Análisis y bifurcaciones de un convertidor buck dc-dc controlado por onda senoidal

Los sistemas de baja potencia se utilizan ampliamente en la robótica y en la industria, por lo tanto, el modelado y análisis de sistemas proporcionan fiabilidad y mejores diseños para tales sistemas. El convertidor buck es uno de los sistemas que ha sido ampliamente analizado durante años con el obj...

Full description

Autores:
Morcillo Bastidas, José Daniel
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/11635
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/11635
http://bdigital.unal.edu.co/9104/
Palabra clave:
51 Matemáticas / Mathematics
62 Ingeniería y operaciones afines / Engineering
Convertidor buck
control por PWM de voltaje
bifurcaciones
caos
coexistencia de soluciones
control de caos // Buck converter
PWM voltage-controlled
bifurcations
chaos
coexistence of solutions
chaos control
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Los sistemas de baja potencia se utilizan ampliamente en la robótica y en la industria, por lo tanto, el modelado y análisis de sistemas proporcionan fiabilidad y mejores diseños para tales sistemas. El convertidor buck es uno de los sistemas que ha sido ampliamente analizado durante años con el objetivo de conocer su comportamiento y mejorar el diseño de los algoritmos de control. En consecuencia, en este trabajo el convertidor buck controlado por PWM de voltaje es modelado, simulado y estudiado. Sin embargo, dado que muchos trabajos se han desarrollado en el marco del estudio del sistema controlado por rampa, esta tesis se centra principalmente en el nuevo estudio del convertidor buck controlado por onda sinusoidal (cambiando la señal rampa T-periódica no suave por la señal sinusoidal T-periódica suave) operando en modo de conducción continua y discontinua, convergiendo hacia el análisis bifurcacional de casi todos los parámetros que rigen el sistema. Además, algunos resultados obtenidos a partir de ambos sistemas son comparados. Utilizando un método para la detección de eventos, los sistemas son simulados describiendo numéricamente todos los fenómenos encontrados al computar respuestas temporales, retratos de fase, diagramas de bifurcaciones uno dimensionales, dos dimensionales y tridimensionales para diferentes parámetros. Con esto, todos los comportamientos complejos serán fácilmente reconocidos cuando un parámetro específico es variado, sin mencionar que nuevos fenómenos de la naturaleza no suave son observados y descritos. Posteriormente, ya que los diagramas de bifurcaciones son calculados variando los parámetros de forma ascendente y descendente, coexistencia de atractores, los cuales son normalmente un comportamiento no deseado en los sistemas no lineales, son observados y estudiados. No obstante, también se demuestra que estos diagramas de bifurcaciones no son el remedio suficiente para encontrar coexistencia de soluciones. Finalmente, algoritmos de control son aplicados al convertidor buck controlado por PWM de voltaje, los cuales son una técnica basada en un control adaptativo, donde se modifica la señal rampa T-periódica (V ramp) o la señal seno T-periódica (V s) de tal forma que se comporten similar a la señal de control (V co) y a los cambios en el voltaje de entrada (V in); todo a fin de ampliar aún más el rango de V in sobre el cual la órbita 1T-periódica se mantiene estable. Además, con esta técnica de control se reduce considerablemente el porcentaje de error de regulación (%e) así como también se elimina el comportamiento caótico cuando V in es variado. Al final, resultados numéricos y experimentales, los cuales concuerdan altamente, son obtenidos con el fin de validar el funcionamiento del sistema controlado por rampa adaptativa / Abstract: Low power systems are widely used in robotics and industrial areas; therefore, modeling and systems analysis provide reliable and best designs of such systems. The Buck converter is one of the systems that has been widely analyzed for years in order to understand its behavior and design better control algorithms. Accordingly, in this work the PWM voltage{controlled buck converter is modeled, simulated and studied. However, since many works have been developed under the study of the system controlled by ramp, this thesis will be mainly focused in the new study of the buck converter controlled by sine waveform (changing the non-smooth T-periodic ramp signal by the smooth T-periodic sine signal) operating in continuous and discontinuous conduction mode, converging towards the bifurcation analysis of almost all the parameters that govern the system. Additionally, some results obtained from both systems are compared. Using a method for detecting events, the systems are simulated describing numerically all the phenomenons found computing temporal responses, phase portraits, one dimensional, two dimensional and three dimensional bifurcation diagrams for different parameters. With this, every complex behavior will be easily recognized when a specific parameter is varied, not to mention new phenomenons of the non{smooth nature are observed and described. Then, as bifurcation diagrams are computed varying the parameters ascending and descending, coexisting attractors, which are normally an undesired behavior in nonlinear systems, are observed and studied. Nevertheless, it is demonstrated that these bifurcation diagrams are not the sufficient remedy to find coexistence of solutions. Finally, control algorithms are applied to the PWM voltage-controlled buck converter, which is a technique based on an adaptive control, where the T-periodic ramp signal (V ramp) or the T-periodic sine signal (V s) are modified to behave according to the control signal (V co) and the input voltage (Vin) changes; all in order to extend even more the Vin range over which the 1T-periodic orbit remains stable. Moreover, with this control technique it is greatly reduced the percentage of regulation error (%e) as well as it is eliminated the chaotic behavior when V in is varied. After all, numerical and experimental results, which show high agreement, are obtained so as to validate the performance of the system controlled by adaptive ramp.