Gestión de energía en microrredes interconectadas usando D-ADMM

ilustraciones, graficas

Autores:
Parra Acuña, Óscar Iván
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83903
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83903
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::537 - Electricidad y electrónica
Optimización Distribuida
Microrredes Eléctricas
Microrredes Interconectadas
ADMM
Distributed Optimization
Microgrids
Networked Microgrids
Red eléctrica
Electrical grid
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_8b1d51189a17e451a16c1551744af8a8
oai_identifier_str oai:repositorio.unal.edu.co:unal/83903
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Gestión de energía en microrredes interconectadas usando D-ADMM
dc.title.translated.eng.fl_str_mv Energy management for interconnected microgrids using D-ADMM
title Gestión de energía en microrredes interconectadas usando D-ADMM
spellingShingle Gestión de energía en microrredes interconectadas usando D-ADMM
530 - Física::537 - Electricidad y electrónica
Optimización Distribuida
Microrredes Eléctricas
Microrredes Interconectadas
ADMM
Distributed Optimization
Microgrids
Networked Microgrids
Red eléctrica
Electrical grid
title_short Gestión de energía en microrredes interconectadas usando D-ADMM
title_full Gestión de energía en microrredes interconectadas usando D-ADMM
title_fullStr Gestión de energía en microrredes interconectadas usando D-ADMM
title_full_unstemmed Gestión de energía en microrredes interconectadas usando D-ADMM
title_sort Gestión de energía en microrredes interconectadas usando D-ADMM
dc.creator.fl_str_mv Parra Acuña, Óscar Iván
dc.contributor.advisor.none.fl_str_mv Mojica Nava, Eduardo Alirio
dc.contributor.author.none.fl_str_mv Parra Acuña, Óscar Iván
dc.contributor.researchgroup.spa.fl_str_mv Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
topic 530 - Física::537 - Electricidad y electrónica
Optimización Distribuida
Microrredes Eléctricas
Microrredes Interconectadas
ADMM
Distributed Optimization
Microgrids
Networked Microgrids
Red eléctrica
Electrical grid
dc.subject.proposal.spa.fl_str_mv Optimización Distribuida
Microrredes Eléctricas
Microrredes Interconectadas
dc.subject.proposal.none.fl_str_mv ADMM
dc.subject.proposal.eng.fl_str_mv Distributed Optimization
Microgrids
Networked Microgrids
dc.subject.wikidata.spa.fl_str_mv Red eléctrica
dc.subject.wikidata.eng.fl_str_mv Electrical grid
description ilustraciones, graficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-29T20:38:40Z
dc.date.available.none.fl_str_mv 2023-05-29T20:38:40Z
dc.date.issued.none.fl_str_mv 2023-02-13
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83903
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83903
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [Abhinav et al., 2018] Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., and Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6):6731-6741.
[Ahmadi and Rezaei, 2020] Ahmadi, S. E. and Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power and Energy Systems, 118(September 2019):105760.
[Alam et al., 2019] Alam, M. N., Chakrabarti, S., and Ghosh, A. (2019). Networked Microgrids : State-of-the-Art and Future Perspectives. IEEE Transactions on Industrial Informatics, 15(3):1238-1250.
[Alam et al., 2020] Alam, M. N., Chakrabarti, S., and Liang, X. (2020). A Benchmark Test System for Networked Microgrids. IEEE Transactions on Industrial Informatics, 16(10):6217-6230.
[Bertsekas and Tsitsiklis, 1989] Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., USA.
[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundation and trains in machine learning, 3(1):1-122.
[Bui et al., 2018] Bui, V. H., Hussain, A., and Kim, H. M. (2018). A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid, 9(2):1323-1333.
[Bullich-Massagué et al., 2018] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(December 2017):340-361.
[Cao et al., 2020] Cao, X., Wang, J., Wang, J., and Zeng, B. (2020). A Risk-Averse Conic Model for Networked Microgrids Planning with Recon guration and Reorganizations. IEEE Transactions on Smart Grid, 11(1):696-709.
[Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., and Woodruff, D. L. (2021). Pyomo-optimization modeling in python, volume 67. Springer Science & Business Media, third edition.
[Castro et al., 2020] Castro, M. V., Moreira, C., and Carvalho, L. M. (2020). Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids. IET Renewable Power Generation, 14(1):27-38.
[Che et al., 2015] Che, L., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6):3042-3051.
[Chen et al., 2021] Chen, B., Wang, J., Lu, X., Chen, C., and Zhao, S. (2021). Networked Microgrids for Grid Resilience, Robustness, and Effciency: A Review. IEEE Transactions on Smart Grid, 12(1):18-32.
[Erseghe, 2014] Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on Power Systems, 29(5):2370-2380.
[Farzin et al., 2016] Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi- Microgrids. IEEE Transactions on Smart Grid, 7(6):2869-2879.
[Gao et al., 2018] Gao, H., Liu, J., Wang, L., and Wei, Z. (2018). Decentralized Energy Management for Networked Microgrids in Future Distribution Systems. IEEE Transactions on Power Systems, 33(4):3599-3610.
[Gazijahani and Salehi, 2017] Gazijahani, F. S. and Salehi, J. (2017). Stochastic multiobjective framework for optimal dynamic planning of interconnected microgrids. IET Renewable Power Generation, 11(14):1749-1759.
[Golsorkhi et al., 2021] Golsorkhi, M. S., Hill, D. J., and Baharizadeh, M. (2021). A Secondary Control Method for Voltage Unbalance Compensation and Accurate Load Sharing in Networked Microgrids. IEEE Transactions on Smart Grid, 12(4):2822-2833.
[Golsorkhi et al., 2018] Golsorkhi, M. S., Hill, D. J., and Karshenas, H. R. (2018). Distributed voltage control and power management of networked microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4):1892-1902.
[Harmon et al., 2018] Harmon, E., Ozgur, U., Cintuglu, M. H., De Azevedo, R., Akkaya, K., and Mohammed, O. A. (2018). The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262-1274.
[Hussain et al., 2018] Hussain, A., Bui, V. H., and Kim, H. M. (2018). A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 9(3):2127-2139.
[Islam et al., 2021] Islam, M., Yang, F., and Amin, M. (2021). Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 15(6):1133-1148.
[Jafari et al., 2020] Jafari, A., Ganjeh Ganjehlou, H., Khalili, T., and Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270(May):115170.
[Karimi and Jadid, 2020] Karimi, H. and Jadid, S. (2020). Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework. Energy, 195:116992.
[Khavari et al., 2020] Khavari, F., Badri, A., and Zangeneh, A. (2020). Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems, 115(August 2019):105465.
[Li et al., 2019] Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4):58-72.
[Li et al., 2017] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., and Al-Turki, Y. (2017). Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105(7):1289-1310.
[Liu et al., 2016] Liu, G., Starke, M. R., Ollis, B., and Xue, Y. (2016). Networked Microgrids Scoping Study. Number October.
[Liu et al., 2018] Liu, T., Tan, X., Sun, B., Wu, Y., and Tsang, D. H. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power and Energy Systems, 96(October 2017):335-346.
[Schneider et al., 2018] Schneider, K. P., Member, S., Tuffner, F. K., Elizondo, M. A., Liu, C.-c., Xu, Y., Backhaus, S., and Ton, D. (2018). Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 9(5):4755-4764.
[Toro and Mojica-Nava, 2016] Toro, V. and Mojica-Nava, E. (2016). Droop-free control for networked microgrids. 2016 IEEE Conference on Control Applications, CCA 2016, pages 374-379.
[Wang et al., 2018] Wang, D., Qiu, J., Reedman, L., Meng, K., and Lai, L. L. (2018). Two-stage energy management for networked microgrids with high renewable penetration. Applied Energy, 226(March):39-48.
[Wang et al., 2020a] Wang, Y., Nguyen, T. L., Xu, Y., Tran, Q. T., and Caire, R. (2020a). Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design. IEEE Transactions on Smart Grid, 11(6):4688-4699.
[Wang et al., 2017] Wang, Y., Wu, L., and Wang, S. (2017). A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF with Demand Response. IEEE Transactions on Smart Grid, 8(6):2637-2647.
[Wang et al., 2015] Wang, Z., Chen, B., Wang, J., Begovic, M. M., and Chen, C. (2015). Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45-53.
[Wang et al., 2016] Wang, Z., Chen, B., Wang, J., and Kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2):1097-1105.
[Wang et al., 2020b] Wang, Z., Yu, X., Mu, Y., and Jia, H. (2020b). A distributed Peer-to- Peer energy transaction method for diversi ed prosumers in Urban Community Microgrid System. Applied Energy, 260(92):114327.
[Wu et al., 2020] Wu, X., Xu, Y., Wu, X., He, J., Guerrero, J. M., Liu, C. C., Schneider, K. P., and Ton, D. T. (2020). A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 11(2):942-957.
[Yao et al., 2021] Yao, W., Wang, Y., Xu, Y., Lin, P., Qi, Y., and Wu, Q. (2021). Distributed layered control and stability analysis of islanded networked-microgrids. International Journal of Electrical Power and Energy Systems, 129(December 2020):106889.
[Zaery et al., 2021] Zaery, M., Wang, P., Wang, W., and Xu, D. (2021). A novel fully distributed fi xed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power and Energy Systems, 129(July 2020):106792.
[Zambroni de Souza and Castilla, 2018] Zambroni de Souza, A. C. and Castilla, M. (2018). Microgrids design and implementation.
[Zhou et al., 2020] Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. (2020). Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys and Tutorials, 22(4):2586-2633.
[Zou et al., 2019] Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of Energy Management in Interconnected Multi-Microgrids. IEEE Access, 7:72158-72169.
[Hart et al., 2011] Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3(3):219-260.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 75 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83903/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83903/4/1032483912.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83903/5/1032483912.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
d7235773d7ea0c1b2bf366e3aee59697
2376ed8df487a46fdadfdf1c66e7f4a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090146265432064
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Nava, Eduardo Alirio609c35fb4a7e288ee81a2ef0fb802397Parra Acuña, Óscar Iván59102ef03425a656437d036a0751a594Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un2023-05-29T20:38:40Z2023-05-29T20:38:40Z2023-02-13https://repositorio.unal.edu.co/handle/unal/83903Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLas microrredes eléctricas son el resultado de la alta integración de las energías renovables en los sistemas eléctricos y el constante esfuerzo por mejorar los índices de calidad, confiabilidad y seguridad. El incremento de estos sistemas ha derivado en la interacción por medio de sistemas interconectados. Como resultado de esta interacción, la asignación económica de recursos a cargo del sistema de gestión de energía se ha vuelto una tarea compleja, a menudo resuelta con métodos de optimización centralizados. En este trabajo se presenta una formulación del problema de gestión de energía utilizando las ecuaciones de flujo de potencia AC, para que represente el comportamiento de cualquier sistema eléctrico. Además, se propone un algoritmo de optimización distribuido basado en el método de multiplicadores de dirección alternante, que con el uso de estimadores locales distribuye el problema entre todas las microrredes. De esta manera se evita la centralización parcial de información eliminando puntos únicos de falla y violaciones de privacidad. El algoritmo es puesto a prueba a través de tres casos de estudio que simulan diferentes condiciones de red y recurso. De igual manera, se verifica la convergencia utilizando los residuales primales y duales del problema planteado. (Texto tomado de la fuente)Microgrids result from the evolution of electrical systems and the high penetration of renewable energy resources. Due to the increasing number of these systems, their interaction is inevitable. Consequently, economic resource allocation has become one of the most challenging tasks in operation and control, usually solved with centralized optimization algorithms. In this work, we present an energy management problem formulation, considering AC power flow equations, to represent the behavior of every electrical system. Moreover, we propose a fully distributed optimization algorithm based on the alternating direction method of multipliers, using local estimates to avoid data privacy violations. Then, the optimization algorithm is validated through some study cases to show its convergence and applicability.MaestríaMagíster en Ingeniería - Ingeniería de EléctricaMicrorredes eléctricasx, 75 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaOptimización DistribuidaMicrorredes EléctricasMicrorredes InterconectadasADMMDistributed OptimizationMicrogridsNetworked MicrogridsRed eléctricaElectrical gridGestión de energía en microrredes interconectadas usando D-ADMMEnergy management for interconnected microgrids using D-ADMMTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[Abhinav et al., 2018] Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., and Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6):6731-6741.[Ahmadi and Rezaei, 2020] Ahmadi, S. E. and Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power and Energy Systems, 118(September 2019):105760.[Alam et al., 2019] Alam, M. N., Chakrabarti, S., and Ghosh, A. (2019). Networked Microgrids : State-of-the-Art and Future Perspectives. IEEE Transactions on Industrial Informatics, 15(3):1238-1250.[Alam et al., 2020] Alam, M. N., Chakrabarti, S., and Liang, X. (2020). A Benchmark Test System for Networked Microgrids. IEEE Transactions on Industrial Informatics, 16(10):6217-6230.[Bertsekas and Tsitsiklis, 1989] Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., USA.[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundation and trains in machine learning, 3(1):1-122.[Bui et al., 2018] Bui, V. H., Hussain, A., and Kim, H. M. (2018). A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid, 9(2):1323-1333.[Bullich-Massagué et al., 2018] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(December 2017):340-361.[Cao et al., 2020] Cao, X., Wang, J., Wang, J., and Zeng, B. (2020). A Risk-Averse Conic Model for Networked Microgrids Planning with Recon guration and Reorganizations. IEEE Transactions on Smart Grid, 11(1):696-709.[Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., and Woodruff, D. L. (2021). Pyomo-optimization modeling in python, volume 67. Springer Science & Business Media, third edition.[Castro et al., 2020] Castro, M. V., Moreira, C., and Carvalho, L. M. (2020). Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids. IET Renewable Power Generation, 14(1):27-38.[Che et al., 2015] Che, L., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6):3042-3051.[Chen et al., 2021] Chen, B., Wang, J., Lu, X., Chen, C., and Zhao, S. (2021). Networked Microgrids for Grid Resilience, Robustness, and Effciency: A Review. IEEE Transactions on Smart Grid, 12(1):18-32.[Erseghe, 2014] Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on Power Systems, 29(5):2370-2380.[Farzin et al., 2016] Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi- Microgrids. IEEE Transactions on Smart Grid, 7(6):2869-2879.[Gao et al., 2018] Gao, H., Liu, J., Wang, L., and Wei, Z. (2018). Decentralized Energy Management for Networked Microgrids in Future Distribution Systems. IEEE Transactions on Power Systems, 33(4):3599-3610.[Gazijahani and Salehi, 2017] Gazijahani, F. S. and Salehi, J. (2017). Stochastic multiobjective framework for optimal dynamic planning of interconnected microgrids. IET Renewable Power Generation, 11(14):1749-1759.[Golsorkhi et al., 2021] Golsorkhi, M. S., Hill, D. J., and Baharizadeh, M. (2021). A Secondary Control Method for Voltage Unbalance Compensation and Accurate Load Sharing in Networked Microgrids. IEEE Transactions on Smart Grid, 12(4):2822-2833.[Golsorkhi et al., 2018] Golsorkhi, M. S., Hill, D. J., and Karshenas, H. R. (2018). Distributed voltage control and power management of networked microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4):1892-1902.[Harmon et al., 2018] Harmon, E., Ozgur, U., Cintuglu, M. H., De Azevedo, R., Akkaya, K., and Mohammed, O. A. (2018). The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262-1274.[Hussain et al., 2018] Hussain, A., Bui, V. H., and Kim, H. M. (2018). A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 9(3):2127-2139.[Islam et al., 2021] Islam, M., Yang, F., and Amin, M. (2021). Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 15(6):1133-1148.[Jafari et al., 2020] Jafari, A., Ganjeh Ganjehlou, H., Khalili, T., and Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270(May):115170.[Karimi and Jadid, 2020] Karimi, H. and Jadid, S. (2020). Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework. Energy, 195:116992.[Khavari et al., 2020] Khavari, F., Badri, A., and Zangeneh, A. (2020). Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems, 115(August 2019):105465.[Li et al., 2019] Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4):58-72.[Li et al., 2017] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., and Al-Turki, Y. (2017). Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105(7):1289-1310.[Liu et al., 2016] Liu, G., Starke, M. R., Ollis, B., and Xue, Y. (2016). Networked Microgrids Scoping Study. Number October.[Liu et al., 2018] Liu, T., Tan, X., Sun, B., Wu, Y., and Tsang, D. H. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power and Energy Systems, 96(October 2017):335-346.[Schneider et al., 2018] Schneider, K. P., Member, S., Tuffner, F. K., Elizondo, M. A., Liu, C.-c., Xu, Y., Backhaus, S., and Ton, D. (2018). Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 9(5):4755-4764.[Toro and Mojica-Nava, 2016] Toro, V. and Mojica-Nava, E. (2016). Droop-free control for networked microgrids. 2016 IEEE Conference on Control Applications, CCA 2016, pages 374-379.[Wang et al., 2018] Wang, D., Qiu, J., Reedman, L., Meng, K., and Lai, L. L. (2018). Two-stage energy management for networked microgrids with high renewable penetration. Applied Energy, 226(March):39-48.[Wang et al., 2020a] Wang, Y., Nguyen, T. L., Xu, Y., Tran, Q. T., and Caire, R. (2020a). Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design. IEEE Transactions on Smart Grid, 11(6):4688-4699.[Wang et al., 2017] Wang, Y., Wu, L., and Wang, S. (2017). A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF with Demand Response. IEEE Transactions on Smart Grid, 8(6):2637-2647.[Wang et al., 2015] Wang, Z., Chen, B., Wang, J., Begovic, M. M., and Chen, C. (2015). Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45-53.[Wang et al., 2016] Wang, Z., Chen, B., Wang, J., and Kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2):1097-1105.[Wang et al., 2020b] Wang, Z., Yu, X., Mu, Y., and Jia, H. (2020b). A distributed Peer-to- Peer energy transaction method for diversi ed prosumers in Urban Community Microgrid System. Applied Energy, 260(92):114327.[Wu et al., 2020] Wu, X., Xu, Y., Wu, X., He, J., Guerrero, J. M., Liu, C. C., Schneider, K. P., and Ton, D. T. (2020). A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 11(2):942-957.[Yao et al., 2021] Yao, W., Wang, Y., Xu, Y., Lin, P., Qi, Y., and Wu, Q. (2021). Distributed layered control and stability analysis of islanded networked-microgrids. International Journal of Electrical Power and Energy Systems, 129(December 2020):106889.[Zaery et al., 2021] Zaery, M., Wang, P., Wang, W., and Xu, D. (2021). A novel fully distributed fi xed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power and Energy Systems, 129(July 2020):106792.[Zambroni de Souza and Castilla, 2018] Zambroni de Souza, A. C. and Castilla, M. (2018). Microgrids design and implementation.[Zhou et al., 2020] Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. (2020). Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys and Tutorials, 22(4):2586-2633.[Zou et al., 2019] Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of Energy Management in Interconnected Multi-Microgrids. IEEE Access, 7:72158-72169.[Hart et al., 2011] Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3(3):219-260.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83903/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032483912.2023.pdf1032483912.2023.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf6584320https://repositorio.unal.edu.co/bitstream/unal/83903/4/1032483912.2023.pdfd7235773d7ea0c1b2bf366e3aee59697MD54THUMBNAIL1032483912.2023.pdf.jpg1032483912.2023.pdf.jpgGenerated Thumbnailimage/jpeg4304https://repositorio.unal.edu.co/bitstream/unal/83903/5/1032483912.2023.pdf.jpg2376ed8df487a46fdadfdf1c66e7f4a9MD55unal/83903oai:repositorio.unal.edu.co:unal/839032023-08-06 23:03:47.317Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=