8Ekwue, E. I. (1990). Organic-matter effects on soil strength properties. Soil and Tillage Research, 16(3), 289–297. https://doi.org/10.1016/0167-1987(90)90102-JEl-Sobky, E. S. E. A. (2017). Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat (Triticum aestivum L.). Annals of Agricultural Sciences, 62(1), 113–120. https://doi.org/10.1016/j.aoas.2017.05.007Elsas, J. D. van, Trevors, J. T., Jansson, J. K., & Nannipieri, P. (2006). Modern Soil Microbiology. In J. D. van Elsas, J. T. Trevors, J. K. Jansson, & P. Nannipieri (Eds.), Modern Soil Microbiology, Second Edition (3rd Editio). CRC Press. https://doi.org/10.1201/9781420015201Eyre, A. W., Wang, M., Oh, Y., & Dean, R. A. (2019). Identification and characterization of the core rice seed microbiome. In Phytobiomes Journal (Vol. 3, Issue 2). https://doi.org/10.1094/PBIOMES-01-19-0009-RFAOSTAT. (2020). FAOSTAT. http://www.fao.org/faostat/es/#data/QIFedearroz. (2020). Fedearroz. http://www.fedearroz.com.co/new/apr_public.phpFerrando, L., & Fernández Scavino, A. (2015). Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiology Ecology, 91(9), 1–12. https://doi.org/10.1093/femsec/fiv104Fierer, N., A.Bradford, M., & B.Jackson, R. (2007). TOWARD AN ECOLOGICAL CLASSIFICATION OF SOIL BACTERIA Edited by Foxit Reader. Ecology, 88(6), 1354–1364.Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME Journal, 6(5), 1007–1017. https://doi.org/10.1038/ismej.2011.159Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition? Soil Biology and Biochemistry, 35(6), 837–843. https://doi.org/10.1016/S0038-0717(03)00123-8Frankenberger, W. T., & Bingham, F. T. (1982). Influence of Salinity on Soil Enzyme Activities. Soil Science Society of America Journal, 46(6), 1173–1177. https://doi.org/10.2136/sssaj1982.03615995004600060011xFraser, T. D., Lynch, D. H., Bent, E., Entz, M. H., & Dunfield, K. E. (2015). Soil bacterial phoD gene abundance and expression in response toapplied phosphorus and long-term management. Soil Biology and Biochemistry, 88(May), 137–147. https://doi.org/10.1016/j.soilbio.2015.04.014Gadde, B., Bonnet, S., Menke, C., & Garivait, S. (2009). Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 157(5), 1554–1558. https://doi.org/10.1016/j.envpol.2009.01.004Gallardo, C. A., Baldrian, P., & López-mondéjar, R. (2020). Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass.Gallego, V., García, M. T., & Ventosa, A. (2005). Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, 55(1), 281–287. https://doi.org/10.1099/ijs.0.63319-0Garbeva, P., Van Elsas, J. D., & Van Veen, J. A. (2008). Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil, 302(1–2), 19–32. https://doi.org/10.1007/s11104-007-9432-0Garbeva, P., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(29), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455Gianfreda, L. (2015). Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 15(2), 283–306. https://doi.org/10.4067/s0718-95162015005000022Gianfreda, Liliana, Rao, M. A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1–3), 265–279. https://doi.org/10.1016/j.scitotenv.2004.10.005Good, A. I. J. (1953). Biometrika Trust The Population Frequencies of Species and the Estimation of Population Parameters THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS. Biometrika, 40(3), 237–264.Grant, C., Bittman, S., Montreal, M., Plenchette, C., & Morel, C. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science, 85(1), 3–14. https://doi.org/10.4141/P03-182Gredner, B. (2010). Effect of rice straw application on hydrolytic enzyme activities in Chinese paddy soils. World, August, 13–16.Grum-Grzhimaylo, A. A., Georgieva, M. L., Bondarenko, S. A., Debets, A. J. M., & Bilanenko, E. N. (2016). On the diversity of fungi from soda soils. Fungal Diversity, 76(1), 27–74. https://doi.org/10.1007/s13225-015-0320-2Guillén, D., Sánchez, S., & Rodríguez-Sanoja, R. (2010). Carbohydrate-binding domains: Multiplicity of biological roles. Applied Microbiology and Biotechnology, 85(5), 1241–1249. https://doi.org/10.1007/s00253-009-2331-yGuo, B., Liang, Y., Li, Z., & Han, F. (2009). Phosphorus adsorption and bioavailability in a paddy soil amended with pig manure compost and decaying rice straw. Communications in Soil Science and Plant Analysis, 40(13–14), 2185–2199. https://doi.org/10.1080/00103620902960666Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., Lei, Q., & Zhou, W. (2020). Analysis of microbial utilization of rice straw in paddy soil using a DNA-SIP approach. Soil Science Society of America Journal, 84(1), 99–114. https://doi.org/10.1002/saj2.20019Guo, T., Zhang, Q., Ai, C., Liang, G., He, P., & Zhou, W. (2018). Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Scientific Reports, 12, 1–12. https://doi.org/10.1038/s41598-018-20293-5Gupta, P. K., Sahai, S., Singh, N., Dixit, C. K., Singh, D. P., Sharma, C., Tiwari, M. K., Gupta, R. K., & Garg, S. C. (2004). Residue burning in rice-wheat cropping system: Causes and implications. Current Science, 87(12), 1713–1717.Gweon, H. S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D. S., Griffiths, R. I., & Schonrogge, K. (2015). PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 6(8), 973–980. https://doi.org/10.1111/2041-210X.12399Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. NRC Canada Can. J. Microbiol, 43, 895–914. www.nrcresearchpress.comHam, J. H., Melanson, R. A., & Rush, M. C. (2011). Burkholderia glumae: Next major pathogen of rice? Molecular Plant Pathology, 12(4), 329–339. https://doi.org/10.1111/j.1364-3703.2010.00676.xHan, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W., & Li, X. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal, 14(8), 1915–1928. https://doi.org/10.1038/s41396-020-0648-9Hardoim, P. R., Andreote, F. D., Reinhold-Hurek, B., Sessitsch, A., van Overbeek, L. S., & van Elsas, J. D. (2011). Rice root-associated bacteria: Insights into community structures across10 cultivars. FEMS Microbiology Ecology, 77(1), 154–164. https://doi.org/10.1111/j.1574-6941.2011.01092.xHe, J. Z., Liu, X. Z., Zheng, Y., Shen, J. P., & Zhang, L. M. (2010). Dynamics of sulfate reduction and sulfate-reducing prokaryotes in anaerobic paddy soil amended with rice straw. Biology and Fertility of Soils, 46(3), 283–291. https://doi.org/10.1007/s00374-009-0426-3Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F., & Taylor, M. (2017). crossm Condition. Applied and Environmental Microbiology, 83(1), 1–13.Hernández León, F. A. (2016). VARIEDAD FL - FEDEARROZ 68 EN LA ZONA ABSORCIÓN DE NUTRIENTES DE LA DEL ARIARI-META. REVISTA ARROZ, 64(521), 4–12. http://www.fedearroz.com.co/revistanew/arroz521.pdfHernández, M., Dumont, M. G., Yuan, Q., & Conrad, R. (2015). Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon. Applied and Environmental Microbiology, 81(6), 2244–2253. https://doi.org/10.1128/AEM.03209-14Hesse, C. N., Mueller, R. C., Vuyisich, M., Gallegos-Graves, L. V., Gleasner, C. D., Zak, D. R., & Kuske, C. R. (2015). Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Frontiers in Microbiology, 6(APR), 1–15. https://doi.org/10.3389/fmicb.2015.00337HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. (2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411Holtsmark, I., Eijsink, V. G. H., & Brurberg, M. B. (2008). Bacteriocins from plant pathogenic bacteria. FEMS Microbiology Letters, 280(1), 1–7. https://doi.org/10.1111/j.1574-6968.2007.01010.xHong, S.-B., Kim, D.-H., Park, I.-C., Samson, R. A., & Shin, H.-D. (2010). Isolation and Identification of Aspergillus Section Fumigati Strains from Arable Soil in Korea . Mycobiology, 38(1), 1. https://doi.org/10.4489/myco.2010.38.1.001Hori, T., Müller, A., Igarashi, Y., Conrad, R., & Friedrich, M. W. (2010). Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13 C-acetate probing. ISME Journal, 4(2), 267–278. https://doi.org/10.1038/ismej.2009.100Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z., & Yin, Y. (2018). dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research, 46(D1), D516–D521. https://doi.org/10.1093/nar/gkx894Hubell, S. (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87(6), 1387–1398.Huhndorf, S. M., Miller, A. N., & Fernández, F. A. (2004). Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined. Mycologia, 96(2), 368–387. https://doi.org/10.1080/15572536.2005.11832982Hung, D. T., Hughes, H. J., Keck, M., & Sauer, D. (2019). Rice-residue management practices of smallholder farms in Vietnam and their effects on nutrient fluxes in the soil-plant system. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061641Hung, N. Van, Maguyon-Detras, M. C., Migo, M. V., Quilloy, R., Balingbing, C., Chivenge, P., & Gummert, M. (2020). Rice Straw Overview: Availability, Properties, and Management Practices. Sustainable Rice Straw Management, 1–13. https://doi.org/10.1007/978-3-030-32373-8_1Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17(3), 377–386. https://doi.org/10.1101/gr.5969107Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H., & Jin, Z. J. (2012). Microbial community dynamics and function associatedwith rhizosphere over periods of rice growth. Plant, Soil and Environment, 58(2), 55–61. https://doi.org/10.17221/390/2010-pseHyatt, D., Chen, G. L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-119Ichikawa, S., Nishida, A., Yasui, S., & Karita, S. (2017). Characterization of lignocellulose particles during lignocellulose solubilization by Clostridium thermocellum. Bioscience, Biotechnology and Biochemistry, 81(10), 2028–2033. https://doi.org/10.1080/09168451.2017.1364619Imchen, M., Kumavath, R., Vaz, A. B. M., Góes-Neto, A., Barh, D., Ghosh, P., Kozyrovska, N., Podolich, O., & Azevedo, V. (2019). 16S rRNA Gene Amplicon Based Metagenomic Signatures of Rhizobiome Community in Rice Field During Various Growth Stages. Frontiers in Microbiology, 10(September), 1–15. https://doi.org/10.3389/fmicb.2019.02103Ito, O., Ella, E., & Kawano, N. (1999). Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crops Research, 64(1–2), 75–90. https://doi.org/10.1016/S0378-4290(99)00052-0Ivanova, A. A., Zhelezova, A. D., Chernov, T. I., & Dedysh, S. N. (2020). Linking ecology and systematics of acidobacteria: Distinct habitat preferences of the Acidobacteriia and Blastocatellia in tundra soils. PLoS ONE, 15(3), 1–19. https://doi.org/10.1371/journal.pone.0230157Jenkins M., B., Bexter L., L., Miles R. Jr., T., & Miles R., T. (1998). Combustion Properties of Biomass Flash. Fuel Processing Technology, 54, 17–46.Jia, Z., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11(7), 1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.xJiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., & Jia, Z. (2015). pH regulates key players of nitrification in paddy soils. Soil Biology and Biochemistry, 81(November), 9–16. https://doi.org/10.1016/j.soilbio.2014.10.025Jiao, S., Xu, Y., Zhang, J., Hao, X., & Lu, Y. (2019). Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. MSystems, 4(2), 1–16. https://doi.org/10.1128/msystems.00313-18Jiménez, D. J., Chaves-Moreno, D., & Van Elsas, J. D. (2015). Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Scientific Reports, 5, 1–16. https://doi.org/10.1038/srep13845Jiménez, D. J., de Lima Brossi, M. J., Schückel, J., Kračun, S. K., Willats, W. G. T., & van Elsas, J. D. (2016). Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Applied Microbiology and Biotechnology, 100(24), 10463–10477. https://doi.org/10.1007/s00253-016-7713-3Jiménez, D. J., Dini-Andreote, F., & Van Elsas, J. D. (2014). Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Biotechnology for Biofuels, 7(1). https://doi.org/10.1186/1754-6834-7-92Jiménez, D. J., Korenblum, E., & Van Elsas, J. D. (2014). Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural bioconversion. Applied Microbiology and Biotechnology, 98(6), 2789–2803. https://doi.org/10.1007/s00253-013-5253-7Jin, Z., Shah, T., Zhang, L., Liu, H., Peng, S., & Nie, L. (2020). Effect of straw returning on soil organic carbon in rice – wheat rotation system : A review. December 2019, 1–13. https://doi.org/10.1002/fes3.200Kanasugi, M., Sarkodee-Addo, E., Omari, R. A., Dastogeer, K. M. G., Fujii, Y., Abebrese, S. O., Bam, R., Asuming-Brempong, S., & Okazaki, S. (2020). Exploring rice root microbiome; The variation, specialization and interaction of bacteria and fungi in six tropic Savanna Regions in Ghana. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145835Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/BF00257924Kato, H., Mori, H., Maruyama, F., Toyoda, A., Oshima, K., Endo, R., Fuchu, G., Miyakoshi, M., Dozono, A., Ohtsubo, Y., Nagata, Y., Hattori, M., Fujiyama, A., Kurokawa, K., & Tsuda, M. (2015). Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance. DNA Research, 22(6), 413–424. https://doi.org/10.1093/dnares/dsv023Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A., & Kuramae, E. E. (2016). The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Frontiers in Microbiology, 7(MAY), 1–16. https://doi.org/10.3389/fmicb.2016.00744Kielak, A. M., Cipriano, M. A. P., & Kuramae, E. E. (2016). Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Archives of Microbiology, 198(10), 987–993. https://doi.org/10.1007/s00203-016-1260-2Kim, H., & Lee, Y. H. (2020). The rice microbiome: A model platform for crop holobiome. Phytobiomes Journal, 4(1), 5–18. https://doi.org/10.1094/PBIOMES-07-19-0035-RVWKnief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., Von Mering, C., & Vorholt, J. A. (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME Journal, 6(7), 1378–1390. https://doi.org/10.1038/ismej.2011.192Knoblauch R, Ernani PR, Deschamps FC, Gatiboni LC, Walker TW, Lourenço KS, A. A. & M. A. (2014). RICE STRAW INCORPORATED JUST BEFORE SOIL FLOODING INCREASES ACETIC ACID FORMATION AND DECREASES AVAILABLE NITROGEN. 38, 177–184.Kont, R., Kurašin, M., Teugjas, H., & Väljamäe, P. (2013). Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6(1), 1–14. https://doi.org/10.1186/1754-6834-6-135Kotur, Z., Siddiqi, Y. M., & Glass, A. D. M. (2013). Characterization of nitrite uptake in Arabidopsis thaliana: Evidence for a nitrite-specific transporter. New Phytologist, 200(1), 201–210. https://doi.org/10.1111/nph.12358Kovaleva, O. L., Merkel, A. Y., Novikov, A. A., Baslerov, R. V., Toshchakov, S. V., & Bonch-Osmolovskaya, E. A. (2015). Tepidisphaera mucosa gen. Nov., sp. nov., a moderately thermophilic member of the class phycisphaerae in the phylum Planctomycetes, and proposal of a new family, tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 65(2), 549–555. https://doi.org/10.1099/ijs.0.070151-0Kozera, B., & Rapacz, M. (2013). Reference genes in real-time PCR. Journal of Applied Genetics, 54(4), 391–406. https://doi.org/10.1007/s13353-013-0173-xKulichevskaya, I. S., Suzina, N. E., Liesack, W., & Dedysh, S. N. (2010). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the acidobacteria. International Journal of Systematic and Evolutionary Microbiology, 60(2), 301–306. https://doi.org/10.1099/ijs.0.013250-0Kumar, M., Kour, D., Yadav, A. N., Saxena, R., Rai, P. K., Jyoti, A., & Tomar, R. S. (2019). Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia, 74(3), 287–308. https://doi.org/10.2478/s11756-019-00190-6Kumari, A., Kapoor, K. K., Kundu, B. S., & Mehta, R. K. (2008). Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization. Plant, Soil and Environment, 54(2), 72–77. https://doi.org/10.17221/2783-pseKuramae, E. E., Hillekens, R. H. E., de Hollander, M., van der Heijden, M. G. A., van den Berg, M., van Straalen, N. M., & Kowalchuk, G. A. (2013). Structural and functional variation in soil fungal communities associated with litter bags containing maize leaf. FEMS Microbiology Ecology, 84(3), 519–531. https://doi.org/10.1111/1574-6941.12080Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276. https://doi.org/10.1038/nrmicro.2018.9Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83(February), 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025Ladd, J. N., & Butler, J. H. A. (1972). Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry, 4(1), 19–30. https://doi.org/10.1016/0038-0717(72)90038-7Lanoiselet, V. M., Cother, E. J., Ash, G. J., Hind-Lanoiselet, T. L., Murray, G. M., & Harper, J. D. I. (2005). Prevalence and survival, with emphasis on stubble burning, of Rhizoctonia spp., causal agents of sheath diseases of rice in Australia. Australasian Plant Pathology, 34(2), 135–142. https://doi.org/10.1071/AP05010Le Cocq, K., Gurr, S. J., Hirsch, P. R., & Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18(3), 469–473. https://doi.org/10.1111/mpp.12483Le Roux, X., Poly, F., Currey, P., Commeaux, C., Hai, B., Nicol, G. W., Prosser, J. I., Schloter, M., Attard, E., & Klumpp, K. (2008). Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME Journal, 2(2), 221–232. https://doi.org/10.1038/ismej.2007.109Lee, J., & Cho, K. (2004). Relationships between methane production and sulfate reduction in reclaimed rice field soils. Korean Journal of Biological Sciences, 8(4), 281–288. https://doi.org/10.1080/12265071.2004.9647761Lee, Y. H., Ko, S. J., Cha, K. H., & Park, E. W. (2015). BGRcast: A disease forecast model to support decision-making for chemical sprays to control bacterial grain rot of rice. Plant Pathology Journal, 31(4), 350–362. https://doi.org/10.5423/PPJ.OA.07.2015.0136Li, H. Y., Wang, H., Wang, H. T., Xin, P. Y., Xu, X. H., Ma, Y., Liu, W. P., Teng, C. Y., Jiang, C. L., Lou, L. P., Arnold, W., Cralle, L., Zhu, Y. G., Chu, J. F., Gilbert, J. A., & Zhang, Z. J. (2018). The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, 6(1), 1–16. https://doi.org/10.1186/s40168-018-0561-xLi, S., Wang, Z. hui, Miao, Y. fang, & Li, S. qing. (2014). Soil Organic Nitrogen and Its Contribution to Crop Production. Journal of Integrative Agriculture, 13(10), 2061–2080. https://doi.org/10.1016/S2095-3119(14)60847-9Li, X., Wang, H., Li, X., Li, X., & Zhang, H. (2019). Shifts in bacterial community composition increase with depth in three soil types from paddy fields in China. Pedobiologia, 77(February). https://doi.org/10.1016/j.pedobi.2019.150589Li, Y., Chapman, S. J., Nicol, G. W., & Yao, H. (2018). Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 116(January), 290–301. https://doi.org/10.1016/j.soilbio.2017.10.023Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), 625–645. https://doi.org/10.1016/S0168-6445(00)00050-4Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Cesar Ignacio-Espinosa, J., Roux, S., Vincent, F., Bittner, L., Darzi, Y., Wang, J., Audic, S., Berline, L., Bontempi, G., Cabello, A. M., Coppola, L., Cornejo-Castillo, F. M., … Raes, J. (2015). 24 Silvia G. Acinas, 12 Shinichi Sunagawa, 17 Peer Bork. Science, 10(6237), 1–10. www.sciencemag.orgLimmer, C., & Drake, H. L. (1996). Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: Aerobic and anaerobic differentials. Soil Biology and Biochemistry, 28(2), 177–183. https://doi.org/10.1016/0038-0717(95)00118-2Lin, H. C., & Fukushima, Y. (2016). Rice cultivation methods and their sustainability aspects: Organic and conventional rice production in industrialized tropical monsoon Asia with a dual cropping system. Sustainability (Switzerland), 8(6). https://doi.org/10.3390/su8060529Lin, J. T., Goldman, B. S., & Stewart, V. (1993). Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. Journal of Bacteriology, 175(8), 2370–2378. https://doi.org/10.1128/jb.175.8.2370-2378.1993Linhardt, R. J., Galliher, P. M., & Cooney, C. L. (1987). Polysaccharide lyases. Applied Biochemistry and Biotechnology, 12(2), 135–176. https://doi.org/10.1007/BF02798420Lou, Y., Xu, M., Wang, W., Sun, X., & Zhao, K. (2011). Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil and Tillage Research, 113(1), 70–73. https://doi.org/10.1016/j.still.2011.01.007Louca, S., Polz, M. F., Mazel, F., Albright, M. B. N., Huber, J. A., O’Connor, M. I., Ackermann, M., Hahn, A. S., Srivastava, D. S., Crowe, S. A., Doebeli, M., & Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nature Ecology and Evolution, 2(6), 936–943. https://doi.org/10.1038/s41559-018-0519-1Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 1–21. https://doi.org/10.1186/s13059-014-0550-8Lozupone, C., Faust, K., Raes, J., Faith, J. J., Frank, D. N., Zaneveld, J., Gordon, J. I., & Knight, R. (2012). Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 22(10), 1974–1984. https://doi.org/10.1101/gr.138198.112Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Rio, T. G. Del, Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Tringe, S. G., & Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. https://doi.org/10.1038/nature11237Luo, G., Ling, N., Nannipieri, P., Chen, H., Raza, W., Wang, M., Guo, S., & Shen, Q. (2017). Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biology and Fertility of Soils, 53(4), 375–388. https://doi.org/10.1007/s00374-017-1183-3Luo, X., Fu, X., Yang, Y., Cai, P., Peng, S., Chen, W., & Huang, Q. (2016). Microbial communities play important roles in modulating paddy soil fertility. Scientific Reports, 6(February), 1–12. https://doi.org/10.1038/srep20326Lupatini, M., Suleiman, A. K. A., Jacques, R. J. S., Antoniolli, Z. I., de Siqueira Ferreira, A., Kuramae, E. E., & Roesch, L. F. W. (2014). Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2(MAY), 1–11. https://doi.org/10.3389/fenvs.2014.00010Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J. A., Faust, K., Knight, R., Jansson, J. K., Cardona, C., Röttjers, L., & Xu, J. (2020). Earth microbial co-occurrence network reveals interconnection pattern across microbiomes. Microbiome, 8(1), 1–12. https://doi.org/10.1186/s40168-020-00857-2Maarastawi, S. A., Frindte, K., Geer, R., Kröber, E., & Knief, C. (2018). Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize. Soil Biology and Biochemistry, 127, 200–212. https://doi.org/10.1016/j.soilbio.2018.09.028Maarastawi, S. A., Frindte, K., Linnartz, M., & Knief, C. (2018). Crop rotation and straw application impact microbial communities in Italian and Philippine Soils and the rhizosphere of Zea mays. Frontiers in Microbiology, 9(JUN), 1–17. https://doi.org/10.3389/fmicb.2018.01295Marentes, F., Vanegas, J., Luna, J. N., & Uribe-Vélez, D. (2011). Ecología de microorganismos rizosféricos asociados a cultivos de arroz de Tolima y Meta (D. Uribe-Vélez & L. M. Melgarejo (eds.); Primera ed). Editorial Universidad Nacional de Colombia. https://www.uneditorial.com/ecologia-de-microorganismos-rizosfericos-asociados-a-cultivos-de-arroz-de-tolima-y-meta-agropecuario.htmlMargalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I. A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., & Peñuelas, J. (2017). Global patterns of phosphatase activity in natural soils. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-01418-8Martínez-Hidalgo, P., & Hirsch, A. M. (2017). The nodule microbiome: N2fixing rhizobia do not live alone. Phytobiomes Journal, 1(2), 70–82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVWMašínová, T., Yurkov, A., & Baldrian, P. (2018). Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology, 34, 10–19. https://doi.org/10.1016/j.funeco.2018.03.005Medema, M. H., Blin, K., Cimermancic, P., De Jager, V., Zakrzewski, P., Fischbach, M. A., Weber, T., Takano, E., & Breitling, R. (2011). AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39(SUPPL. 2), 339–346. https://doi.org/10.1093/nar/gkr466Mekasha, S., Tuveng, T. R., Askarian, F., Choudhary, S., Schmidt-Dannert, C., Niebisch, A., Modregger, J., Vaaje-Kolstad, G., & Eijsink, V. G. H. (2020). A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 295(27), 9134–9146. https://doi.org/10.1074/jbc.ra120.013040Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028Mendes, R., Kruijt, M., De Bruijn, I., Dekkers, E., Van Der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033), 1097–1100. https://doi.org/10.1126/science.1203980Merlin, C., Besaury, L., Niepceron, M., Mchergui, C., Riah, W., Bureau, F., Gattin, I., & Bodilis, J. (2014). Real-time PCR for quantification in soil of glycoside hydrolase family 6 cellulase genes. Letters in Applied Microbiology, 59(3), 284–291. https://doi.org/10.1111/lam.12273Midha, S., Bansal, K., Sharma, S., Kumar, N., Patil, P. P., Chaudhry, V., & Patil, P. B. (2016). Genomic resource of rice seed associated bacteria. Frontiers in Microbiology, 6(JAN), 1–8. https://doi.org/10.3389/fmicb.2015.01551Minamisawa, K., Imaizumi-Anraku, H., Bao, Z., Shinoda, R., Okubo, T., & Ikeda, S. (2016). Are symbiotic methanotrophs key microbes for N acquisition in paddy rice root? Microbes and Environments, 31(1), 4–10. https://doi.org/10.1264/jsme2.ME15180Mueller, G. M., & Schmit, J. P. (2007). Fungal biodiversity: What do we know? What can we predict? Biodiversity and Conservation, 16(1), 1–5. https://doi.org/10.1007/s10531-006-9117-7Müller, T., & Ruppel, S. (2014). Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiology Ecology, 87(1), 2–17. https://doi.org/10.1111/1574-6941.12198Murase, J., Shibata, M., Lee, C. G., Watanabe, T., Asakawa, S., & Kimura, M. (2012). Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing. FEMS Microbiology Ecology, 79(2), 371–379. https://doi.org/10.1111/j.1574-6941.2011.01224.xMurillo-Antolinez, L. M. (2018). 2018_Tesis final_Laura Murillo. UNiversidad El Bosque.Murphy, B. (2015). Key soil functional properties affected by soil organic matter - Evidence from published literature. IOP Conference Series: Earth and Environmental Science, 25(1). https://doi.org/10.1088/1755-1315/25/1/012008NAAS. (2017). Innovative viable solution to rice residue burning in rice-wheat cropping system through concurrent use of super straw management system-fitted combines and turbo happy seeder. Policy Brief No. 2, 1–16. http://naasindia.org/documents/CropBurning.pdfNannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670. https://doi.org/10.1046/j.1351-0754.2003.0556.xNannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2017). Landmark Papers Microbial diversity and soil functions. European Journal of Soil Science, 68(1), 12–26. http://doi.wiley.com/10.1111/ejss.4_12398Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M. C., & Marinari, S. (2012). Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils, 48(7), 743–762. https://doi.org/10.1007/s00374-012-0723-0Nannipieri, P, Giagnoni, L., Landi, L., & Renella, G. (2011). Phosphorus in Action. 26, 215–243. https://doi.org/10.1007/978-3-642-15271-9Nannipieri, Paolo. (2006). Role of Stabilised Enzymes in Microbial Ecology and Enzyme Extraction from Soil with Potential Applications in Soil Proteomics. Nucleic Acids and Proteins in Soil, 8, 75–94. https://doi.org/10.1007/3-540-29449-x_4Navarrete, Acácio A., Kuramae, E. E., de Hollander, M., Pijl, A. S., van Veen, J. A., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiology Ecology, 83(3), 607–621. https://doi.org/10.1111/1574-6941.12018Navarrete, Acacio A., Tsai, S. M., Mendes, L. W., Faust, K., De Hollander, M., Cassman, N. A., Raes, J., Van Veen, J. A., & Kuramae, E. E. (2015). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24(10), 2433–2448. https://doi.org/10.1111/mec.13172Nelkner, J., Henke, C., Lin, T. W., Pätzold, W., Hassa, J., Jaenicke, S., Grosch, R., Pühler, A., Sczyrba, A., & Schlüter, A. (2019). Effect of long-term farming practices on agricultural soil microbiome members represented by metagenomically assembled genomes (MAGs) and their predicted plant-beneficial genes. Genes, 10(6). https://doi.org/10.3390/genes10060424Nemergut, D. R., Townsend, A. R., Sattin, S. R., Freeman, K. R., Fierer, N., Neff, J. C., Bowman, W. D., Schadt, C. W., Weintraub, M. N., & Schmidt, S. K. (2008). The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: Implications for carbon and nitrogen cycling. Environmental Microbiology, 10(11), 3093–3105. https://doi.org/10.1111/j.1462-2920.2008.01735.xNguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. I. (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology, 10(11), 2966–2978. https://doi.org/10.1111/j.1462-2920.2008.01701.xNie, San’an, Lei, X., Zhao, L., Brookes, P. C., Wang, F., Chen, C., Yang, W., & Xing, S. (2018). Fungal communities and functions response to long-term fertilization in paddy soils. Applied Soil Ecology, 130(August), 251–258. https://doi.org/10.1016/j.apsoil.2018.06.008Nie, San’An, Li, H., Yang, X., Zhang, Z., Weng, B., Huang, F., Zhu, G. B., & Zhu, Y. G. (2015). Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME Journal, 9(9), 2059–2067. https://doi.org/10.1038/ismej.2015.25Nilsson, R. Henrik, Wurzbacher, C., Bahram, M., Coimbra, V. R. M., Larsson, E., Tedersoo, L., Eriksson, J., Ritter, C. D., Svantesson, S., Sánchez-García, M., Ryberg, M., Kristiansson, E., & Abarenkov, K. (2016). Top 50 most wanted fungi. MycoKeys, 12, 29–40. https://doi.org/10.3897/mycokeys.12.7553Nilsson, Rolf Henrik, Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259–D264. https://doi.org/10.1093/nar/gky1022Nsenga Kumwimba, M., & Meng, F. (2019). Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. Science of the Total Environment, 659, 419–441. https://doi.org/10.1016/j.scitotenv.2018.12.236Pandey, A. K., Gaind, S., Ali, A., & Nain, L. (2009). Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation, 20(3), 293–306. https://doi.org/10.1007/s10532-008-9221-3Pandit, P. S., Ranade, D. R., Dhakephalkar, P. K., & Rahalkar, M. C. (2016). A pmoA-based study reveals dominance of yet uncultured Type I methanotrophs in rhizospheres of an organically fertilized rice field in India. 3 Biotech, 6(2), 1–6. https://doi.org/10.1007/s13205-016-0453-3Panhwar, Q. A., Naher, U. A., Shamshuddin, J., Othman, R., & Latif, M. A. (2014). Correction: Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS ONE, 9(12). https://doi.org/10.1371/journal.pone.0097241Pansu, M., & Gautheyrou, J. (2006). Handbook of Soil Analysis. In Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31211-6Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123–3124. https://doi.org/10.1093/bioinformatics/btu494Pascault, N., Ranjard, L., Kaisermann, A., Bachar, D., Christen, R., Terrat, S., Mathieu, O., Lévêque, J., Mougel, C., Henault, C., Lemanceau, P., Péan, M., Boiry, S., Fontaine, S., & Maron, P. A. (2013). Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of Soil Priming Effect. Ecosystems, 16(5), 810–822. https://doi.org/10.1007/s10021-013-9650-7Paul, Ε. Α., & Clark, F. E. (1989). Soil Microbiology and Biochemistry. Elsevier. https://doi.org/10.1016/C2009-0-02814-1Pedregosa, F., Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., & Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1), 29–33. https://doi.org/10.1145/2786984.2786995Phy, C., Dejbhimon, K., Tulaphitak, D., Lawongsa, P., Thammasom, N., & Saenjan, P. (2014). Rice Straw Amendment and Sulfate Affecting Methane Production and Chemical Properties in Paddy Soils.Piotrowska, A., & Koper, J. (2010). Soil β-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. Journal of Elementology, 15(3), 593–600. https://doi.org/10.5601/jelem.2010.15.3.593-600Piotrowska, A., & Koper, J. (2013). Soil β-glucosidase activity under winter wheat cultivated in crop rotation systems depleting and enriching the soil in organic matter. Journal of Elemntology, 15(3/2010), 593–600. https://doi.org/10.5601/jelem.2010.15.3.593-600Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L., & Valiati, V. H. (2018). Bacterial Community of the Rice Floodwater Using Cultivation-Independent Approaches. International Journal of Microbiology, 2018. https://doi.org/10.1155/2018/6280484Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152(1), 95–103. https://doi.org/10.1016/S0923-2508(00)01172-4Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenco, J., & Paine, R. T. (1996). Challenges in the Quest for Keystones. BioScience, 46(8), 609–620. https://doi.org/10.2307/1312990Prosser, J. I., & Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends in Microbiology, 20(11), 523–531. https://doi.org/10.1016/j.tim.2012.08.001Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 590–596. https://doi.org/10.1093/nar/gks1219Quevedo Amaya, Y. M., Beltrán Medina, J. I., & Barragán Quijano, E. (2019). Identification of climatic and physiological variables associated with rice (Oryza sativa L.) yield under tropical conditions. Revista Facultad Nacional de Agronomia Medellin, 72(1), 8699–8706. https://doi.org/10.15446/rfnam.v72n1.72076R Core Team. (2019). R: The R Project for Statistical Computing. In R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/Ragot, S. A., Kertesz, M. A., & Bünemann, E. K. (2015). phoD alkaline phosphatase gene diversity in soil. Applied and Environmental Microbiology, 81(20), 7281–7289. https://doi.org/10.1128/AEM.01823-15Rawat, S. R., Männistö, M. K., Bromberg, Y., & Häggblom, M. M. (2012). Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiology Ecology, 82(2), 341–355. https://doi.org/10.1111/j.1574-6941.2012.01381.xRawway, M., Ali, S. G., & Badawy, A. S. (2018). Isolation and Identification of Cellulose Degrading Bacteria from Different Sources at Assiut Governorate (Upper Egypt). Journal of Ecology of Health & Environment, 6(1), 15–24. https://doi.org/10.18576/jehe/060103Reay, D. S., & Nedwell, D. B. (2004). Methane oxidation in temperate soils: Effects of inorganic N. Soil Biology and Biochemistry, 36(12), 2059–2065. https://doi.org/10.1016/j.soilbio.2004.06.002Reicosky, D. C., & Wilts, A. R. (2005). CROP-RESIDUE MANAGEMENT. Encyclopedia of Soils in the Environment, 4, 334–338. https://doi.org/10.1016/B0-12-348530-4/00254-XRen, Z., You, W., Wu, S., Poetsch, A., & Xu, C. (2019). Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1522-8Rho, M., Tang, H., & Ye, Y. (2010). FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Research, 38(20), 1–12. https://doi.org/10.1093/nar/gkq747Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016(10), 1–22. https://doi.org/10.7717/peerj.2584Roman-Reyna, V., Pinili, D., Borja, F. ., I.L., Q., & S.C., G. (2019). The rice leaf microbiome has a conserved community structure controlled by complex host-microbe interactions.Rovira, P., & Ramón Vallejo, V. (2002). Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial. Soil Biology and Biochemistry, 34(3), 327–339. https://doi.org/10.1016/S0038-0717(01)00186-9S. P. DENG and M. A. TABATABAI. (1994). Cellulase Activity. International Cenological Codex, 26(1990), 1–11.Sakurai, M., Wasaki, J., Tomizawa, Y., Shinano, T., & Osaki, M. (2008). Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science and Plant Nutrition, 54(1), 62–71. https://doi.org/10.1111/j.1747-0765.2007.00210.xSalazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., Peix, A., & Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37(8), 1123–1131. https://doi.org/10.1016/j.ecoleng.2011.02.007Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., & Sundaresan, V. (2017). Drought Stress Results in a Compartment-Specific Restructuring of. MBio, 8(4: 8:e00764-17), 1–15. http://www.ncbi.nlm.nih.gov/pubmed/28720730%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5516253Sarkodee-Addo, E., Yasuda, M., Lee, C. G., Kanasugi, M., Fujii, Y., Omari, R. A., Abebrese, S. O., Bam, R., Asuming-Brempong, S., Golam Dastogeer, K. M., & Okazaki, S. (2020). Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of regional locations and soil factors on diversity and community assembly. Agronomy, 10(4). https://doi.org/10.3390/agronomy10040559Schimel, J. P., & Bennett, J. B. (2004). Nitrogen Mineralization: Challenges of a Changing Paradigm. Ecology, 85(3), 591–602. https://doi.org/10.1890/03-8024Schinner, F., & Mersi, W. V. O. N. (1990). and Invertase Activity in Soil : an Improved Method. 3–7.Schinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22(4), 511–515. https://doi.org/10.1016/0038-0717(90)90187-5Schöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., Shindo, K., Sandmann, G., & Bode, H. B. (2016). Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. ChemBioChem, 17(3), 247–253. https://doi.org/10.1002/cbic.201500474Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60Serrano-Silva, N., Sarria-Guzmán, Y., Dendooven, L., & Luna-Guido, M. (2014). Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere, 24(3), 291–307. https://doi.org/10.1016/S1002-0160(14)60016-3Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Hauberg-Lotte, L., Friedrich, F., Rahalkar, M., Hurek, T., Sarkar, A., Bodrossy, L., Van Overbeek, L., Brar, D., Van Elsas, J. D., & Reinhold-Hurek, B. (2012). Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis. Molecular Plant-Microbe Interactions, 25(1), 28–36. https://doi.org/10.1094/MPMI-08-11-0204Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnology, 2013, 1–7. https://doi.org/10.5402/2013/985685Shade, A., & Handelsman, J. (2012). Beyond the Venn diagram: The hunt for a core microbiome. Environmental Microbiology, 14(1), 4–12. https://doi.org/10.1111/j.1462-2920.2011.02585.xShade, A., Jacques, M. A., & Barret, M. (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 37, 15–22. https://doi.org/10.1016/j.mib.2017.03.010Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., Huber, D. H., Langenheder, S., Lennon, J. T., Martiny, J. B. H., Matulich, K. L., Schmidt, T. M., & Handelsman, J. (2012). Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology, 3(DEC), 1–19. https://doi.org/10.3389/fmicb.2012.00417Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.xShapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591. https://doi.org/10.2307/2333709Sharrar, A. M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E. P., & Banfield, J. F. (2020). Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. MBio, 11(3), 1–17. https://doi.org/10.1128/mBio.00416-20Shew, A. M., Durand-morat, A., Nalley, L. L., Zhou, X., Rojas, C., & Greg, T. (2019). Warming increases Bacterial Panicle Blight ( Burkholderia glumae ) occurrences and impacts on USA rice production. 1–18. https://doi.org/10.1371/journal.pone.0219199Shiau, Y. J., Lin, C. W., Cai, Y., Jia, Z., Lin, Y. Te, & Chiu, C. Y. (2020). Niche differentiation of active methane-oxidizing bacteria in estuarine mangrove forest soils in taiwan. Microorganisms, 8(8), 1–15. https://doi.org/10.3390/microorganisms8081248Simonet, P., Grosjean, M. C., Misra, A. K., Nazaret, S., Cournoyer, B., & Normand, P. (1991). Frankia genus-specific characterization by polymerase chain reaction. Applied and Environmental Microbiology, 57(11), 3278–3286. https://doi.org/10.1128/aem.57.11.3278-3286.1991Sinclair, L., Osman, O. A., Bertilsson, S., & Eiler, A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the illumina platform. PLoS ONE, 10(2), 1–18. https://doi.org/10.1371/journal.pone.0116955Snedecor, G. W. (George W., & Cochran, W. G. (William G. (1989). Statistical methods. Iowa State University Press.Sneh Goyal & S.S. Sindhu. (2011). Composting of rice straw using different inocula and analysi of compost quality (pp. 126–138).Song, N., Xu, H., Yan, Z., Yang, T., Wang, C., & Jiang, H. L. (2019). Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renewable Energy, 138(February), 861–869. https://doi.org/10.1016/j.renene.2019.01.121Sood, M., Kapoor, D., Kumar, V., & Sheteiwy, M. S. (2020). Trichoderma : The “ Secrets ” of a Multitalented.Spence, C., Alff, E., Johnson, C., Ramos, C., Donofrio, N., Sundaresan, V., & Bais, H. (2014). Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/1471-2229-14-130Sterkenburg, E., Bahr, A., Brandström Durling, M., Clemmensen, K. E., & Lindahl, B. D. (2015). Changes in fungal communities along a boreal forest soil fertility gradient. New Phytologist, 207(4), 1145–1158. https://doi.org/10.1111/nph.13426Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome – From an agriculture perspective. Frontiers in Plant Science, 6(OCTOBER), 1–7. https://doi.org/10.3389/fpls.2015.00909Sugano, A., Tsuchimoto, H., Tun, C. C., Asakawa, S., & Kimura, M. (2005). Succession and phylogenetic profile of eukaryotic communities in rice straw incorporated into a rice field: Estimation by PCR-DGGE and sequence analyses. Soil Science and Plant Nutrition, 53(5), 585–594. https://doi.org/10.1111/j.1747-0765.2007.00187.xSuleiman, A. K. A., Gonzatto, R., Aita, C., Lupatini, M., Jacques, R. J. S., Kuramae, E. E., Antoniolli, Z. I., & Roesch, L. F. W. (2016). Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biology and Biochemistry, 97, 71–82. https://doi.org/10.1016/j.soilbio.2016.03.002Sutherland, I. W. (1995). Polysaccharide lyases. FEMS Microbiology Reviews, 16(4), 323–347. https://doi.org/10.1016/0168-6445(95)00020-DTabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301–307. https://doi.org/10.1016/0038-0717(69)90012-1TAKEUCHI, S. (1987). Importance and problems of disposal of crop residues containing pathogens of plant diseases. JARQ. Japan Agricultural Research Quarterly, 21(2), 102–108.Tarafdar, J. C., Yadav, R. S., & Meena, S. C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal sources. Journal of Plant Nutrition and Soil Science, 164(3), 279–282. https://doi.org/10.1002/1522-2624(200106)164:3<279::AID-JPLN279>3.0.CO;2-LThe Cazypedia Consortium, Davies, G., Gilbert, H., Henrissat, B., Svensson, B., Vocadlo, D., & Williams, S. (2018). Ten years of CAZypedia: A living encyclopedia of carbohydrate-active enzymes. Glycobiology, 28(1), 3–8. https://doi.org/10.1093/glycob/cwx089Tian, J., Dippold, M., Pausch, J., Blagodatskaya, E., Fan, M., Li, X., & Kuzyakov, Y. (2013). Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biology and Biochemistry, 65, 195–203. https://doi.org/10.1016/j.soilbio.2013.05.021Tipayarom, D., & Oanh, N. T. K. (2007). Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region. ScienceAsia, 33(3), 339–345. https://doi.org/10.2306/scienceasia1513-1874.2007.33.339Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607–621. https://doi.org/10.1038/s41579-020-0412-1Trujillo, M. E., Riesco, R., Benito, P., & Carro, L. (2015). Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Frontiers in Microbiology, 6(DEC), 1–15. https://doi.org/10.3389/fmicb.2015.01341Tung, N. S., Cu, N. X., & Hai, N. X. (2016). ARPN Journal of Agricultural and Biological Science IMPACT OF RICE STRAW BURNING METHODS ON SOIL TEMPERATURE AND MICROORGANISM IMPACT OF RICE STRAW BURNING METHODS ON SOIL TEMPERATURE AND MICROORGANISM DISTRIBUTION. ARPN Journal of Agricultural and Biological Science I, 23(4), 157–160.Utobo, E. B., & Tewari, L. (2015). Soil enzymes as bioindicators of soil ecosystem status. Applied Ecology and Environmental Research, 13(1), 147–169. https://doi.org/10.15666/aeer/1301_147169Vaksmaa, A., van Alen, T. A., Ettwig, K. F., Lupotto, E., Valè, G., Jetten, M. S. M., & Lüke, C. (2017). Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Frontiers in Microbiology, 8(NOV), 1–15. https://doi.org/10.3389/fmicb.2017.02127Van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15(1), 13–24. https://doi.org/10.1016/S0929-1393(00)00068-8van der Lelie, D., Taghavi, S., McCorkle, S. M., Li, L. L., Malfatti, S. A., Monteleone, D., Donohoe, B. S., Ding, S. Y., Adney, W. S., Himmel, M. E., & Tringe, S. G. (2012). The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036740Van Groenigen, K. J., Osenberg, C. W., & Hungate, B. A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO 2. Nature, 475(7355), 214–216. https://doi.org/10.1038/nature10176Vanegas, J., Landazabal, G., Melgarejo, L. M., Beltran, M., & Uribe-Vélez, D. (2013). Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah. European Journal of Soil Biology, 55, 1–8. https://doi.org/10.1016/j.ejsobi.2012.10.008Veres, Z., Kotroczó, Z., Fekete, I., Tóth, J. A., Lajtha, K., Townsend, K., & Tóthmérész, B. (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18–23. https://doi.org/10.1016/j.apsoil.2015.03.006Viborg, A. H., Terrapon, N., Lombard, V., Michel, G., Czjzek, M., Henrissat, B., & Brumer, H. (2019). A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). Journal of Biological Chemistry, 294(44), 15973–15986. https://doi.org/10.1074/jbc.RA119.010619Vranova, V., Rejsek, K., & Formanek, P. (2013). Proteolytic activity in soil: A review. Applied Soil Ecology, 70, 23–32. https://doi.org/10.1016/j.apsoil.2013.04.003Walsh, E., & McDonnell, K. P. (2012). The influence of added organic matter on soil physical, chemical, and biological properties: A small-scale and short-time experiment using straw. Archives of Agronomy and Soil Science, 58(SUPPL.), 17–20. https://doi.org/10.1080/03650340.2012.697999Wang, M., Eyre, A. W., Thon, M. R., Oh, Y., & Dean, R. A. (2020). Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Frontiers in Microbiology, 11(September), 1–21. https://doi.org/10.3389/fmicb.2020.559728Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/AEM.00062-07Wang, W., Luo, X., Chen, Y., Ye, X., Wang, H., Cao, Z., Ran, W., & Cui, Z. (2019). Succession of composition and function of soil bacterial communities during key rice growth stages. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00421Wang, Y., Xu, L., Gu, Y. Q., & Coleman-Derr, D. (2016). MetaCoMET: A web platform for discovery and visualization of the core microbiome. Bioinformatics, 32(22), 3469–3470. https://doi.org/10.1093/bioinformatics/btw507Waqas, M., Khan, A. L., & Lee, I. J. (2014). Bioactive chemical constituents produced by endophytes and effects on rice plant growth. Journal of Plant Interactions, 9(1), 478–487. https://doi.org/10.1080/17429145.2013.860562Watanabe, T., Luu, H. M., Nguyen, N. H., Ito, O., & Inubushi, K. (2013). Combined effects of the continual application of composted rice straw and chemical fertilizer on rice yield under a double rice cropping system in the Mekong Delta, Vietnam. Japan Agricultural Research Quarterly, 47(4), 397–404. https://doi.org/10.6090/jarq.47.397Weber, S., Stubner, S., & Conrad, R. (2001). Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Applied and Environmental Microbiology, 67(3), 1318–1327. https://doi.org/10.1128/AEM.67.3.1318-1327.2001Williams, R. J., Howe, A., & Hofmockel, K. S. (2014). Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Frontiers in Microbiology, 5(JULY), 1–10. https://doi.org/10.3389/fmicb.2014.00358Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12(5), 452–461. https://doi.org/10.1111/j.1461-0248.2009.01303.xWongwilaiwalin, S., Laothanachareon, T., Mhuantong, W., Tangphatsornruang, S., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2013). Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Applied Microbiology and Biotechnology, 97(20), 8941–8954. https://doi.org/10.1007/s00253-013-4699-yWu, Y., Zaiden, N., & Cao, B. (2018). The core- and pan-genomic analyses of the genus Comamonas: From environmental adaptation to potential virulence. Frontiers in Microbiology, 9(DEC), 1–12. https://doi.org/10.3389/fmicb.2018.03096Yadav, R., & Tarafdar, J. (2001). Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils, 34(3), 140–143. https://doi.org/10.1007/s003740100376Yadvinder-Singh, Bijay-Singh, & Timsina, J. (2005). Crop Residue Management for Nutrient Cycling and Improving Soil Productivity in Rice-Based Cropping Systems in the Tropics. Advances in Agronomy, 85, 269–407. https://doi.org/10.1016/S0065-2113(04)85006-5Yao, H., Chen, X., Yang, J., Li, J., Hong, J., Hu, Y., & Mao, X. (2020). Effects and mechanisms of phosphate activation in paddy soil by phosphorus activators. Sustainability (Switzerland), 12(9), 1–15. https://doi.org/10.3390/su12093917Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). DbCAN: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(W1), 445–451. https://doi.org/10.1093/nar/gks479Yoshida, M., Ishii, S., Otsuka, S., & Senoo, K. (2009). Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biology and Biochemistry, 41(10), 2044–2051. https://doi.org/10.1016/j.soilbio.2009.07.012Young and Crawford. (2004). Interactions and Self-Organization in the Soil-Microbe Complex Author ( s ): I . M . Young and J . W . Crawford Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/3837024. 304(5677), 1634–1637.Yu, Y., Wu, M., Petropoulos, E., Zhang, J., Nie, J., Liao, Y., Li, Z., Lin, X., & Feng, Y. (2019). Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Science of the Total Environment, 656, 625–633. https://doi.org/10.1016/j.scitotenv.2018.11.359Yuan, C. L., Zhang, L. M., Wang, J. T., Hu, H. W., Shen, J. P., Cao, P., & He, J. Z. (2019). Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 19(1), 23–37. https://doi.org/10.1007/s11368-018-1997-0Yuan, C., Zhang, L., Hu, H., Wang, J., Shen, J., & He, J. (2018). The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. Journal of Soils and Sediments, 18(5), 1795–1805. https://doi.org/10.1007/s11368-018-1924-4Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnology for Biofuels, 11(1), 1–13. https://doi.org/10.1186/s13068-018-1045-8Zhan, Y., Liu, W., Bao, Y., Zhang, J., Petropoulos, E., Li, Z., Lin, X., & Feng, Y. (2018). Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-26375-8Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., & Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 46(W1), W95–W101. https://doi.org/10.1093/nar/gky418Zhang, L., Chen, W., Burger, M., Yang, L., Gong, P., & Wu, Z. (2015). Changes in soil carbon and enzyme activity as a result of different long-term fertilization regimes in a greenhouse field. PLoS ONE, 10(2), 1–13. https://doi.org/10.1371/journal.pone.0118371Zhang, L. M., Offre, P. R., He, J. Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17240–17245. https://doi.org/10.1073/pnas.1004947107Zhang, Y., Schoch, C. L., Fournier, J., Crous, P. W., de Gruyter, J., Woudenberg, J. H. C., Hirayama, K., Tanaka, K., Pointing, S. B., Spatafora, J. W., & Hyde, K. D. (2009). Multi-locus phylogeny of Pleosporales: A taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology, 64, 85–102. https://doi.org/10.3114/sim.2009.64.04Zhao, X., Yuan, G., Wang, H., Lu, D., Chen, X., & Zhou, J. (2019). Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030133Zheng, Y., Huang, R., Wang, B. Z., Bodelier, P. L. E., & Jia, Z. J. (2014). Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil. Biogeosciences, 11(12), 3353–3368. https://doi.org/10.5194/bg-11-3353-2014Zhou-qi, C., Bo, Z., Guan-lin, X., Bin, L., & Shi-wen, H. (2016). Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight. Rice Science, 23(3), 111–118. https://doi.org/10.1016/j.rsci.2016.01.007Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van Nostrand, J. D., & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2(2), 106–110. https://doi.org/10.1038/nclimate1331Zhu, H., Wang, Z. X., Luo, X. M., Song, J. X., & Huang, B. (2014). Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. Journal of Agricultural Science, 152(5), 741–748. https://doi.org/10.1017/S002185961300035XZhu, L., Hu, N., Zhang, Z., Xu, J., Tao, B., & Meng, Y. (2015). Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 135, 283–289. https://doi.org/10.1016/j.catena.2015.08.008Žifčáková, L., Větrovský, T., Lombard, V., Henrissat, B., Howe, A., & Baldrian, P. (2017). Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome, 5(1), 122. https://doi.org/10.1186/s40168-017-0340-0Minciencias/ColcienciasUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalReceptores de fondos federales y solicitantesResponsables políticosORIGINAL52516013.2021.pdf52516013.2021.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf7064419https://repositorio.unal.edu.co/bitstream/unal/81291/1/52516013.2021.pdf1ac1cafb4868ae4054be454f9f212fd4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81291/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL52516013.2021.pdf.jpg52516013.2021.pdf.jpgGenerated Thumbnailimage/jpeg5093https://repositorio.unal.edu.co/bitstream/unal/81291/3/52516013.2021.pdf.jpg55a8b01ac643611b3605c3ee75375bddMD53unal/81291oai:repositorio.unal.edu.co:unal/812912024-08-04 23:10:30.149Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK