Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.

Ilustraciones

Autores:
Ramírez Jiménez, Jamer Alexis
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80519
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80519
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Fisiología vegetal
Injertos (Agricultura)
Plant physiology
Grafting
Escala BBCH
Injertación patrón-copa
Injertación
Fotosíntesis
Rendimiento cuántico
Producción de frutos
Tomate de mesa (Solanum lycopersicum L.)
BBCH scale
Grafting
Scion-rootstock interaction
Degree days
Photosynthesis
Quantum yield
Fruit yield
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_8af2fb90e6ac806219bfebe4b4b532d5
oai_identifier_str oai:repositorio.unal.edu.co:unal/80519
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
dc.title.translated.eng.fl_str_mv Effect of different rootstocks on the phenology, physiology, and yield components of tomato (Solanum lycopersicum L.) cultivated undercover in the high Andean region in Colombia.
title Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
spellingShingle Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
630 - Agricultura y tecnologías relacionadas
Fisiología vegetal
Injertos (Agricultura)
Plant physiology
Grafting
Escala BBCH
Injertación patrón-copa
Injertación
Fotosíntesis
Rendimiento cuántico
Producción de frutos
Tomate de mesa (Solanum lycopersicum L.)
BBCH scale
Grafting
Scion-rootstock interaction
Degree days
Photosynthesis
Quantum yield
Fruit yield
title_short Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
title_full Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
title_fullStr Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
title_full_unstemmed Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
title_sort Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.
dc.creator.fl_str_mv Ramírez Jiménez, Jamer Alexis
dc.contributor.advisor.none.fl_str_mv Córdoba Gaona, Óscar de Jesús
dc.contributor.author.none.fl_str_mv Ramírez Jiménez, Jamer Alexis
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Fisiología vegetal
Injertos (Agricultura)
Plant physiology
Grafting
Escala BBCH
Injertación patrón-copa
Injertación
Fotosíntesis
Rendimiento cuántico
Producción de frutos
Tomate de mesa (Solanum lycopersicum L.)
BBCH scale
Grafting
Scion-rootstock interaction
Degree days
Photosynthesis
Quantum yield
Fruit yield
dc.subject.lemb.spa.fl_str_mv Fisiología vegetal
Injertos (Agricultura)
dc.subject.lemb.eng.fl_str_mv Plant physiology
Grafting
dc.subject.proposal.spa.fl_str_mv Escala BBCH
Injertación patrón-copa
Injertación
Fotosíntesis
Rendimiento cuántico
Producción de frutos
Tomate de mesa (Solanum lycopersicum L.)
dc.subject.proposal.eng.fl_str_mv BBCH scale
Grafting
Scion-rootstock interaction
Degree days
Photosynthesis
Quantum yield
Fruit yield
description Ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-10-12T18:38:53Z
dc.date.available.none.fl_str_mv 2021-10-12T18:38:53Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80519
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80519
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agroglobal. (2021). Portainjertos para tomate. Disponible en: https://www.agroglobal.com.co/semillas-de-hortalizas/portainjertos/portainjerto-para-tomate, Consultado el 23 de febrero de 2021.
AGRONET. (2021). Estadísticas Agrícola, Área, producción, rendimiento y participación. Disponible en: http://www.agronet.gov.co/estadistica/Paginas/default.aspx, Consultado el 23 de febrero de 2021.
Albacete, A., Martínez‐Andújar, C., Ghanem, M. E., Acosta, M., Sánchez‐Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., and Pérez‐Alfocea, F. (2009). Rootstock‐mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32, 928-938. https://doi.org/10.1111/j.1365-3040.2009.01973.x
Aloni, B., R. Cohen, L. Karni, L. H. Aktas, and M. Edelstein. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127, 119-126.
Arve, L. E., y Torre, S. (2015). Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology, 42(4), 376-386.
Barrett, D. M. (2014). Future innovations in tomato processing. In XIII International Symposium on Processing Tomato 1081 (pp. 49-55).
Bhatt, R. M., K. K. Upreti, M. H. Divya, S. Bhat, C. B. Pavithra, and A. T. Sadashiva. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. Doi:10.1016/j.scienta.2014.10.043
Calatayud, Á., San Bautista, A., Pascual, B., Maroto, J. V., and López-Galarza, S. (2013). Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Scientia Horticulturae, 149, 13-18. https://doi.org/10.1016/j.scienta.2012.04.019
Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., and Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281-289. https://doi.org/10.1016/j.jplph.2004.07.014
Chaudhari, S., K. M., D. W. Jennings, D. L. Monks, C. C. Jordan, S. J. Gunter, S. L. Mcgowen, and F. J. Louws. (2016). Critical period for weed control in grafted and nongrafted fresh market tomato. Weed Science, 64, 523–530. Doi: 10.1614/WS-D-15-00049.1
Chen X. (2017) Spatiotemporal Processes of Plant Phenology. SpringerBriefs in Geography. Firsth Edition. Springer, Berlin, Heidelberg. 97p.
Costa, M. J., and E. Heuvelink. (2018). The global tomato industry. pp. 1-26. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.
Cuong, D. C., and M. Tanaka. (2019). Effects of integrated environmental factors and modelling the growth and development of tomato in greenhouse cultivation. In IOP Conference Series: Earth and Environmental Science, 301, 012021. IOP Publishing. Doi:10.1088/1755-1315/301/1/012021
Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., y Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670-1672.
Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., ... y Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.
Djidonou, D., A. H. Simonne, K. E. Koch, J. K. Brecht, and X. Zhao. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51, 1618-1624.
Dorais, M. and Gosselin, A. (2002) Physiological response of greenhouse vegetable edepot.wur.nl/312846 (accedido el 16 de agosto de 2019).
Estañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., and Asins, M. J. (2009). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118, 305-312. https://doi.org/10.1007/s00122-008-0900-6
Eurofresh. (2016). Around the World: Tomatoes. Disponible en: https://www.eurofresh-distribution.com/news/around-world-tomatoes, consultado el 9 de julio de 2019
Fanourakis, D., Heuvelink, E., y Carvalho, S. M. (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170(10), 890-898.
FAOSTAT. (2021). Crops. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize, Consultado el 23 de febrero de 2021.
Fatemi, M., and H. Dehghan. 2019. Growing degree days zonation of plants in Iran according to thermal characteristics. Theoretical and Applied Climatology, 138, 877-886. Doi:10.1007/s00704-019-02868-y
Feller, C., H. Bleiholder, M. Hess, U. Meier, T. Van Den Boom, D. L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. (1997). Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2.ed. Available at: <https://www.hortiadvice.dk/upl/website/bbch-skala/scaleBBCH.pdf>. Accessed on: March 20, 2020.
Food and Agricultura Organiztion (FAO) y Ministerio de Salud y Protección Social. (2012). Perfil Nacional de Consumo de Frutas y Verduras. Primera edición. Bogotá D.C., Colombia. 264 p. disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/perfil-nacional-consumo-frutas-y-verduras-colombia-2013.pdf, consultado el 30 de julio de 2019
Food and Agriculture Organization (FAO). (2002). El Cultivo Protegido en Clima Mediterráneo. Disponible en: http://www.fao.org/3/s8630s/s8630s00.htm#Contents, consultado el 30 de julio de 2019.
Food and Agriculture Organization (FAO). (2020). FAOSTAT Online Database. Available at: <http://www.fao.org/faostat/es/#home>. Accessed on: March 20, 2020.
Fraisse, C. W., and S. V. Paula-Moraes. (2018). Degree-Days: Growing, heating, and cooling. Department of Agricultural and Biological Engineering, UF/IFAS Extension. Available at: <http://edis.ifas.ufl.edu>. Accessed on: March 20, 2020.
Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., and Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045
Gadioli, J. L., Dourado-Neto, D., García y García, A., & Valle Basanta, M. D. (2000). Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Scientia Agricola, 57, 377-383.
Gaion, L. A., Braz, L. T., and Carvalho, R. F. (2018). Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24, 1-18. https://doi.org/10.1080/19315260.2017.1357062
García-Rojas, F., and E. Pire. (2008). Estudio fenológico de cinco cultivares de tomate (Lycopersicon esculentum Mill.) en Tarabana, Estado Lara, Venezuela. Proc. Interamer. Soc. Trop. Hort., 52, 61-64.
Geboloğlu, N., E. Yilmaz, P. Cakm. M. Aydin, and Y. Kasap. (2011). Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6, 2147-2153.
Goto, R., de Miguel, A., Marsal, J. I., Gorbe, E., and Calatayud, A. (2013). Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. Journal of Plant Nutrition, 36, 825-835. https://doi.org/10.1080/01904167.2012.757321
Grange, R. I., y Hand, D. W. (1987). A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science, 62(2), 125-134.
Grieneisen, M. L., Aegerter, B. J., Stoddard, C. S., and Zhang, M. (2018). Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development, 38, 1-19. https://doi.org/10.1007/s13593-018-0507-5
Grimstad, S. O., Verheul, M. J., y Maessen, H. F. R. (2012, October). Optimizing a year-round cultivation system of tomato under artificial light. In VII International Symposium on Light in Horticultural Systems 956 (pp. 389-394).
Haberal, M., Körpe, D. A., İşeri, Ö. D., y Sahin, F. I. (2016). Grafting tomato onto tobacco rootstocks is a practical and feasible application for higher growth and leafing in different tobacco–tomato unions. Biological Agriculture y Horticulture, 32(4), 248-257.
Hartmann, H.T., Kester, D.E., Davies, F.T., y Geneve, R.L. (2002). Plant Propagation. Principles and Practices, 7th edn. Prentice-Hall, Upper Saddle River, New Jersey.
He, Y., Zhu, Z., Yang, J., Ni, X., and Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66, 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007
Helgilibrary. (2019). Tomato Consumption Per Capita. Disponible en: https://www.helgilibrary.com/indicators/tomato-consumption-per-capita/, consultado el 30 de julio de 2019.
Hemming, S., Mohammadkhani, V., y Van Ruijven, J. (2013). Material technology of diffuse greenhouse covering materials-influence on light transmission, light scattering and light spectrum. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 883-895).
Heuvelink, E. (2018). Tomatoes, Crop production Science in Horticulture Serie. Second edition. Wageningen University y Research The Netherlands, Boston, MA: CABI. 378p.
Heuvelink, E., T. Li, and M. Dorais. (2018). Crop growth and yield. Pp. 89-136. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.
Higashide, T. and Heuvelink, E. (2009) Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society for Horticultural Science 134, 460–465. DOI: https://doi.org/10.21273/JASHS.134.4.460
HORTOINFO. (2018). Tomate. Disponible en: http://www.hortoinfo.es/index.php/6238-prod-hort-frut-mund-041017, consultado el 02 de mayo de 2018.
Hossain, M. G., M. A. Ali, R. A. Ripa, S. Ayrin, and S. Mahmood. (2019). Influence of Rootstocks on Yield and Quality of Summer Tomato cv. ‘BARI Tomato-4’. Earth Systems and Environment, 3, 289-300.
Huang, Y., Kong, Q. S., Chen, F., and Bie, Z. L. (2014). The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 1086, 31-39. https://doi.org/10.17660/ActaHortic.2015.1086.2
Impulsemillas. (2019). Semillas de hortalizas y frutales; Colón F1.Portainjerto. disponible en: http://www.impulsemillas.com/categoria/productos/semillas-de-hortalizas/hortalizas-hibridas/tomate/otros/, consultado el 31 de julio de 2019
Instituto de Investigaciones Agropecuarias (INIA). (2017). Tomate al aire libre. Disponible en: http://www.inia.cl/wp-content/uploads/PautasdeChequeo/11.%20Pauta%20de%20chequeo%20Tomate%20Aire%20Libre.pdf, consultado el 10 de febrero de 2019.
Jaramillo-Noreña, J. E.; Sánchez-León, G.D.; Rodríguez, V.P., Aguilar-Aguilar, P.A., Gil-Vallejo; L.F., Hío, J.C., Pinzón-Perdomo, L.M., García-Muñoz, M.C., Quevedo-Garzón, D., Zapata-Cuartas, M.Á., Restrepo, J F., y Guzmán-Arroyave, M. (2012). Tecnología para el cultivo de tomate bajo condiciones protegidas. Primera Edición. CORPOICA, Bogotá, Colombia. 482 p.
Kaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., y Marcelis, L. F. (2016). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annals of botany, 119(1): 191-205.
Khah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3-7. DOI: 10.37855 / jah.2006.v08i01.01
Khan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hans, S.H., Mock, H.P., and Wu, T. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500-511. https://doi.org/10.1016/j.foodchem.2019.03.029
King, S. R., Davis, A. R., Zhang, X., y Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106-111. DOI:https://doi.org/10.1016/j.scienta.2010.08.001
Kubota, C., McClure, M. A., Kokalis-Burelle, N., Bausher, M. G., and Rosskopf, E. N. (2008). Vegetable grafting: History, use, and current technology status in North America. HortScience, 43, 1664-1669. https://doi.org/10.21273/HORTSCI.43.6.1664
Kumar, B. A., and Sanket, K. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases - A review. International Journal of Agriculture Sciences, 9, 4050-4056.
Kumar, P., Y. Rouphael, M. Cardarelli, and G. Colla. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in plant science, 8, 1130.
Kyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner, and D. Schwarz. (2017). Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8(741).
Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003
Lee, J.M. y Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. (Amer. Soc. Hort. Sci.) 28: 61-124
Lemoine, R., La Camera, S., Atanassova, R., Dedaldechamp, F., Allario, …, and Duran, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272
Li, T., Heuvelink, E., Dueck, T. A., Janse, J., Gort, G., y Marcelis, L. F. M. (2014). Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of botany, 114(1), 145-156.
Lucas, D.D.P., N. A. Streck, M. P. Bortoluzzi, R. Trentin, and I. C. Maldaner. (2012). Temperatura base para emissão de nós e plastocrono de plantas de melancia. Revista Ciência Agronômica, 43, 288-292. Doi: 10.1590/ S1806-66902012000200011.
Marcelis, L. F. M., Broekhuijsen, A. G. M., Meinen, E., Nijs, E. M. F. M., y Raaphorst, M. G. M. (2006). Quantification of the growth response to light quantity of greenhouse grown crops. In V International Symposium on Artificial Lighting in Horticulture 711: 97-104.
Martínez-Andújar, C., J. M. Ruiz-Lozano, I. C. Dodd, A. Albacete, and F. Pérez-Alfocea. (2017). Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 8, 13. Doi:10.3389/fpls.2017.00533
Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., y Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2), 112-118. DOI: https://doi.org/10.1016/j.scienta.2010.08.002
Meena, O. P., and V. Bahadur. (2015). Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. Journal of Breeding and Genetics, 47, 49-59.
Meier, U. (1997). Growth stages of mono and dicotyledoneous plants. Berlin: Blackwell Wissenschafts-Verlag Science. 622p.
Milenković, L., J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L. J. Šunić, and Z. S. Ilić. (2020). Effect of shading and grafting on yield and quality of tomato. Journal of the Science of Food and Agriculture, 100, 623-633.
Miskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic, and B. Kukic. (2016). Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta Sci. Polon. Hortic. Cul., 15, 149-159.
Moreno, M. M., A. Cirujeda, J. Aibar, and C. Moreno. (2016). Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Research, 54, 207–215. Doi:10.1071/SR15065
Mulderij R. (2018). Overview global tomato market-Freshplaza, disponile en: https://www.freshplaza.com/article/2187792/overview-global-tomato-market/, consultado el 2 de julio de 2019
Muneer, S., H. Ch. Ko, H. Wei1, Y. Chen, and B. R. Jeong. (2016). Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE, 11, 23. Doi:10.1371/journal.pone.0157439
Mutke, S., J. Gordo, J. Climent, and L. Gil. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science, 6, 527-537.
Naika S., Jeude J.L., Goffau M., Hilmi M. y Dam B. (2005). Cultivation of tomato -production, processing and marketing. Fourth Edition. Agromisa Foundation and CTA, Wageningen, Netherlands.
Nicola, S., G. Tibaldi, and E. Fontana. (2009). Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Horticulturae, 821, 27-33.
Nilsen, E. T., Freeman, J., Grene, R., and Tokuhisa, J. (2014). A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One, 9, e115380. https://doi.org/10.1371/journal.pone.0115380
Ntatsi, G., D. Savvas, H. P. Kläring, and D. Schwarz. (2014). Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of the American Society for Horticultural Science, 139, 230-243.
Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., and Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49-57. https://doi.org/10.1007/s00344-007-9030-7
Pina, A., Cookson, S. J., Calatayud, Á., Trinchera, A., y Errea, P. (2017). Physiological and molecular mechanisms underlying graft compatibility. Vegetable grafting: Principles and practices., 132-154.
Pogonyi, A., Z. Pék, L. Helyes, and A. Lugasi. (2005). Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34, 453-462.
Qaryouti, M. M., W. Qawasmi, H. Hamdan, and M. Edwan. (2007). Tomato fruit yield and quality as affected by grafting and growing system. Acta Horticulturae, 741, 199-206.
R Core Team. (2017). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: <https://cran.r-project.org/>. Accessed on: March 20, 2020.
Rahmatian, A., M. Delshad, and R. Salehi. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture, Environment, and Biotechnology, 55, 115-119.
Reddy, P. P. (2016). Grafted Vegetables for Management of Soilborne Pathogens. In Sustainable Crop Protection under Protected Cultivation (pp. 83-97). Springer, Singapore. DOI: 10.1007 / 978-981-287-952-3_7
Riaño, N. M., G. Tangarife, O. I. Osorio, J. F. Giraldo, C. M. Ospina, D. Obando, L. F. Gómez, and L. F. Jaramillo. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Manizales: Ministerio de Agricultura y Desarrollo Rural, Federación Nacional de Cafeteros, Cenicafé, CONIF. 51p. https://www.ricclisa.org/images/manualcreft.pdf
Riga, P. (2015). Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Horticulture, Environment, and Biotechnology, 56, 626-638.
Rivard, C.L. y Louws F.J. (2006) Grafting for disease resistance in heirloom tomatoes. North Carolina Coop Ext Serv Bul Ag-8 p.
Rosskopf, E.N., Pisani, C. y Di Gioia, F. (2017). Crop specific grafting methods, rootstocks and scheduling: Tomato, Disponible en: http://www.vegetablegrafting.org/resources/grafting-manual/, consultado el 28 de 08 de 2019.
Sakata, Y., Ohara, T., y Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. In III International Symposium on Cucurbits 731 (pp. 159-170).
Sakata. (2019). Woodstock, la mejor opción para protección de las raíces. Disponible en: https://www.sakata.com.br/es/hortalizas/solanaceas/tomate/porta-injerto/woodstock, consultado el 31 de julio de 2019
Savvas, D., G. B. Öztekin, M. Tepecik, A. M. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. (2017). Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. The Journal of Horticultural Science and Biotechnology, 92, 294-302. Doi:10.1080/14620316.2016.1265903
Sen, A., R. Chatterjee, P. Bhaisare, and S. Subba. (2018). Grafting as an alternate tool for biotic and abiotic tolerance with improved growth and production of solanaceous vegetables: Challenges and scopes in India. Int. J. Curr. Microbiol. App. Sci., 7, 121-135. Doi:10.20546/ijcmas.2018.701.014
Shivanna K.R., Tandon R. (2014) Reproductive Ecology of Flowering Plants: A Manual. Firth Editión. Springer, New Delhi. 169p.
Singh, H., Kumar, P., Chaudhari, S. and Edelstein, M. (2017). Tomato Grafting: A Global Perspective. HortScience, 52 (10), 1328-1336. DOI: 10.21273/HORTSCI11996-17
Singh, H., P. Kumar, A. Kumar, M. C. Kyriacou, G. Colla, and Y. Rouphael. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy, 10, 21. Doi:10.3390/agronomy10020263
Soare, R., M. Dinu, and C. Babeanu. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Hort. Science, 45, 76–82. Doi:10.17221/214/2016-HORTSCI
Soe, D. W., Z. Z, Win, A. A. THE, and K. T. MYINT. (2018). Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). Journal of Agricultural Research, 5, 30-38.
Sora, D., D. Mădălina, E. M. Drăghici, and M. I. Bogoescu. (2019). Effect of grafting on tomato fruit quality. Not Bot Horti Agrobo, 47, 1246-1251. Doi:10.15835/nbha47411719
Sridhar, V., P. V. R. Reddy. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. pp. 287-294. In: Singh, H.C.P., N.K.S. Rao, and K. S. Shivashankara. (Eds.). Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. New Delhi, India: Springer. Doi:10.1007/978-81-322-0974-4
Thwea, A. A., P. Kasemsapb, G. Vercambrec, F. Gayd, J. Phattaralerphonge, and H. Gautierc. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Scientia Horticulturae, 264(109185). Doi:10.1016/j.scienta.2020.109185
TomatoNews, (2019). The global tomato processing industry. Dipsonible en: http://www.tomatonews.com/en/background_47.html, consultado el 9 de julio de 2019
Torres P. A. (2017). Tomate al aire libre. Santiago, Chile: Instituto de Investigaciones Agropecuarias. Boletín INIA / N° 376.
TRIDGE. (2021). Tomatoes, fresh or chilled. Disponible en: https://www.tridge.com/hs-codes/070200/country, consultado el consultado el 22 de Febrero de 2021.
Turhan, A., Ozmen, N., Serbeci, M. S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38, 142-149. DOI: https://doi.org/10.17221/51/2011-HORTSCI
Vélez-Ramírez, A. I., van Ieperen, W., Vreugdenhil, D., y Millenaar, F. F. (2015). Continuous-light tolerance in tomato is graft-transferable. Planta, 241(1), 285-290.
Vélez-Ramírez, A.I. (2014) Continuous light on tomato: from gene to yield. PhD thesis, Wageningen University, Wageningen, The Netherlands. Disponible en: http://edepot.wur.nl/312846
Xu, Q., Guo, S. R., Li, H., Du, N. S., Shu, S., y Sun, J. (2015). Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings. Journal of the American Society for Horticultural Science,140(4), 299-307. DOI: https://doi.org/10.21273/JASHS.140.4.299
Zalom, F. G., L. T. Wilson. (1999). Predicting phenological events of California processing tomatoes. Acta Hot., 487, 41-47.
Zeist, A. R., J. T. V. D. Resende, M. V. Faria, A. Gabriel, I. F. L. D. Silva, and R. B. D. Lima Filho. (2018). Base temperature for node emission and plastochron determination in tomato species and their hybrids. Pesquisa Agropecuária Brasileira, 53, 307-315. Doi: 10.1590/s0100-204x2018000300005
Zeist, A. R.; J. T. Resende, I. F. Silva, J. R. Oliveira, C. M. Faria, and C. L. Giacobbo. (2017). Agronomic characteristics of tomato plant cultivar Santa Cruz Kada grafted on species of the genus Solanum. Horticultura Brasileira, 35, 419-424. DOI:10.1590/s0102-053620170317.
Zhang, G., and Guo, H. (2019). Effects of tomato and potato heterografting on photosynthesis, quality and yield of grafted parents. Horticulture, Environment, and Biotechnology, 60, 9-18. https://doi.org/10.1007/s13580-018-0096-x
Zhou, G., Q. A. Wang. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8 (10149). Doi:10.1038/s41598-018-28392-z
Zhou, R., Wu, Z., Wang, X., Rosenqvist, E., Wang, Y., Zhao, T., and Ottosen, C. O. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology, 59, 499-509. https://doi.org/10.1007/s13580-018-0050-y
Zhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O., y Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Departamento de Agronómicas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80519/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80519/2/1045021421.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80519/3/1045021421.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
259b74b1c64bc4a17d4ca877ff2fd274
ae20416b9d20515a333c1fc6de79feb5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886129012572160
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Córdoba Gaona, Óscar de Jesúsd4db53823cca4cfbf9e1e086909e5fbbRamírez Jiménez, Jamer Alexise64e6ece489dfbe66463c2b8ff401ddb2021-10-12T18:38:53Z2021-10-12T18:38:53Z2020https://repositorio.unal.edu.co/handle/unal/80519Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa injertación es un método eficaz para mejorar el rendimiento del fruto del tomate, la resistencia al estrés biótico y la tolerancia al estrés abiótico. Este trabajo tuvo como objetivo evaluar la respuesta fenológica, fisiológica y productiva de una copa comercial de tomate (cv. Libertador) injertada sobre dos portainjertos de tomate comerciales, en un diseño experimental de bloques completos al azar, donde se evaluaron cuatro combinaciones copa-portainjerto: portainjerto vigor (PV – “Olimpo”), portainjerto resistente (PRE – “Armada”), autoinjerto (AUTO) y plantas no injertadas (SEM). No hubo diferencias significativas para los grados día acumulados entre tratamientos, ya que el cultivo de tomate requirió 2.567 °Cd. La altura de la planta, el número y longitud de entrenudos, y el número de flores, no variaron significativamente entre tratamientos. Los valores más altos de A, gs, UEA y UER se registraron al inicio de la fase productiva (701), con una reducción al final del ciclo del cultivo (712); mientras tanto, E fue similar a lo largo del ciclo. PV presentó la menor A, sin embargo, fue superior en términos de IAF, materia seca en hojas y rendimiento de frutos. Los valores de Qy no indicaron estrés fotoquímico en ninguna de las combinaciones evaluadas. Se observó que, si bien el portainjerto de vigor induce la producción de menos fruta fresca en las primeras cosechas, a partir de la séptima cosecha, el tratamiento PV superó a los demás tratamientos en cuanto al rendimiento acumulado, al producir 37%, 22% y 22% más de frutos, y 60 %, 30% y 40% más cantidad de frutos de calidad extra, con relación al tratamiento PRE, AUTO y plantas no injertadas. El uso de un portainjerto vigoroso aumentó el rendimiento del cv. Libertador, mientras que el portainjerto con característica de resistencia no difirió de los controles, plantas auto injertadas y no injertadas. (texto tomado de la fuente)Grafting is a practical approach to improve tomato fruit yield, resistance to biotic stress, and tolerance to abiotic stresses. This work aimed to evaluate the phenology, physiological and productive response of a commercial tomato scion grafted on different rootstocks in Colombia's high-Andean region. For this purpose, a tomato “Chonto” cultivar was grafted on two commercial (‘Olimpo’ and ‘Armada’) tomato rootstock in a randomized complete block experimental design. For this, four scion-rootstock combinations were evaluated: vigor rootstock (VR), resistant rootstock (RR), self-grafting (SELF) and non-grafted plants (NG). There were no significant differences for the accumulated degree days between treatments since tomato cultivation required 2,567 °Cd. The plant height, number, and internode lengths, and the number of flowers did not vary significantly between grafting and non-grafting treatments. The highest values of A, gs, WUE, and RUE were registered in the initial phase of the production stage (701), which tended to decrease towards the end of the tomato life cycle (712). E was similar throughout the growth cycle. VR presented the lowest A; however, it was superior in terms of LAI, leaves dry matter, and tomato fruit yield. Qy values did not indicate photochemical injuries in any of the scion-rootstock combinations. It was shown that, although vigor rootstocks produce less fresh fruit in the first harvests, from the seventh harvest onwards, the vigor rootstocks outperformed the other treatments in the accumulated yield by producing 37 %, 22 %, and 22 % more yield fruit, and 60 %, 30 % and 40 % more number of fruits of extra quality, regarding resistance rootstock, self-grafted, and non-grafted plants. The use of a vigor rootstock increased the yield of cv. Libertador, while the rootstock with resistance characteristic decreased the scion's yield, regarding the controls, self-grafted, and non-grafted plants.MaestríaMagíster en Ciencias AgrariasFisiología de la producción vegetalxviii, 94 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronómicasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadasFisiología vegetalInjertos (Agricultura)Plant physiologyGraftingEscala BBCHInjertación patrón-copaInjertaciónFotosíntesisRendimiento cuánticoProducción de frutosTomate de mesa (Solanum lycopersicum L.)BBCH scaleGraftingScion-rootstock interactionDegree daysPhotosynthesisQuantum yieldFruit yieldEfecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.Effect of different rootstocks on the phenology, physiology, and yield components of tomato (Solanum lycopersicum L.) cultivated undercover in the high Andean region in Colombia.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgroglobal. (2021). Portainjertos para tomate. Disponible en: https://www.agroglobal.com.co/semillas-de-hortalizas/portainjertos/portainjerto-para-tomate, Consultado el 23 de febrero de 2021.AGRONET. (2021). Estadísticas Agrícola, Área, producción, rendimiento y participación. Disponible en: http://www.agronet.gov.co/estadistica/Paginas/default.aspx, Consultado el 23 de febrero de 2021.Albacete, A., Martínez‐Andújar, C., Ghanem, M. E., Acosta, M., Sánchez‐Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., and Pérez‐Alfocea, F. (2009). Rootstock‐mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32, 928-938. https://doi.org/10.1111/j.1365-3040.2009.01973.xAloni, B., R. Cohen, L. Karni, L. H. Aktas, and M. Edelstein. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127, 119-126.Arve, L. E., y Torre, S. (2015). Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology, 42(4), 376-386.Barrett, D. M. (2014). Future innovations in tomato processing. In XIII International Symposium on Processing Tomato 1081 (pp. 49-55).Bhatt, R. M., K. K. Upreti, M. H. Divya, S. Bhat, C. B. Pavithra, and A. T. Sadashiva. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. Doi:10.1016/j.scienta.2014.10.043Calatayud, Á., San Bautista, A., Pascual, B., Maroto, J. V., and López-Galarza, S. (2013). Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Scientia Horticulturae, 149, 13-18. https://doi.org/10.1016/j.scienta.2012.04.019Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., and Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281-289. https://doi.org/10.1016/j.jplph.2004.07.014Chaudhari, S., K. M., D. W. Jennings, D. L. Monks, C. C. Jordan, S. J. Gunter, S. L. Mcgowen, and F. J. Louws. (2016). Critical period for weed control in grafted and nongrafted fresh market tomato. Weed Science, 64, 523–530. Doi: 10.1614/WS-D-15-00049.1Chen X. (2017) Spatiotemporal Processes of Plant Phenology. SpringerBriefs in Geography. Firsth Edition. Springer, Berlin, Heidelberg. 97p.Costa, M. J., and E. Heuvelink. (2018). The global tomato industry. pp. 1-26. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.Cuong, D. C., and M. Tanaka. (2019). Effects of integrated environmental factors and modelling the growth and development of tomato in greenhouse cultivation. In IOP Conference Series: Earth and Environmental Science, 301, 012021. IOP Publishing. Doi:10.1088/1755-1315/301/1/012021Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., y Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670-1672.Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., ... y Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.Djidonou, D., A. H. Simonne, K. E. Koch, J. K. Brecht, and X. Zhao. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51, 1618-1624.Dorais, M. and Gosselin, A. (2002) Physiological response of greenhouse vegetable edepot.wur.nl/312846 (accedido el 16 de agosto de 2019).Estañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., and Asins, M. J. (2009). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118, 305-312. https://doi.org/10.1007/s00122-008-0900-6Eurofresh. (2016). Around the World: Tomatoes. Disponible en: https://www.eurofresh-distribution.com/news/around-world-tomatoes, consultado el 9 de julio de 2019Fanourakis, D., Heuvelink, E., y Carvalho, S. M. (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170(10), 890-898.FAOSTAT. (2021). Crops. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize, Consultado el 23 de febrero de 2021.Fatemi, M., and H. Dehghan. 2019. Growing degree days zonation of plants in Iran according to thermal characteristics. Theoretical and Applied Climatology, 138, 877-886. Doi:10.1007/s00704-019-02868-yFeller, C., H. Bleiholder, M. Hess, U. Meier, T. Van Den Boom, D. L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. (1997). Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2.ed. Available at: <https://www.hortiadvice.dk/upl/website/bbch-skala/scaleBBCH.pdf>. Accessed on: March 20, 2020.Food and Agricultura Organiztion (FAO) y Ministerio de Salud y Protección Social. (2012). Perfil Nacional de Consumo de Frutas y Verduras. Primera edición. Bogotá D.C., Colombia. 264 p. disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/perfil-nacional-consumo-frutas-y-verduras-colombia-2013.pdf, consultado el 30 de julio de 2019Food and Agriculture Organization (FAO). (2002). El Cultivo Protegido en Clima Mediterráneo. Disponible en: http://www.fao.org/3/s8630s/s8630s00.htm#Contents, consultado el 30 de julio de 2019.Food and Agriculture Organization (FAO). (2020). FAOSTAT Online Database. Available at: <http://www.fao.org/faostat/es/#home>. Accessed on: March 20, 2020.Fraisse, C. W., and S. V. Paula-Moraes. (2018). Degree-Days: Growing, heating, and cooling. Department of Agricultural and Biological Engineering, UF/IFAS Extension. Available at: <http://edis.ifas.ufl.edu>. Accessed on: March 20, 2020.Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., and Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045Gadioli, J. L., Dourado-Neto, D., García y García, A., & Valle Basanta, M. D. (2000). Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Scientia Agricola, 57, 377-383.Gaion, L. A., Braz, L. T., and Carvalho, R. F. (2018). Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24, 1-18. https://doi.org/10.1080/19315260.2017.1357062García-Rojas, F., and E. Pire. (2008). Estudio fenológico de cinco cultivares de tomate (Lycopersicon esculentum Mill.) en Tarabana, Estado Lara, Venezuela. Proc. Interamer. Soc. Trop. Hort., 52, 61-64.Geboloğlu, N., E. Yilmaz, P. Cakm. M. Aydin, and Y. Kasap. (2011). Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6, 2147-2153.Goto, R., de Miguel, A., Marsal, J. I., Gorbe, E., and Calatayud, A. (2013). Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. Journal of Plant Nutrition, 36, 825-835. https://doi.org/10.1080/01904167.2012.757321Grange, R. I., y Hand, D. W. (1987). A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science, 62(2), 125-134.Grieneisen, M. L., Aegerter, B. J., Stoddard, C. S., and Zhang, M. (2018). Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development, 38, 1-19. https://doi.org/10.1007/s13593-018-0507-5Grimstad, S. O., Verheul, M. J., y Maessen, H. F. R. (2012, October). Optimizing a year-round cultivation system of tomato under artificial light. In VII International Symposium on Light in Horticultural Systems 956 (pp. 389-394).Haberal, M., Körpe, D. A., İşeri, Ö. D., y Sahin, F. I. (2016). Grafting tomato onto tobacco rootstocks is a practical and feasible application for higher growth and leafing in different tobacco–tomato unions. Biological Agriculture y Horticulture, 32(4), 248-257.Hartmann, H.T., Kester, D.E., Davies, F.T., y Geneve, R.L. (2002). Plant Propagation. Principles and Practices, 7th edn. Prentice-Hall, Upper Saddle River, New Jersey.He, Y., Zhu, Z., Yang, J., Ni, X., and Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66, 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007Helgilibrary. (2019). Tomato Consumption Per Capita. Disponible en: https://www.helgilibrary.com/indicators/tomato-consumption-per-capita/, consultado el 30 de julio de 2019.Hemming, S., Mohammadkhani, V., y Van Ruijven, J. (2013). Material technology of diffuse greenhouse covering materials-influence on light transmission, light scattering and light spectrum. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 883-895).Heuvelink, E. (2018). Tomatoes, Crop production Science in Horticulture Serie. Second edition. Wageningen University y Research The Netherlands, Boston, MA: CABI. 378p.Heuvelink, E., T. Li, and M. Dorais. (2018). Crop growth and yield. Pp. 89-136. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.Higashide, T. and Heuvelink, E. (2009) Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society for Horticultural Science 134, 460–465. DOI: https://doi.org/10.21273/JASHS.134.4.460HORTOINFO. (2018). Tomate. Disponible en: http://www.hortoinfo.es/index.php/6238-prod-hort-frut-mund-041017, consultado el 02 de mayo de 2018.Hossain, M. G., M. A. Ali, R. A. Ripa, S. Ayrin, and S. Mahmood. (2019). Influence of Rootstocks on Yield and Quality of Summer Tomato cv. ‘BARI Tomato-4’. Earth Systems and Environment, 3, 289-300.Huang, Y., Kong, Q. S., Chen, F., and Bie, Z. L. (2014). The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 1086, 31-39. https://doi.org/10.17660/ActaHortic.2015.1086.2Impulsemillas. (2019). Semillas de hortalizas y frutales; Colón F1.Portainjerto. disponible en: http://www.impulsemillas.com/categoria/productos/semillas-de-hortalizas/hortalizas-hibridas/tomate/otros/, consultado el 31 de julio de 2019Instituto de Investigaciones Agropecuarias (INIA). (2017). Tomate al aire libre. Disponible en: http://www.inia.cl/wp-content/uploads/PautasdeChequeo/11.%20Pauta%20de%20chequeo%20Tomate%20Aire%20Libre.pdf, consultado el 10 de febrero de 2019.Jaramillo-Noreña, J. E.; Sánchez-León, G.D.; Rodríguez, V.P., Aguilar-Aguilar, P.A., Gil-Vallejo; L.F., Hío, J.C., Pinzón-Perdomo, L.M., García-Muñoz, M.C., Quevedo-Garzón, D., Zapata-Cuartas, M.Á., Restrepo, J F., y Guzmán-Arroyave, M. (2012). Tecnología para el cultivo de tomate bajo condiciones protegidas. Primera Edición. CORPOICA, Bogotá, Colombia. 482 p.Kaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., y Marcelis, L. F. (2016). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annals of botany, 119(1): 191-205.Khah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3-7. DOI: 10.37855 / jah.2006.v08i01.01Khan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hans, S.H., Mock, H.P., and Wu, T. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500-511. https://doi.org/10.1016/j.foodchem.2019.03.029King, S. R., Davis, A. R., Zhang, X., y Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106-111. DOI:https://doi.org/10.1016/j.scienta.2010.08.001Kubota, C., McClure, M. A., Kokalis-Burelle, N., Bausher, M. G., and Rosskopf, E. N. (2008). Vegetable grafting: History, use, and current technology status in North America. HortScience, 43, 1664-1669. https://doi.org/10.21273/HORTSCI.43.6.1664Kumar, B. A., and Sanket, K. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases - A review. International Journal of Agriculture Sciences, 9, 4050-4056.Kumar, P., Y. Rouphael, M. Cardarelli, and G. Colla. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in plant science, 8, 1130.Kyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner, and D. Schwarz. (2017). Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8(741).Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003Lee, J.M. y Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. (Amer. Soc. Hort. Sci.) 28: 61-124Lemoine, R., La Camera, S., Atanassova, R., Dedaldechamp, F., Allario, …, and Duran, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272Li, T., Heuvelink, E., Dueck, T. A., Janse, J., Gort, G., y Marcelis, L. F. M. (2014). Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of botany, 114(1), 145-156.Lucas, D.D.P., N. A. Streck, M. P. Bortoluzzi, R. Trentin, and I. C. Maldaner. (2012). Temperatura base para emissão de nós e plastocrono de plantas de melancia. Revista Ciência Agronômica, 43, 288-292. Doi: 10.1590/ S1806-66902012000200011.Marcelis, L. F. M., Broekhuijsen, A. G. M., Meinen, E., Nijs, E. M. F. M., y Raaphorst, M. G. M. (2006). Quantification of the growth response to light quantity of greenhouse grown crops. In V International Symposium on Artificial Lighting in Horticulture 711: 97-104.Martínez-Andújar, C., J. M. Ruiz-Lozano, I. C. Dodd, A. Albacete, and F. Pérez-Alfocea. (2017). Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 8, 13. Doi:10.3389/fpls.2017.00533Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., y Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2), 112-118. DOI: https://doi.org/10.1016/j.scienta.2010.08.002Meena, O. P., and V. Bahadur. (2015). Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. Journal of Breeding and Genetics, 47, 49-59.Meier, U. (1997). Growth stages of mono and dicotyledoneous plants. Berlin: Blackwell Wissenschafts-Verlag Science. 622p.Milenković, L., J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L. J. Šunić, and Z. S. Ilić. (2020). Effect of shading and grafting on yield and quality of tomato. Journal of the Science of Food and Agriculture, 100, 623-633.Miskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic, and B. Kukic. (2016). Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta Sci. Polon. Hortic. Cul., 15, 149-159.Moreno, M. M., A. Cirujeda, J. Aibar, and C. Moreno. (2016). Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Research, 54, 207–215. Doi:10.1071/SR15065Mulderij R. (2018). Overview global tomato market-Freshplaza, disponile en: https://www.freshplaza.com/article/2187792/overview-global-tomato-market/, consultado el 2 de julio de 2019Muneer, S., H. Ch. Ko, H. Wei1, Y. Chen, and B. R. Jeong. (2016). Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE, 11, 23. Doi:10.1371/journal.pone.0157439Mutke, S., J. Gordo, J. Climent, and L. Gil. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science, 6, 527-537.Naika S., Jeude J.L., Goffau M., Hilmi M. y Dam B. (2005). Cultivation of tomato -production, processing and marketing. Fourth Edition. Agromisa Foundation and CTA, Wageningen, Netherlands.Nicola, S., G. Tibaldi, and E. Fontana. (2009). Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Horticulturae, 821, 27-33.Nilsen, E. T., Freeman, J., Grene, R., and Tokuhisa, J. (2014). A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One, 9, e115380. https://doi.org/10.1371/journal.pone.0115380Ntatsi, G., D. Savvas, H. P. Kläring, and D. Schwarz. (2014). Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of the American Society for Horticultural Science, 139, 230-243.Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., and Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49-57. https://doi.org/10.1007/s00344-007-9030-7Pina, A., Cookson, S. J., Calatayud, Á., Trinchera, A., y Errea, P. (2017). Physiological and molecular mechanisms underlying graft compatibility. Vegetable grafting: Principles and practices., 132-154.Pogonyi, A., Z. Pék, L. Helyes, and A. Lugasi. (2005). Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34, 453-462.Qaryouti, M. M., W. Qawasmi, H. Hamdan, and M. Edwan. (2007). Tomato fruit yield and quality as affected by grafting and growing system. Acta Horticulturae, 741, 199-206.R Core Team. (2017). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: <https://cran.r-project.org/>. Accessed on: March 20, 2020.Rahmatian, A., M. Delshad, and R. Salehi. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture, Environment, and Biotechnology, 55, 115-119.Reddy, P. P. (2016). Grafted Vegetables for Management of Soilborne Pathogens. In Sustainable Crop Protection under Protected Cultivation (pp. 83-97). Springer, Singapore. DOI: 10.1007 / 978-981-287-952-3_7Riaño, N. M., G. Tangarife, O. I. Osorio, J. F. Giraldo, C. M. Ospina, D. Obando, L. F. Gómez, and L. F. Jaramillo. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Manizales: Ministerio de Agricultura y Desarrollo Rural, Federación Nacional de Cafeteros, Cenicafé, CONIF. 51p. https://www.ricclisa.org/images/manualcreft.pdfRiga, P. (2015). Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Horticulture, Environment, and Biotechnology, 56, 626-638.Rivard, C.L. y Louws F.J. (2006) Grafting for disease resistance in heirloom tomatoes. North Carolina Coop Ext Serv Bul Ag-8 p.Rosskopf, E.N., Pisani, C. y Di Gioia, F. (2017). Crop specific grafting methods, rootstocks and scheduling: Tomato, Disponible en: http://www.vegetablegrafting.org/resources/grafting-manual/, consultado el 28 de 08 de 2019.Sakata, Y., Ohara, T., y Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. In III International Symposium on Cucurbits 731 (pp. 159-170).Sakata. (2019). Woodstock, la mejor opción para protección de las raíces. Disponible en: https://www.sakata.com.br/es/hortalizas/solanaceas/tomate/porta-injerto/woodstock, consultado el 31 de julio de 2019Savvas, D., G. B. Öztekin, M. Tepecik, A. M. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. (2017). Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. The Journal of Horticultural Science and Biotechnology, 92, 294-302. Doi:10.1080/14620316.2016.1265903Sen, A., R. Chatterjee, P. Bhaisare, and S. Subba. (2018). Grafting as an alternate tool for biotic and abiotic tolerance with improved growth and production of solanaceous vegetables: Challenges and scopes in India. Int. J. Curr. Microbiol. App. Sci., 7, 121-135. Doi:10.20546/ijcmas.2018.701.014Shivanna K.R., Tandon R. (2014) Reproductive Ecology of Flowering Plants: A Manual. Firth Editión. Springer, New Delhi. 169p.Singh, H., Kumar, P., Chaudhari, S. and Edelstein, M. (2017). Tomato Grafting: A Global Perspective. HortScience, 52 (10), 1328-1336. DOI: 10.21273/HORTSCI11996-17Singh, H., P. Kumar, A. Kumar, M. C. Kyriacou, G. Colla, and Y. Rouphael. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy, 10, 21. Doi:10.3390/agronomy10020263Soare, R., M. Dinu, and C. Babeanu. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Hort. Science, 45, 76–82. Doi:10.17221/214/2016-HORTSCISoe, D. W., Z. Z, Win, A. A. THE, and K. T. MYINT. (2018). Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). Journal of Agricultural Research, 5, 30-38.Sora, D., D. Mădălina, E. M. Drăghici, and M. I. Bogoescu. (2019). Effect of grafting on tomato fruit quality. Not Bot Horti Agrobo, 47, 1246-1251. Doi:10.15835/nbha47411719Sridhar, V., P. V. R. Reddy. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. pp. 287-294. In: Singh, H.C.P., N.K.S. Rao, and K. S. Shivashankara. (Eds.). Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. New Delhi, India: Springer. Doi:10.1007/978-81-322-0974-4Thwea, A. A., P. Kasemsapb, G. Vercambrec, F. Gayd, J. Phattaralerphonge, and H. Gautierc. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Scientia Horticulturae, 264(109185). Doi:10.1016/j.scienta.2020.109185TomatoNews, (2019). The global tomato processing industry. Dipsonible en: http://www.tomatonews.com/en/background_47.html, consultado el 9 de julio de 2019Torres P. A. (2017). Tomate al aire libre. Santiago, Chile: Instituto de Investigaciones Agropecuarias. Boletín INIA / N° 376.TRIDGE. (2021). Tomatoes, fresh or chilled. Disponible en: https://www.tridge.com/hs-codes/070200/country, consultado el consultado el 22 de Febrero de 2021.Turhan, A., Ozmen, N., Serbeci, M. S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38, 142-149. DOI: https://doi.org/10.17221/51/2011-HORTSCIVélez-Ramírez, A. I., van Ieperen, W., Vreugdenhil, D., y Millenaar, F. F. (2015). Continuous-light tolerance in tomato is graft-transferable. Planta, 241(1), 285-290.Vélez-Ramírez, A.I. (2014) Continuous light on tomato: from gene to yield. PhD thesis, Wageningen University, Wageningen, The Netherlands. Disponible en: http://edepot.wur.nl/312846Xu, Q., Guo, S. R., Li, H., Du, N. S., Shu, S., y Sun, J. (2015). Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings. Journal of the American Society for Horticultural Science,140(4), 299-307. DOI: https://doi.org/10.21273/JASHS.140.4.299Zalom, F. G., L. T. Wilson. (1999). Predicting phenological events of California processing tomatoes. Acta Hot., 487, 41-47.Zeist, A. R., J. T. V. D. Resende, M. V. Faria, A. Gabriel, I. F. L. D. Silva, and R. B. D. Lima Filho. (2018). Base temperature for node emission and plastochron determination in tomato species and their hybrids. Pesquisa Agropecuária Brasileira, 53, 307-315. Doi: 10.1590/s0100-204x2018000300005Zeist, A. R.; J. T. Resende, I. F. Silva, J. R. Oliveira, C. M. Faria, and C. L. Giacobbo. (2017). Agronomic characteristics of tomato plant cultivar Santa Cruz Kada grafted on species of the genus Solanum. Horticultura Brasileira, 35, 419-424. DOI:10.1590/s0102-053620170317.Zhang, G., and Guo, H. (2019). Effects of tomato and potato heterografting on photosynthesis, quality and yield of grafted parents. Horticulture, Environment, and Biotechnology, 60, 9-18. https://doi.org/10.1007/s13580-018-0096-xZhou, G., Q. A. Wang. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8 (10149). Doi:10.1038/s41598-018-28392-zZhou, R., Wu, Z., Wang, X., Rosenqvist, E., Wang, Y., Zhao, T., and Ottosen, C. O. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology, 59, 499-509. https://doi.org/10.1007/s13580-018-0050-yZhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O., y Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80519/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1045021421.2021.pdf1045021421.2021.pdfTesis Maestría en Ciencias Agrariasapplication/pdf4506703https://repositorio.unal.edu.co/bitstream/unal/80519/2/1045021421.2021.pdf259b74b1c64bc4a17d4ca877ff2fd274MD52THUMBNAIL1045021421.2021.pdf.jpg1045021421.2021.pdf.jpgGenerated Thumbnailimage/jpeg5915https://repositorio.unal.edu.co/bitstream/unal/80519/3/1045021421.2021.pdf.jpgae20416b9d20515a333c1fc6de79feb5MD53unal/80519oai:repositorio.unal.edu.co:unal/805192023-07-29 23:03:57.028Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==