Gestión de energía en microrredes interconectadas usando D-ADMM
ilustraciones, graficas
- Autores:
-
Parra Acuña, Óscar Iván
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83903
- Palabra clave:
- 530 - Física::537 - Electricidad y electrónica
Optimización Distribuida
Microrredes Eléctricas
Microrredes Interconectadas
ADMM
Distributed Optimization
Microgrids
Networked Microgrids
Red eléctrica
Electrical grid
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8b1d51189a17e451a16c1551744af8a8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83903 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Gestión de energía en microrredes interconectadas usando D-ADMM |
dc.title.translated.eng.fl_str_mv |
Energy management for interconnected microgrids using D-ADMM |
title |
Gestión de energía en microrredes interconectadas usando D-ADMM |
spellingShingle |
Gestión de energía en microrredes interconectadas usando D-ADMM 530 - Física::537 - Electricidad y electrónica Optimización Distribuida Microrredes Eléctricas Microrredes Interconectadas ADMM Distributed Optimization Microgrids Networked Microgrids Red eléctrica Electrical grid |
title_short |
Gestión de energía en microrredes interconectadas usando D-ADMM |
title_full |
Gestión de energía en microrredes interconectadas usando D-ADMM |
title_fullStr |
Gestión de energía en microrredes interconectadas usando D-ADMM |
title_full_unstemmed |
Gestión de energía en microrredes interconectadas usando D-ADMM |
title_sort |
Gestión de energía en microrredes interconectadas usando D-ADMM |
dc.creator.fl_str_mv |
Parra Acuña, Óscar Iván |
dc.contributor.advisor.none.fl_str_mv |
Mojica Nava, Eduardo Alirio |
dc.contributor.author.none.fl_str_mv |
Parra Acuña, Óscar Iván |
dc.contributor.researchgroup.spa.fl_str_mv |
Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::537 - Electricidad y electrónica |
topic |
530 - Física::537 - Electricidad y electrónica Optimización Distribuida Microrredes Eléctricas Microrredes Interconectadas ADMM Distributed Optimization Microgrids Networked Microgrids Red eléctrica Electrical grid |
dc.subject.proposal.spa.fl_str_mv |
Optimización Distribuida Microrredes Eléctricas Microrredes Interconectadas |
dc.subject.proposal.none.fl_str_mv |
ADMM |
dc.subject.proposal.eng.fl_str_mv |
Distributed Optimization Microgrids Networked Microgrids |
dc.subject.wikidata.spa.fl_str_mv |
Red eléctrica |
dc.subject.wikidata.eng.fl_str_mv |
Electrical grid |
description |
ilustraciones, graficas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-29T20:38:40Z |
dc.date.available.none.fl_str_mv |
2023-05-29T20:38:40Z |
dc.date.issued.none.fl_str_mv |
2023-02-13 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83903 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83903 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[Abhinav et al., 2018] Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., and Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6):6731-6741. [Ahmadi and Rezaei, 2020] Ahmadi, S. E. and Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power and Energy Systems, 118(September 2019):105760. [Alam et al., 2019] Alam, M. N., Chakrabarti, S., and Ghosh, A. (2019). Networked Microgrids : State-of-the-Art and Future Perspectives. IEEE Transactions on Industrial Informatics, 15(3):1238-1250. [Alam et al., 2020] Alam, M. N., Chakrabarti, S., and Liang, X. (2020). A Benchmark Test System for Networked Microgrids. IEEE Transactions on Industrial Informatics, 16(10):6217-6230. [Bertsekas and Tsitsiklis, 1989] Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., USA. [Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundation and trains in machine learning, 3(1):1-122. [Bui et al., 2018] Bui, V. H., Hussain, A., and Kim, H. M. (2018). A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid, 9(2):1323-1333. [Bullich-Massagué et al., 2018] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(December 2017):340-361. [Cao et al., 2020] Cao, X., Wang, J., Wang, J., and Zeng, B. (2020). A Risk-Averse Conic Model for Networked Microgrids Planning with Recon guration and Reorganizations. IEEE Transactions on Smart Grid, 11(1):696-709. [Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., and Woodruff, D. L. (2021). Pyomo-optimization modeling in python, volume 67. Springer Science & Business Media, third edition. [Castro et al., 2020] Castro, M. V., Moreira, C., and Carvalho, L. M. (2020). Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids. IET Renewable Power Generation, 14(1):27-38. [Che et al., 2015] Che, L., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6):3042-3051. [Chen et al., 2021] Chen, B., Wang, J., Lu, X., Chen, C., and Zhao, S. (2021). Networked Microgrids for Grid Resilience, Robustness, and Effciency: A Review. IEEE Transactions on Smart Grid, 12(1):18-32. [Erseghe, 2014] Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on Power Systems, 29(5):2370-2380. [Farzin et al., 2016] Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi- Microgrids. IEEE Transactions on Smart Grid, 7(6):2869-2879. [Gao et al., 2018] Gao, H., Liu, J., Wang, L., and Wei, Z. (2018). Decentralized Energy Management for Networked Microgrids in Future Distribution Systems. IEEE Transactions on Power Systems, 33(4):3599-3610. [Gazijahani and Salehi, 2017] Gazijahani, F. S. and Salehi, J. (2017). Stochastic multiobjective framework for optimal dynamic planning of interconnected microgrids. IET Renewable Power Generation, 11(14):1749-1759. [Golsorkhi et al., 2021] Golsorkhi, M. S., Hill, D. J., and Baharizadeh, M. (2021). A Secondary Control Method for Voltage Unbalance Compensation and Accurate Load Sharing in Networked Microgrids. IEEE Transactions on Smart Grid, 12(4):2822-2833. [Golsorkhi et al., 2018] Golsorkhi, M. S., Hill, D. J., and Karshenas, H. R. (2018). Distributed voltage control and power management of networked microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4):1892-1902. [Harmon et al., 2018] Harmon, E., Ozgur, U., Cintuglu, M. H., De Azevedo, R., Akkaya, K., and Mohammed, O. A. (2018). The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262-1274. [Hussain et al., 2018] Hussain, A., Bui, V. H., and Kim, H. M. (2018). A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 9(3):2127-2139. [Islam et al., 2021] Islam, M., Yang, F., and Amin, M. (2021). Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 15(6):1133-1148. [Jafari et al., 2020] Jafari, A., Ganjeh Ganjehlou, H., Khalili, T., and Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270(May):115170. [Karimi and Jadid, 2020] Karimi, H. and Jadid, S. (2020). Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework. Energy, 195:116992. [Khavari et al., 2020] Khavari, F., Badri, A., and Zangeneh, A. (2020). Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems, 115(August 2019):105465. [Li et al., 2019] Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4):58-72. [Li et al., 2017] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., and Al-Turki, Y. (2017). Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105(7):1289-1310. [Liu et al., 2016] Liu, G., Starke, M. R., Ollis, B., and Xue, Y. (2016). Networked Microgrids Scoping Study. Number October. [Liu et al., 2018] Liu, T., Tan, X., Sun, B., Wu, Y., and Tsang, D. H. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power and Energy Systems, 96(October 2017):335-346. [Schneider et al., 2018] Schneider, K. P., Member, S., Tuffner, F. K., Elizondo, M. A., Liu, C.-c., Xu, Y., Backhaus, S., and Ton, D. (2018). Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 9(5):4755-4764. [Toro and Mojica-Nava, 2016] Toro, V. and Mojica-Nava, E. (2016). Droop-free control for networked microgrids. 2016 IEEE Conference on Control Applications, CCA 2016, pages 374-379. [Wang et al., 2018] Wang, D., Qiu, J., Reedman, L., Meng, K., and Lai, L. L. (2018). Two-stage energy management for networked microgrids with high renewable penetration. Applied Energy, 226(March):39-48. [Wang et al., 2020a] Wang, Y., Nguyen, T. L., Xu, Y., Tran, Q. T., and Caire, R. (2020a). Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design. IEEE Transactions on Smart Grid, 11(6):4688-4699. [Wang et al., 2017] Wang, Y., Wu, L., and Wang, S. (2017). A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF with Demand Response. IEEE Transactions on Smart Grid, 8(6):2637-2647. [Wang et al., 2015] Wang, Z., Chen, B., Wang, J., Begovic, M. M., and Chen, C. (2015). Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45-53. [Wang et al., 2016] Wang, Z., Chen, B., Wang, J., and Kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2):1097-1105. [Wang et al., 2020b] Wang, Z., Yu, X., Mu, Y., and Jia, H. (2020b). A distributed Peer-to- Peer energy transaction method for diversi ed prosumers in Urban Community Microgrid System. Applied Energy, 260(92):114327. [Wu et al., 2020] Wu, X., Xu, Y., Wu, X., He, J., Guerrero, J. M., Liu, C. C., Schneider, K. P., and Ton, D. T. (2020). A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 11(2):942-957. [Yao et al., 2021] Yao, W., Wang, Y., Xu, Y., Lin, P., Qi, Y., and Wu, Q. (2021). Distributed layered control and stability analysis of islanded networked-microgrids. International Journal of Electrical Power and Energy Systems, 129(December 2020):106889. [Zaery et al., 2021] Zaery, M., Wang, P., Wang, W., and Xu, D. (2021). A novel fully distributed fi xed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power and Energy Systems, 129(July 2020):106792. [Zambroni de Souza and Castilla, 2018] Zambroni de Souza, A. C. and Castilla, M. (2018). Microgrids design and implementation. [Zhou et al., 2020] Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. (2020). Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys and Tutorials, 22(4):2586-2633. [Zou et al., 2019] Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of Energy Management in Interconnected Multi-Microgrids. IEEE Access, 7:72158-72169. [Hart et al., 2011] Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3(3):219-260. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 75 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83903/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83903/4/1032483912.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83903/5/1032483912.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a d7235773d7ea0c1b2bf366e3aee59697 2376ed8df487a46fdadfdf1c66e7f4a9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090146265432064 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Nava, Eduardo Alirio609c35fb4a7e288ee81a2ef0fb802397Parra Acuña, Óscar Iván59102ef03425a656437d036a0751a594Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un2023-05-29T20:38:40Z2023-05-29T20:38:40Z2023-02-13https://repositorio.unal.edu.co/handle/unal/83903Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLas microrredes eléctricas son el resultado de la alta integración de las energías renovables en los sistemas eléctricos y el constante esfuerzo por mejorar los índices de calidad, confiabilidad y seguridad. El incremento de estos sistemas ha derivado en la interacción por medio de sistemas interconectados. Como resultado de esta interacción, la asignación económica de recursos a cargo del sistema de gestión de energía se ha vuelto una tarea compleja, a menudo resuelta con métodos de optimización centralizados. En este trabajo se presenta una formulación del problema de gestión de energía utilizando las ecuaciones de flujo de potencia AC, para que represente el comportamiento de cualquier sistema eléctrico. Además, se propone un algoritmo de optimización distribuido basado en el método de multiplicadores de dirección alternante, que con el uso de estimadores locales distribuye el problema entre todas las microrredes. De esta manera se evita la centralización parcial de información eliminando puntos únicos de falla y violaciones de privacidad. El algoritmo es puesto a prueba a través de tres casos de estudio que simulan diferentes condiciones de red y recurso. De igual manera, se verifica la convergencia utilizando los residuales primales y duales del problema planteado. (Texto tomado de la fuente)Microgrids result from the evolution of electrical systems and the high penetration of renewable energy resources. Due to the increasing number of these systems, their interaction is inevitable. Consequently, economic resource allocation has become one of the most challenging tasks in operation and control, usually solved with centralized optimization algorithms. In this work, we present an energy management problem formulation, considering AC power flow equations, to represent the behavior of every electrical system. Moreover, we propose a fully distributed optimization algorithm based on the alternating direction method of multipliers, using local estimates to avoid data privacy violations. Then, the optimization algorithm is validated through some study cases to show its convergence and applicability.MaestríaMagíster en Ingeniería - Ingeniería de EléctricaMicrorredes eléctricasx, 75 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería EléctricaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaOptimización DistribuidaMicrorredes EléctricasMicrorredes InterconectadasADMMDistributed OptimizationMicrogridsNetworked MicrogridsRed eléctricaElectrical gridGestión de energía en microrredes interconectadas usando D-ADMMEnergy management for interconnected microgrids using D-ADMMTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[Abhinav et al., 2018] Abhinav, S., Modares, H., Lewis, F. L., Ferrese, F., and Davoudi, A. (2018). Synchrony in networked microgrids under attacks. IEEE Transactions on Smart Grid, 9(6):6731-6741.[Ahmadi and Rezaei, 2020] Ahmadi, S. E. and Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power and Energy Systems, 118(September 2019):105760.[Alam et al., 2019] Alam, M. N., Chakrabarti, S., and Ghosh, A. (2019). Networked Microgrids : State-of-the-Art and Future Perspectives. IEEE Transactions on Industrial Informatics, 15(3):1238-1250.[Alam et al., 2020] Alam, M. N., Chakrabarti, S., and Liang, X. (2020). A Benchmark Test System for Networked Microgrids. IEEE Transactions on Industrial Informatics, 16(10):6217-6230.[Bertsekas and Tsitsiklis, 1989] Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., USA.[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundation and trains in machine learning, 3(1):1-122.[Bui et al., 2018] Bui, V. H., Hussain, A., and Kim, H. M. (2018). A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response. IEEE Transactions on Smart Grid, 9(2):1323-1333.[Bullich-Massagué et al., 2018] Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212(December 2017):340-361.[Cao et al., 2020] Cao, X., Wang, J., Wang, J., and Zeng, B. (2020). A Risk-Averse Conic Model for Networked Microgrids Planning with Recon guration and Reorganizations. IEEE Transactions on Smart Grid, 11(1):696-709.[Bynum et al., 2021] Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., and Woodruff, D. L. (2021). Pyomo-optimization modeling in python, volume 67. Springer Science & Business Media, third edition.[Castro et al., 2020] Castro, M. V., Moreira, C., and Carvalho, L. M. (2020). Hierarchical optimisation strategy for energy scheduling and volt/var control in autonomous clusters of microgrids. IET Renewable Power Generation, 14(1):27-38.[Che et al., 2015] Che, L., Shahidehpour, M., Alabdulwahab, A., and Al-Turki, Y. (2015). Hierarchical coordination of a community microgrid with AC and DC microgrids. IEEE Transactions on Smart Grid, 6(6):3042-3051.[Chen et al., 2021] Chen, B., Wang, J., Lu, X., Chen, C., and Zhao, S. (2021). Networked Microgrids for Grid Resilience, Robustness, and Effciency: A Review. IEEE Transactions on Smart Grid, 12(1):18-32.[Erseghe, 2014] Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on Power Systems, 29(5):2370-2380.[Farzin et al., 2016] Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. (2016). Enhancing Power System Resilience Through Hierarchical Outage Management in Multi- Microgrids. IEEE Transactions on Smart Grid, 7(6):2869-2879.[Gao et al., 2018] Gao, H., Liu, J., Wang, L., and Wei, Z. (2018). Decentralized Energy Management for Networked Microgrids in Future Distribution Systems. IEEE Transactions on Power Systems, 33(4):3599-3610.[Gazijahani and Salehi, 2017] Gazijahani, F. S. and Salehi, J. (2017). Stochastic multiobjective framework for optimal dynamic planning of interconnected microgrids. IET Renewable Power Generation, 11(14):1749-1759.[Golsorkhi et al., 2021] Golsorkhi, M. S., Hill, D. J., and Baharizadeh, M. (2021). A Secondary Control Method for Voltage Unbalance Compensation and Accurate Load Sharing in Networked Microgrids. IEEE Transactions on Smart Grid, 12(4):2822-2833.[Golsorkhi et al., 2018] Golsorkhi, M. S., Hill, D. J., and Karshenas, H. R. (2018). Distributed voltage control and power management of networked microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(4):1892-1902.[Harmon et al., 2018] Harmon, E., Ozgur, U., Cintuglu, M. H., De Azevedo, R., Akkaya, K., and Mohammed, O. A. (2018). The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Transactions on Industrial Informatics, 14(3):1262-1274.[Hussain et al., 2018] Hussain, A., Bui, V. H., and Kim, H. M. (2018). A Resilient and Privacy-Preserving Energy Management Strategy for Networked Microgrids. IEEE Transactions on Smart Grid, 9(3):2127-2139.[Islam et al., 2021] Islam, M., Yang, F., and Amin, M. (2021). Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 15(6):1133-1148.[Jafari et al., 2020] Jafari, A., Ganjeh Ganjehlou, H., Khalili, T., and Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270(May):115170.[Karimi and Jadid, 2020] Karimi, H. and Jadid, S. (2020). Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework. Energy, 195:116992.[Khavari et al., 2020] Khavari, F., Badri, A., and Zangeneh, A. (2020). Energy management in multi-microgrids considering point of common coupling constraint. International Journal of Electrical Power and Energy Systems, 115(August 2019):105465.[Li et al., 2019] Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. (2019). Blockchain for decentralized transactive energy management system in networked microgrids. Electricity Journal, 32(4):58-72.[Li et al., 2017] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., and Al-Turki, Y. (2017). Networked Microgrids for Enhancing the Power System Resilience. Proceedings of the IEEE, 105(7):1289-1310.[Liu et al., 2016] Liu, G., Starke, M. R., Ollis, B., and Xue, Y. (2016). Networked Microgrids Scoping Study. Number October.[Liu et al., 2018] Liu, T., Tan, X., Sun, B., Wu, Y., and Tsang, D. H. (2018). Energy management of cooperative microgrids: A distributed optimization approach. International Journal of Electrical Power and Energy Systems, 96(October 2017):335-346.[Schneider et al., 2018] Schneider, K. P., Member, S., Tuffner, F. K., Elizondo, M. A., Liu, C.-c., Xu, Y., Backhaus, S., and Ton, D. (2018). Enabling Resiliency Operations Across Multiple Microgrids With Grid Friendly Appliance Controllers. IEEE Transactions on Smart Grid, 9(5):4755-4764.[Toro and Mojica-Nava, 2016] Toro, V. and Mojica-Nava, E. (2016). Droop-free control for networked microgrids. 2016 IEEE Conference on Control Applications, CCA 2016, pages 374-379.[Wang et al., 2018] Wang, D., Qiu, J., Reedman, L., Meng, K., and Lai, L. L. (2018). Two-stage energy management for networked microgrids with high renewable penetration. Applied Energy, 226(March):39-48.[Wang et al., 2020a] Wang, Y., Nguyen, T. L., Xu, Y., Tran, Q. T., and Caire, R. (2020a). Peer-to-Peer Control for Networked Microgrids: Multi-Layer and Multi-Agent Architecture Design. IEEE Transactions on Smart Grid, 11(6):4688-4699.[Wang et al., 2017] Wang, Y., Wu, L., and Wang, S. (2017). A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF with Demand Response. IEEE Transactions on Smart Grid, 8(6):2637-2647.[Wang et al., 2015] Wang, Z., Chen, B., Wang, J., Begovic, M. M., and Chen, C. (2015). Coordinated energy management of networked microgrids in distribution systems. IEEE Transactions on Smart Grid, 6(1):45-53.[Wang et al., 2016] Wang, Z., Chen, B., Wang, J., and Kim, J. (2016). Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 7(2):1097-1105.[Wang et al., 2020b] Wang, Z., Yu, X., Mu, Y., and Jia, H. (2020b). A distributed Peer-to- Peer energy transaction method for diversi ed prosumers in Urban Community Microgrid System. Applied Energy, 260(92):114327.[Wu et al., 2020] Wu, X., Xu, Y., Wu, X., He, J., Guerrero, J. M., Liu, C. C., Schneider, K. P., and Ton, D. T. (2020). A Two-Layer Distributed Cooperative Control Method for Islanded Networked Microgrid Systems. IEEE Transactions on Smart Grid, 11(2):942-957.[Yao et al., 2021] Yao, W., Wang, Y., Xu, Y., Lin, P., Qi, Y., and Wu, Q. (2021). Distributed layered control and stability analysis of islanded networked-microgrids. International Journal of Electrical Power and Energy Systems, 129(December 2020):106889.[Zaery et al., 2021] Zaery, M., Wang, P., Wang, W., and Xu, D. (2021). A novel fully distributed fi xed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power and Energy Systems, 129(July 2020):106792.[Zambroni de Souza and Castilla, 2018] Zambroni de Souza, A. C. and Castilla, M. (2018). Microgrids design and implementation.[Zhou et al., 2020] Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. (2020). Distributed Control and Communication Strategies in Networked Microgrids. IEEE Communications Surveys and Tutorials, 22(4):2586-2633.[Zou et al., 2019] Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. (2019). A Survey of Energy Management in Interconnected Multi-Microgrids. IEEE Access, 7:72158-72169.[Hart et al., 2011] Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation, 3(3):219-260.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83903/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032483912.2023.pdf1032483912.2023.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf6584320https://repositorio.unal.edu.co/bitstream/unal/83903/4/1032483912.2023.pdfd7235773d7ea0c1b2bf366e3aee59697MD54THUMBNAIL1032483912.2023.pdf.jpg1032483912.2023.pdf.jpgGenerated Thumbnailimage/jpeg4304https://repositorio.unal.edu.co/bitstream/unal/83903/5/1032483912.2023.pdf.jpg2376ed8df487a46fdadfdf1c66e7f4a9MD55unal/83903oai:repositorio.unal.edu.co:unal/839032023-08-06 23:03:47.317Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |