Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación
ilustraciones, diagramas, fotografías a color, mapas
- Autores:
-
Moreno Forero, Maribel
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84350
- Palabra clave:
- 540 - Química y ciencias afines::543 - Química analítica
Fenómenos químicos
Chemical Phenomena
Ciclos biogeoquímicos
Ciclo del carbono (biogeoquímica)
Biogeochemical cycles
Carbon cycle (biogeochemistry)
Isótopos estables
IRMS (Espectrometría de Masas de Relaciones Isotópicas)
Carbón
Validación
Material de referencia
Stables Isotopes
IRMS (Isotopic Ratio Mass Spectrometry)
Carbon
Validation
Reference Material
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_8ad93d9d73eae8299b6f7a2dc669ed66 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84350 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
dc.title.translated.eng.fl_str_mv |
Isotopic study of carbon (δ13C) in colombian coals and its relationship with physicochemical properties for the identification of biogeochemical processes associated with their formation environments |
title |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
spellingShingle |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación 540 - Química y ciencias afines::543 - Química analítica Fenómenos químicos Chemical Phenomena Ciclos biogeoquímicos Ciclo del carbono (biogeoquímica) Biogeochemical cycles Carbon cycle (biogeochemistry) Isótopos estables IRMS (Espectrometría de Masas de Relaciones Isotópicas) Carbón Validación Material de referencia Stables Isotopes IRMS (Isotopic Ratio Mass Spectrometry) Carbon Validation Reference Material |
title_short |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
title_full |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
title_fullStr |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
title_full_unstemmed |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
title_sort |
Estudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formación |
dc.creator.fl_str_mv |
Moreno Forero, Maribel |
dc.contributor.advisor.none.fl_str_mv |
Agámez Pertuz, Yazmin Yaneth |
dc.contributor.author.none.fl_str_mv |
Moreno Forero, Maribel |
dc.contributor.orcid.spa.fl_str_mv |
MORENO FORERO, MARIBEL [0000-0002-3410-8760] |
dc.contributor.cvlac.spa.fl_str_mv |
MORENO FORERO, MARIBEL |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::543 - Química analítica |
topic |
540 - Química y ciencias afines::543 - Química analítica Fenómenos químicos Chemical Phenomena Ciclos biogeoquímicos Ciclo del carbono (biogeoquímica) Biogeochemical cycles Carbon cycle (biogeochemistry) Isótopos estables IRMS (Espectrometría de Masas de Relaciones Isotópicas) Carbón Validación Material de referencia Stables Isotopes IRMS (Isotopic Ratio Mass Spectrometry) Carbon Validation Reference Material |
dc.subject.decs.spa.fl_str_mv |
Fenómenos químicos |
dc.subject.decs.eng.fl_str_mv |
Chemical Phenomena |
dc.subject.lemb.spa.fl_str_mv |
Ciclos biogeoquímicos Ciclo del carbono (biogeoquímica) |
dc.subject.lemb.eng.fl_str_mv |
Biogeochemical cycles Carbon cycle (biogeochemistry) |
dc.subject.proposal.spa.fl_str_mv |
Isótopos estables IRMS (Espectrometría de Masas de Relaciones Isotópicas) Carbón Validación Material de referencia |
dc.subject.proposal.eng.fl_str_mv |
Stables Isotopes IRMS (Isotopic Ratio Mass Spectrometry) Carbon Validation Reference Material |
description |
ilustraciones, diagramas, fotografías a color, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-28T13:52:00Z |
dc.date.available.none.fl_str_mv |
2023-07-28T13:52:00Z |
dc.date.issued.none.fl_str_mv |
2023-07-26 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84350 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84350 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.relation.references.spa.fl_str_mv |
A. N. de Míneria, “El futuro del carbón en Colombia no termina , se fortalece con las ruedas de negocios,” 2021. https://www.anm.gov.co/?q=rueda-de-negocios-carbon-termico-en-colombia. D. N. D. P. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL, REPÚBLICA DE COLOMBIA, “Política De Transición Energética - Conpes 4075,” p. 108, 2022, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf. G. Valley, “International Journal of Coal Geology Petrographic characteristics and carbon isotopic composition of Permian coal : Implications on depositional environment of Sattupalli coal fi eld ,” Int. J. Coal Geol., vol. 90–91, pp. 34–42, 2012, doi: 10.1016/j.coal.2011.10.002. M. Hámor-vidó and T. Hámor, “Sulphur and carbon isotopic composition of power supply coals in the Pannonian Basin , Hungary,” vol. 71, pp. 425–447, 2007, doi: 10.1016/j.coal.2006.11.002. M. Moreno and G. Hincapié, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” Universidad de Caldas, 2010. N. Suto and H. Kawashima, “Global mapping of carbon isotope ratios in coal,” J. Geochemical Explor., vol. 167, pp. 12–19, 2016, doi: 10.1016/j.gexplo.2016.05.001. C. T. Samec, M. Pirola, and V. A. Killian Galván, “Lineamientos para la publicación de resultados isotópicos en antropología biológica y arqueología,” Rev. Argentina Antropol. Biológica, vol. 21, no. 2, p. 007, 2019, doi: 10.24215/18536387e007. G. Skrzypek et al., “Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report),” Pure Appl. Chem., 2022, doi: 10.1515/pac-2021-1108. ISO - International Organization for Standardization, “ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories.,” vol. 2017, 2009. R. Arqueol, “DIETA, SUBSISTENCIA Y MOVILIDAD EN TIBANICA A TRAVÉS DEL ESTUDIO DE RAZONES DE ISOTOPOS ESTABLES DE CARBONO (δ13C), NITRÓGENO (δ15 N) Y OXIGENO (δ18O) DEL COLÁGENO Y LA APATITA,” no. October 2018, 2012. A. Delgado and E. Reyes, “Isótopos Estables como Indicadores Paleoclimáticos y Paleohidrológicos en Medios Continentales,” Geoquímica Isotópica Apl. al Medioambiente, Semin. la Soc. Española Mineral., pp. 37–54, 2004. L. Thomas, Coal Geology. 2002. E. Herausgegeben, CHEMISTRY OF COAL UTILIZATION, vol. I. John Wiley and Sons Lowry, 1981. J. Speight, Handbook of Coal analyses. John Willey and sons, 2005. F. S. Ajiaco Castro, “Evaluación del comportamiento térmico de carbones del Cerrejón, carbones coquizantes y sus mezclas en la producción de coque metalúrgico.” p. 107, 2011. “ASTM D 388-05 Classification of Coals by Rank.pdf.” 2005. Universidad de Granada, “Petrografía del carbón,” Instituto Nacional del Carbón, 2018. A. M.-A. A. Pérez-López, A.G. Borrego, M. Sierra Aragón, “Petrografía del carbón,” Universidad de Granada - Instituto de Ciencia y Tecnología del Carbono (INCAR) - España, 2013. https://petrografiacarbon.es/. V. J. Cortés, “Carbón,” NA, pp. 1–47, 2015. Portafolio, “En carbón, el país es exportador de talla mundial,” Portafolio, p. 94036, 2012. E. País, “El incierto futuro del carbón en Colombia,” 2022. UPME, “El Carbón Colombiano. Fuente de Energía para el mundo,” Unidad Planeación Min. Energética, p. 53, 2005. F. Chiocchini, S. Portarena, M. Ciolfi, E. Brugnoli, and M. Lauteri, “Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils,” Food Chem., vol. 202, pp. 291–301, 2016, doi: 10.1016/j.foodchem.2016.01.146. Agencia Nacional de Mineria, “Carbón,” Producción Nacional de Minerales 2013, Bogotá, Colombia. S. G. Colombiano, “Zonas Carboniferas de Colombia,” 2021. https://datos.sgc.gov.co/datasets/68d1a27c05984be5b0ca1eaf524a1006_0/explore?location=3.501775%2C-73.527455%2C5.85 (accessed Aug. 25, 2022). R. Geol and G. D. E. Carb, “Zonas carboníferas de colombia,” pp. 1–6, 2021. IAEA, “International Atomic Energy Agency - What are Isotopes,” 2022. https://www.iaea.org/newscenter/news/what-are-isotopes#:~:text=Like everything we see in,Vargas%2FIAEA) (accessed Aug. 19, 2022). J. B. West, G. J. Bowen, T. E. Cerling, and J. R. Ehleringer, “Stable isotopes as one of nature’s ecological recorders,” Trends Ecol. Evol., vol. 21, no. 7, pp. 408–414, 2006, doi: 10.1016/j.tree.2006.04.002. J. Hoefs, Stable Isotope Geochemistry, Seventh. Springer International Publishing Switzerland, 2015. C. E. Redding, M. Schoell, J. C. Monin, and B. Durand, “Hydrogen and carbon isotopic composition of coals and kerogens,” Phys. Chem. Earth, vol. 12, no. C, pp. 711–723, 1980, doi: 10.1016/0079-1946(79)90152-6. S. In, “Stable Isotope Geochemistry III: Low Temperature Applications,” in Geol. 656 Isotope Geochemistry Chapter, 2011, pp. 276–327. Z. Muccio and G. P. Jackson, “Isotope ratio mass spectrometry,” Analyst, vol. 134, no. 2, pp. 213–222, 2009, doi: 10.1039/b808232d. G. Kaklamanos, E. Aprea, and G. Theodoridis, 11 - Mass spectrometry: principles and instrumentation, Second Edi. Elsevier Inc., 2020. Cienfuegos and Morales, “Metrología de isótopos estables y materiales de referencia utilizados para la determinación isotópica de carbono, nitrógeno, oxigeno, hidrógeno, y azufre,” Simp. Metrol., 2001, [Online]. Available: http://www.cenam.mx/Memorias/descarga/Memorias Simposio/documentos/ta-or023.pdf. I. A. E. AGENCY, “Reference and intercomparison materials for stable isotopes of light elements,” 1995. W. C. Pat, S. Iii, and U. S. G. Survey, Stable Isotope Geochemistry of Mineral Deposits, 2nd ed. Elsevier Ltd., 2014 M. Moreno Sánchez and G. Hincapié Jaramillo, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” p. 181, 2010. H. Carvajal-ortiz, “Carbon isotopic composition of plant-derived organic matter in tropical sedimentary sequences as a recorder of Late Cretaceous-Early Paleogene changes in the carbon cycle,” Iowa State University, 2007. M. Hail and W. Hasiah, “Biological markers and carbon isotope composition of organic matter in the Upper Cretaceous coals and carbonaceous shale succession ( Jiza – Qamar Basin , Yemen ): Origin , type and preservation,” vol. 409, pp. 84–97, 2014. A. Bhagavatula, G. Huffman, N. Shah, C. Romanek, and R. Honaker, “Source apportionment of carbon during gasi fi cation of coal – biomass blends using stable carbon isotope analysis,” Fuel Process. Technol., vol. 128, pp. 83–93, 2014, doi: 10.1016/j.fuproc.2014.06.024. P. D. Warwick and L. F. Ruppert, “International Journal of Coal Geology Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion : A preliminary study,” Int. J. Coal Geol., pp. 0–7, 2016, doi: 10.1016/j.coal.2016.06.009. M. Espinosa-Fuentes et al., “Ciclos biogeoquímicos,” no. December, 2015. P. Alexandre, Isotopes and the Natural Environment. Brandon, MB, Canada, 2020. A. Lerman, “Carbon cycle,” Encycl. Earth Sci. Ser., no. 2003, pp. 983–986, 2009, doi: 10.1007/978-1-4020-4411-3_28. X. Zhang et al., “The role of dissolved organic matter in soil organic carbon stability under water erosion,” Ecol. Indic., vol. 102, no. October 2018, pp. 724–733, 2019, doi: 10.1016/j.ecolind.2019.03.038. P. A. de Groot, Handbook of Stable Isotope Analytical Techniques Vol II, vol. 1st ed, no. Vol. 2. Amsterdam: Elsevier Science, 2009. Z. Li, S. Wang, X. Nie, Y. Sun, and F. Ran, “The application and potential non-conservatism of stable isotopes in organic matter source tracing,” Sci. Total Environ., vol. 838, no. May, p. 155946, 2022, doi: 10.1016/j.scitotenv.2022.155946. R. Newton and S. Bottrel, “Bicentennial Review Stable isotopes of carbon and sulphur as indicators of environmental change :,” J. Geol. Soc. London., vol. 164, pp. 691–708, 2015. V. N. Bashkin, Carbon biogeochemical cycle and consequences of climate changes, 2nd ed., no. February. Elsevier Inc., 2018. L. Aristizábal Losada and T. (Doctor en A.--U. de los Andes, “Alimentación y sociedad - paleodieta de una población muisca de la Sabana de Bogotá, el caso de Tibanica - Soacha,” instnameUniversidad los Andes, 2016, [Online]. Available: http://hdl.handle.net/1992/7673. M. I. García-Collado, P. Ricci, R. Catalán Ramos, S. Altieri, C. Lubritto, and J. A. Quirós Castillo, “Palaeodietary reconstruction as an alternative approach to poorly preserved early medieval human bone assemblages: the case of Boadilla (Toledo, Spain),” Archaeol. Anthropol. Sci., vol. 11, no. 8, pp. 3765–3782, 2019, doi: 10.1007/s12520-018-0672-0. M. K. Arroyo, E. Medina, and H. Ziegler, “Distribution and δ 13C Values of Portulacaceae Species of the High Andes in Northern Chile,” Bot. Acta, vol. 103, no. 3, pp. 291–295, 1990, doi: 10.1111/j.1438-8677.1990.tb00163. W. Yamori, K. Hikosaka, and D. A. Way, “Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation,” Photosynth. Res., vol. 119, no. 1–2, pp. 101–117, 2014, doi: 10.1007/s11120-013-9874-6. ISO 9001:2015, “ISO 9001: 2015 Quality Management Systems- Requirements,” Int. Stand. Organ., vol. 2015, p. 13, 2015. I. and O. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd editio. 2012. C. Guide, “Traceability in Chemical Measurement A guide to achieving comparable results,” 2003. ISO, Guide 35, Reference materials- Guidance for characterization and assessment of homogeneity and stability, vol. 2017. 2017. I. (International O. for Standardization), “ISO Guide 30 : 2015 Reference materials — Selected terms and definitions,” 2015. IAEA, “Reference materials for Stable Isotope analysis,” 2021, 2021. https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx (accessed Jun. 07, 2021). Z. D. Sharp, Principles of Stable Isotope Geochemistry. . C. on A. W. and I. A. IUPAC and Dances, “Atomic Weights of the Emements 1993,” in Atomic Weights of the Emements 1995, 1995, pp. 1561–1573. M. Baskaran, Handbook of Environmental Isotope Geochemistry. Detroit Michigan, 2002. K. C. MISRA, Introduction to Geochemistry Principles and Applications. Tennessee, USA, 2012 M. Gröning, “International Stable Isotope Reference Materials,” Handb. Stable Isot. Anal. Tech., vol. 1, pp. 874–906, 2004, doi: 10.1016/B978-044451114-0/50042-9. T. W. Golden and R. D. Murphy, “Report of Investigation,” A Guid. to Forensic Account. Investig., vol. 1, no. January, pp. 363–387, 2015, doi: 10.1002/9781119200048.ch18. W. A. Brand, T. B. Coplen, J. Vogl, M. Rosner, and T. Prohaska, “Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report),” Pure Appl. Chem., vol. 86, no. 3, pp. 425–467, 2014, doi: 10.1515/pac-2013-1023. I. S. O. Guide, I. As, I. S. O. Guide, and C. Url, “Guidance for the in-house preparation of quality control materials (QCMs) GUIDE 80,” 2014, [Online]. Available: www.iso.org. UNODC, “la validación de métodos analíticos y la calibración del equipo utilizado para el análisis de drogas ilícitas en materiales incautados y especímenes biológicos Por,” p. 69, 2010, [Online]. Available: http://srjcstaff.santarosa.edu/~oraola/Assets/APHA_SM_20.pdf. V. Barwick et al., The Fitness for Purpose of Analytical Methods. Eurachem., Second Edi. 2014. M. Thompson, S. L. R. Ellison, and R. Wood, “Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report),” Pure Appl. Chem., vol. 74, no. 5, pp. 835–855, 2002, doi: 10.1351/pac200274050835. S. Rasul, A. M. Kajal, and A. Khan, “Quantifying Uncertainty in Analytical Measurements,” J. Bangladesh Acad. Sci., vol. 41, no. 2, pp. 145–163, 2018, doi: 10.3329/jbas.v41i2.35494. J. C. F. G. I. M. ISBN, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” Int. Organ. Stand. Geneva ISBN, no. September, 2008, [Online]. Available: https://www.bipm.org/en/committees/jc/jcgm/publications. SGC LAB, “Cómo calcular la incertidumbre del muestreo de una manera fácil empleando el método de la Eurachem,” Octubre, 2020. https://sgc-lab.com/como-calcular-la-incertidumbre-del-muestreo-de-una-manera-facil/ (accessed Aug. 15, 2022). W. A. Schmid and J. L. Martínez, “Guía para estimar la incertidumbre de la medición,” pp. 1–27, 2000. N. D. Martínez, A. M. Rodríguez, A. R. Gutiérrez, M. D. Di Carlo Vitolino, and A. D. los Á. Durán, “Determinación de la incertidumbre del método de análisis de aflatoxinas por HPLC en pasa de uva,” Tecnura, vol. 22, no. 58, pp. 25–36, 2018, doi: 10.14483/22487638.12896. L. G. Carmona Aparicio et al., “Conciliación de inventarios top-down y bottom-up de emisiones de fuentes móviles en Bogotá, Colombia,” Rev. Tecnura, vol. 20, no. 49, p. 59, 2016, doi: 10.14483/udistrital.jour.tecnura.2016.3.a04. INM. Instituto Nacional de Metrología, “¿Qué es un Material de referencia? y ¿Qué es un material de referencia certificado?” https://inm.gov.co/web/servicios/materiales-de-referencia/. I. (International O. for Standardization), “ISO 17034, General requirements for the competence of reference material producers,” vol. 2016, 2016. T. P. J. Linsinger, J. Pauwels, A. M. H. Van Der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001, doi: 10.1007/s007690000261. E. D. F. Guimarães, E. C. P. Do Rego, H. C. M. Cunha, J. M. Rodrigues, J. D. F. Villar, and V. S. Da Cunha, “Homogeneity study for certification of a candidate reference material for polycyclic aromatic hydrocarbons,” 19th IMEKO World Congr. 2009, vol. 4, no. January, pp. 2377–2381, 2009. A. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3–4, pp. 359–361, 1998, doi: 10.1007/s002160050711. International Atomic Energy Agency (IAEA), “Reference Material for δ13C and δ2H. REFERENCE SHEET IAEA-CH-7,” 2022. Elemental Microanalysis Ltd, “Certificate of Analysis IRMS Certified Reference Material EMA-P2,” 2012. [Online]. Available: www.sigma-aldrich.com. International Atomic Energy Agency (IAEA), “Reference sheet USGS24,” 2000. Instituto de Salud Pública de Chile, “Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos",” 2010. American Standard Testing Material (ASTM), “ASTM D3172-13(2021)e1 Standard Practice for Proximate Analysis of Coal and Coke,” Annual Book of ASTM Standards, vol. 13. pp. 3174–3175, 2013. American Standard Testing Material (ASTM), “ASTM D7582-15 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis,” Program, vol. i, no. 3. pp. 1–9, 2012. American Standard Testing Material (ASTM), “ASTM D4239-18e1 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion.” pp. 4–6, 2018. American Standard Testing Material (ASTM), “ASTM D5865/D5865M-19 Standard Test Method for Gross Calorific Value of Coal and Coke,” Astm D 5865 – 03, vol. 5, pp. 1–11, 2003. American Standard Testing Material (ASTM), “ASTM D5373-21 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” vol. 552, pp. 1–11, 2014, [Online]. Available: http://www.astm.org/Standards/D5373.htm. R. Shimizu, H. Masaki, and S. Yasuike, “Simple and rapid quantification of chromium, arsenic, and selenium in bituminous coal samples using a desktop energy dispersive X-ray fluorescence analyzer,” Appl. Radiat. Isot., vol. 176, no. July, p. 109877, 2021, doi: 10.1016/j.apradiso.2021.109877. I. (International O. for Standardization), “GUIDE 80 Guidance for the in-house preparation of quality control materials (QCMs).” 2014. International Atomic Energy Agency (IAEA), “Reference Materials Website for IAEA Reference Products.” https://nucleus.iaea.org/sites/referencematerials/SitePages/Home.aspx (accessed Oct. 26, 2022). R. Barrera Zapata, J. F. Pérez Bayer, and C. Salazar Jiménez, “Colombian coals: classification and thermochemical characterization for energy applications,” Rev. ION, vol. 27, no. 2, pp. 43–54, 2014. nternational Atomic Energy Agency (IAEA), “Reference Materials Characterized for Stable Isotope Ratios.” https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx#InplviewHashf8b9c06a-d02e-4b74-b4f1-6312bc2bc774= (accessed Oct. 13, 2022). R. N. & S. BOTTRELL, “Stable isotopes of carbon and sulphur as indicators of environmental change: past and present,” Earth, vol. 164, pp. 691–708, 2007. D. Ding, G. Liu, X. Sun, and R. Sun, “Journal of Asian Earth Sciences Response of carbon isotopic compositions of Early-Middle Permian coals in North China to palaeo-climate change,” J. Asian Earth Sci., vol. 151, no. October 2017, pp. 190–196, 2018, doi: 10.1016/j.jseaes.2017.10.043. S. Africa and J. M. Smith, “A COMPARISON OF CHARCOAL AND STABLE CARBON ISOTOPE RESULTS FOR THE CALEDON RIVER VALLEY , SOUTHERN AFRICA , FOR THE PERIOD 13 500-5000 YR BP,” vol. 58, no. 177, pp. 1–5, 2014. A. Hentschel, J. S. Esterle, S. D. Golding, and D. V. Pacey, “Petrologic and stable isotopic study of the Walloon Coal Measures, Surat Basin, Queensland: Peat accumulation under changing climate and base level,” Int. J. Coal Geol., vol. 160–161, pp. 11–27, 2016, doi: 10.1016/j.coal.2016.04.010. M. W. Rahman, S. M. Rimmer, H. D. Rowe, and W. W. Huggett, “Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence for thermogenic methane generation,” Chem. Geol., vol. 453, pp. 1–11, 2017, doi: 10.1016/j.chemgeo.2017.02.012. Y. Liu, G. Liu, B. Yousaf, J. Zhang, and L. Zhou, “Carbon fractionation and stable carbon isotopic fingerprint of road dusts near coal power plant with emphases on coal-related source apportionment,” Ecotoxicol. Environ. Saf., vol. 202, no. June, p. 110888, 2020, doi: 10.1016/j.ecoenv.2020.110888. M. J. Kotarba and J. L. Clayton, “A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales,” Int. J. Coal Geol., vol. 55, no. 2–4, pp. 73–94, 2003, doi: 10.1016/S0166-5162(03)00082-X. M. Panda, S. M. Equeenuddin, and D. Mohanty, “Organic petrography and stable isotopic characteristics of Permian Talcher coal, India: Implications on depositional environment,” Int. J. Coal Geol., vol. 264, no. December, 2022, doi: 10.1016/j.coal.2022.104130. T. Kanduč, M. Markič, S. Zavšek, and J. McIntosh, “Carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes,” Int. J. Coal Geol., vol. 89, no. 1, pp. 70–83, 2012, doi: 10.1016/j.coal.2011.08.008. M. K. Bertil Magnusson, Teemu Näykki, Håvard Hovind, “HANDBOOK FOR CALCULATION OF MEASUREMENT UNCERTAINTY IN Håvard Hovind,” 2003. J. H. Lee, J. H. Choi, J. S. Youn, Y. J. Cha, W. Song, and A. J. Park, “Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty,” Clin. Chem. Lab. Med., vol. 53, no. 7, pp. 1025–1032, 2015, doi: 10.1515/cclm-2014-0801. M. 20742 Department of Physics - University of Maryland - College Park, “Random vs Systematic Error.” https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorAnalysis.html (accessed Nov. 05, 2022). B. S. K. Kumar, V. V. S. S. Sarma, and D. Cardinal, “Tracing terrestrial versus marine sources of dissolved organic carbon in the largest monsoonal Godavari estuary in India using stable carbon isotopes,” Estuar. Coast. Shelf Sci., vol. 276, no. October, 2022, doi: 10.1016/j.ecss.2022.108004. A. S. Raghavendra, B. Sunil, and R. B. Bapatla, “C3 Plants,” Encycl. Appl. Plant Sci., vol. 1, pp. 44–51, 2016, doi: 10.1016/B978-0-12-394807-6.00090-3. Y. Dong et al., “Paleozoic carbon cycle dynamics: Insights from stable carbon isotopes in marine carbonates and C3 land plants,” Earth-Science Rev., vol. 222, no. November, 2021, doi: 10.1016/j.earscirev.2021.103813. G. Gleixner, N. Poirier, R. Bol, and J. Balesdent, “Molecular dynamics of organic matter in a cultivated soil,” Org. Geochem., vol. 33, no. 3, pp. 357–366, 2002, doi: 10.1016/S0146-6380(01)00166-8. D. Dortzbach, M. G. Pereira, É. Blainski, and A. P. González, “Estoque de c e abundância natural de 13c em razão da conversão de áreas de floresta e pastagem em bioma mata atlântica,” Rev. Bras. Cienc. do Solo, vol. 39, no. 6, pp. 1643–1660, 2015, doi: 10.1590/01000683rbcs20140531. C. A. Raines, “Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies,” Plant Physiol., vol. 155, no. 1, pp. 36–42, 2011, doi: 10.1104/pp.110.168559. Khan Academy, “Photorespiration: C3, C4, and CAM plants.” https://www.khanacademy.org/science/biology/photosynthesis-in-plants/photorespiration--c3-c4-cam-plants/a/c3-c4-and-cam-plants-agriculture (accessed Sep. 13, 2022). L. Stryer, Biochemmistry, Fourth Edition, Fourth Edi. New York: 1995, 1995. K. R. Hanson and R. B. Peterson, “The stoichiometry of photorespiration during C3-photosynthesis is not fixed: Evidence from combined physical and stereochemical methods,” Arch. Biochem. Biophys., vol. 237, no. 2, pp. 300–313, 1985, doi: 10.1016/0003-9861(85)90281-4. S. Schulze, P. Westhoff, and U. Gowik, “Glycine decarboxylase in C3, C4 and C3-C4 intermediate species,” Curr. Opin. Plant Biol., vol. 31, pp. 29–35, 2016, doi: 10.1016/j.pbi.2016.03.011. A. Scott Holaday, S. Talkmitt, and M. E. Doohan, “Anatomical and enzymic studies of leaves of a C3 × C4 Flaveria F1 hybrid exhibiting reduced photorespiration,” Plant Sci., vol. 41, no. 1, pp. 31–39, 1985, doi: 10.1016/0168-9452(85)90062-7. R. ISHII, T. TAKEHARA, Y. MURATA, and S. MIYACHI, Effects of Light Intensity on the Rates of Photosynthesis and Photorespiration in C3 and C4 Plants. ACADEMIC PRESS, INC., 1977. Z. S. Zhang et al., “Contribution of the Alternative Respiratory Pathway to PSII Photoprotection in C3 and C4 Plants,” Mol. Plant, vol. 10, no. 1, pp. 131–142, 2017, doi: 10.1016/j.molp.2016.10.004. L. S. Jeremy M. Berg, John L. Tymoczko, BIOCHEMISTRY FIFTH EDITION, FIFTH EDIT. New York, 2001. R. F. Sage, P. A. Christin, and E. J. Edwards, “The C 4 plant lineages of planet Earth,” J. Exp. Bot., vol. 62, no. 9, pp. 3155–3169, 2011, doi: 10.1093/jxb/err048. J. R. E. á T. E. C. B. R. Helliker, “C4 photosynthesis, atmospheric CO2, and climate,” Ecologia, vol. 112, pp. 285–299, 1997. MARY LUZ PEÑA URUEÑA, “CARACTERIZACIÓN DE CENIZAS DE ALGUNOS CARBONES COLOMBIANOS IN SITU POR RETRODISPERSIÓN GAMMA-GAMMA MARY,” Universidad Nacional de Colombia, 2011. I. Journal and C. Geology, “First insights into mineralogy , geochemistry , and isotopic signatures of the Upper Triassic high-sulfur coals from the Thai Nguyen Coal field , NE Vietnam,” vol. 261, no. September, pp. 2022–2023, 2022. Y. Lin, S. Wang, H. H. Schobert, Q. Guo, and X. Li, “Sulfur and nitrogen isotopic composition of Late Permian bark coals: Source identification and associated environmental assessment,” Org. Geochem., vol. 164, no. February, 2022, doi: 10.1016/j.orggeochem.2022.104369. N. Islam, B. K. Saikia, C. H. Sampaio, T. J. Crissien, and L. F. O. Silva, “Petrography and geochemistry of exported Colombian coals : Implications from correlation and regression analyses,” Energy Geosci., vol. 2, 2021. E. GALLEGO CARMONA and J. V. REALPE SALCEDO, “Poder calorífico de carbones colombianos a partir de análisis próximo,” pp. 1–78, 2015. IGME, “Abundancia y fracionamiento de los isótopos estables,” Inst. Geológico y Min. España. A. N. De Hidrocarburos and H. Office, “Análisis de tecnología y estrategia de promoción para desarrollos de Gas Metano Asociado al Carbón ( CBM ) en Colombia Fase I : Caracterización de Cuencas de CBM en Colombia,” no. 1, 2010. J. C. M. James N. Miller, Estadística y Quimiometría para Química Analítica, 4th ed. Madrid, 2002. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
134 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84350/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84350/4/52861348.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84350/5/52861348.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 8785d07a67ae8afb35d27f940dc2af24 1646f9ee209f977ef2f6ab100ba32473 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089900286279680 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agámez Pertuz, Yazmin Yaneth05f2a50538617c040700e693ed0c0baf600Moreno Forero, Maribelcf4398dfcd1beb61c9fbb90e2e36c0fdMORENO FORERO, MARIBEL [0000-0002-3410-8760]MORENO FORERO, MARIBEL2023-07-28T13:52:00Z2023-07-28T13:52:00Z2023-07-26https://repositorio.unal.edu.co/handle/unal/84350Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a color, mapasLa caracterización química de algunas sustancias presentes en la tierra permite identificar la formación, evolución y el cambio en las condiciones ambientales derivadas de procesos naturales como la respiración, la fotosíntesis o los fenómenos geológicos dados por la dinámica interna y externa de las capas de la tierra. El conocimiento de estos cambios en matrices como el carbón, en el territorio colombiano contribuye a una mayor caracterización de los recursos del país y por ende a su mejor aprovechamiento de estos. Con este fin se desarrolló y validó un método para la determinación isotópica de carbono en carbones mediante Espectrometría de Masas de Relaciones Isotópicas (IRMS). Mediante el proceso de validación se encontró que el método es apto para las determinaciones de δ13C en carbones de las diferentes zonas carboníferas del país en el intervalo de -32,151 ‰ a -16,049 ‰ de δ13C con una precisión menor al 0,2 ‰. El método validado fue empleado en la evaluación de carbones provenientes de las zonas Boyacá, la Guajira, Cundinamarca, Santander, Córdoba, y Antioquía, cubriendo las principales zonas carboníferas del país, con el objeto de correlacionar los resultados de la relación isotópica con análisis fisicoquímicos que permitan establecer diferentes características de este recurso, así como de sus ambientes de formación. Se encontraron relaciones isotópicas en el intervalo de −27,08 ‰ y -26,20 ‰. Uno de los problemas que presenta este tipo de técnicas es el de no contar con Materiales de Referencia (MR) de matrices de las muestras similares o iguales a las muestras rutinarias del laboratorio, además que las que se consiguen en el mercado solo pueden ser adquiridas cada cierto periodo de tiempo (3 años), por lo tanto, esta investigación contribuyó en la producción, de un material de referencia in-house con el fin de ser empleado como control y aseguramiento de calidad del método desarrollado. Durante todo el proceso se evaluó su homogeneidad, estabilidad y uso repetido. (Texto tomado de la fuente)The chemical characterization of some substances present in the earth allows to identify the formation, evolution and change in environmental conditions derived from natural processes such as respiration, photosynthesis or geological phenomena given by the internal and external dynamics of the layers of the earth. The knowledge of these changes in matrices such as coal, in the Colombian territory contributes to a better characterization of the country's resources and therefore to their better use. To this end, a method for the isotopic determination of carbon in coals by Isotopic Ratio Mass Spectrometry (IRMS) was developed and validated. Through the validation process, it was found that the method is suitable for the determination of δ13C in coals from the different coal-producing areas of the country. A linear interval of -32.121 ‰ to -16.049 ‰ of δ13C and error percentages and coefficients of variation less than 5% will be completed. After the validation in a second stage, from the validated method, the coals from the Boyacá, Guajira, Cundinamarca, Santander, Córdoba y Antioquia zones were evaluated, covering the main coal-bearing zones of the country, with the in order to correlate the results of the isotopic relationship with physicochemical analyzes that allow establishing different characteristics of this resource, as well as its formation environments. Isotopic ratios between −27.96‰ to −26.11‰ were found. Due to the problem of not having enough reference materials for this type of method, the production of an in-house reference material was carried out in order to be used as control and quality assurance of the developed method.MaestríaMagister en Ciencias QuímicaAplicaciones Nucleares y Geocronológicas134 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analíticaFenómenos químicosChemical PhenomenaCiclos biogeoquímicosCiclo del carbono (biogeoquímica)Biogeochemical cyclesCarbon cycle (biogeochemistry)Isótopos establesIRMS (Espectrometría de Masas de Relaciones Isotópicas)CarbónValidaciónMaterial de referenciaStables IsotopesIRMS (Isotopic Ratio Mass Spectrometry)CarbonValidationReference MaterialEstudio isotópico de carbono (δ13C) en carbones colombianos y su relación con las propiedades fisicoquímicas para la identificación de procesos biogeoquímicos asociados a sus ambientes de formaciónIsotopic study of carbon (δ13C) in colombian coals and its relationship with physicochemical properties for the identification of biogeochemical processes associated with their formation environmentsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaA. N. de Míneria, “El futuro del carbón en Colombia no termina , se fortalece con las ruedas de negocios,” 2021. https://www.anm.gov.co/?q=rueda-de-negocios-carbon-termico-en-colombia.D. N. D. P. CONSEJO NACIONAL DE POLÍTICA ECONÓMICA Y SOCIAL, REPÚBLICA DE COLOMBIA, “Política De Transición Energética - Conpes 4075,” p. 108, 2022, [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/4075.pdf.G. Valley, “International Journal of Coal Geology Petrographic characteristics and carbon isotopic composition of Permian coal : Implications on depositional environment of Sattupalli coal fi eld ,” Int. J. Coal Geol., vol. 90–91, pp. 34–42, 2012, doi: 10.1016/j.coal.2011.10.002.M. Hámor-vidó and T. Hámor, “Sulphur and carbon isotopic composition of power supply coals in the Pannonian Basin , Hungary,” vol. 71, pp. 425–447, 2007, doi: 10.1016/j.coal.2006.11.002.M. Moreno and G. Hincapié, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” Universidad de Caldas, 2010.N. Suto and H. Kawashima, “Global mapping of carbon isotope ratios in coal,” J. Geochemical Explor., vol. 167, pp. 12–19, 2016, doi: 10.1016/j.gexplo.2016.05.001.C. T. Samec, M. Pirola, and V. A. Killian Galván, “Lineamientos para la publicación de resultados isotópicos en antropología biológica y arqueología,” Rev. Argentina Antropol. Biológica, vol. 21, no. 2, p. 007, 2019, doi: 10.24215/18536387e007.G. Skrzypek et al., “Minimum requirements for publishing hydrogen, carbon, nitrogen, oxygen and sulfur stable-isotope delta results (IUPAC Technical Report),” Pure Appl. Chem., 2022, doi: 10.1515/pac-2021-1108.ISO - International Organization for Standardization, “ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories.,” vol. 2017, 2009.R. Arqueol, “DIETA, SUBSISTENCIA Y MOVILIDAD EN TIBANICA A TRAVÉS DEL ESTUDIO DE RAZONES DE ISOTOPOS ESTABLES DE CARBONO (δ13C), NITRÓGENO (δ15 N) Y OXIGENO (δ18O) DEL COLÁGENO Y LA APATITA,” no. October 2018, 2012.A. Delgado and E. Reyes, “Isótopos Estables como Indicadores Paleoclimáticos y Paleohidrológicos en Medios Continentales,” Geoquímica Isotópica Apl. al Medioambiente, Semin. la Soc. Española Mineral., pp. 37–54, 2004.L. Thomas, Coal Geology. 2002.E. Herausgegeben, CHEMISTRY OF COAL UTILIZATION, vol. I. John Wiley and Sons Lowry, 1981.J. Speight, Handbook of Coal analyses. John Willey and sons, 2005.F. S. Ajiaco Castro, “Evaluación del comportamiento térmico de carbones del Cerrejón, carbones coquizantes y sus mezclas en la producción de coque metalúrgico.” p. 107, 2011.“ASTM D 388-05 Classification of Coals by Rank.pdf.” 2005.Universidad de Granada, “Petrografía del carbón,” Instituto Nacional del Carbón, 2018.A. M.-A. A. Pérez-López, A.G. Borrego, M. Sierra Aragón, “Petrografía del carbón,” Universidad de Granada - Instituto de Ciencia y Tecnología del Carbono (INCAR) - España, 2013. https://petrografiacarbon.es/.V. J. Cortés, “Carbón,” NA, pp. 1–47, 2015.Portafolio, “En carbón, el país es exportador de talla mundial,” Portafolio, p. 94036, 2012.E. País, “El incierto futuro del carbón en Colombia,” 2022.UPME, “El Carbón Colombiano. Fuente de Energía para el mundo,” Unidad Planeación Min. Energética, p. 53, 2005.F. Chiocchini, S. Portarena, M. Ciolfi, E. Brugnoli, and M. Lauteri, “Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils,” Food Chem., vol. 202, pp. 291–301, 2016, doi: 10.1016/j.foodchem.2016.01.146.Agencia Nacional de Mineria, “Carbón,” Producción Nacional de Minerales 2013, Bogotá, Colombia.S. G. Colombiano, “Zonas Carboniferas de Colombia,” 2021. https://datos.sgc.gov.co/datasets/68d1a27c05984be5b0ca1eaf524a1006_0/explore?location=3.501775%2C-73.527455%2C5.85 (accessed Aug. 25, 2022).R. Geol and G. D. E. Carb, “Zonas carboníferas de colombia,” pp. 1–6, 2021.IAEA, “International Atomic Energy Agency - What are Isotopes,” 2022. https://www.iaea.org/newscenter/news/what-are-isotopes#:~:text=Like everything we see in,Vargas%2FIAEA) (accessed Aug. 19, 2022).J. B. West, G. J. Bowen, T. E. Cerling, and J. R. Ehleringer, “Stable isotopes as one of nature’s ecological recorders,” Trends Ecol. Evol., vol. 21, no. 7, pp. 408–414, 2006, doi: 10.1016/j.tree.2006.04.002.J. Hoefs, Stable Isotope Geochemistry, Seventh. Springer International Publishing Switzerland, 2015.C. E. Redding, M. Schoell, J. C. Monin, and B. Durand, “Hydrogen and carbon isotopic composition of coals and kerogens,” Phys. Chem. Earth, vol. 12, no. C, pp. 711–723, 1980, doi: 10.1016/0079-1946(79)90152-6.S. In, “Stable Isotope Geochemistry III: Low Temperature Applications,” in Geol. 656 Isotope Geochemistry Chapter, 2011, pp. 276–327.Z. Muccio and G. P. Jackson, “Isotope ratio mass spectrometry,” Analyst, vol. 134, no. 2, pp. 213–222, 2009, doi: 10.1039/b808232d.G. Kaklamanos, E. Aprea, and G. Theodoridis, 11 - Mass spectrometry: principles and instrumentation, Second Edi. Elsevier Inc., 2020.Cienfuegos and Morales, “Metrología de isótopos estables y materiales de referencia utilizados para la determinación isotópica de carbono, nitrógeno, oxigeno, hidrógeno, y azufre,” Simp. Metrol., 2001, [Online]. Available: http://www.cenam.mx/Memorias/descarga/Memorias Simposio/documentos/ta-or023.pdf.I. A. E. AGENCY, “Reference and intercomparison materials for stable isotopes of light elements,” 1995.W. C. Pat, S. Iii, and U. S. G. Survey, Stable Isotope Geochemistry of Mineral Deposits, 2nd ed. Elsevier Ltd., 2014M. Moreno Sánchez and G. Hincapié Jaramillo, “ESTUDIO DE ISÓTOPOS DE CARBONO (delta 13 C) Y ESTRONCIO ( 87 Sr/ 86 Sr) EN LOS DEPÓSITOS CRETÁCEOS-TERCIARIOS DE LA CORDILLERA ORIENTAL,” p. 181, 2010.H. Carvajal-ortiz, “Carbon isotopic composition of plant-derived organic matter in tropical sedimentary sequences as a recorder of Late Cretaceous-Early Paleogene changes in the carbon cycle,” Iowa State University, 2007.M. Hail and W. Hasiah, “Biological markers and carbon isotope composition of organic matter in the Upper Cretaceous coals and carbonaceous shale succession ( Jiza – Qamar Basin , Yemen ): Origin , type and preservation,” vol. 409, pp. 84–97, 2014.A. Bhagavatula, G. Huffman, N. Shah, C. Romanek, and R. Honaker, “Source apportionment of carbon during gasi fi cation of coal – biomass blends using stable carbon isotope analysis,” Fuel Process. Technol., vol. 128, pp. 83–93, 2014, doi: 10.1016/j.fuproc.2014.06.024.P. D. Warwick and L. F. Ruppert, “International Journal of Coal Geology Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion : A preliminary study,” Int. J. Coal Geol., pp. 0–7, 2016, doi: 10.1016/j.coal.2016.06.009.M. Espinosa-Fuentes et al., “Ciclos biogeoquímicos,” no. December, 2015.P. Alexandre, Isotopes and the Natural Environment. Brandon, MB, Canada, 2020.A. Lerman, “Carbon cycle,” Encycl. Earth Sci. Ser., no. 2003, pp. 983–986, 2009, doi: 10.1007/978-1-4020-4411-3_28.X. Zhang et al., “The role of dissolved organic matter in soil organic carbon stability under water erosion,” Ecol. Indic., vol. 102, no. October 2018, pp. 724–733, 2019, doi: 10.1016/j.ecolind.2019.03.038.P. A. de Groot, Handbook of Stable Isotope Analytical Techniques Vol II, vol. 1st ed, no. Vol. 2. Amsterdam: Elsevier Science, 2009.Z. Li, S. Wang, X. Nie, Y. Sun, and F. Ran, “The application and potential non-conservatism of stable isotopes in organic matter source tracing,” Sci. Total Environ., vol. 838, no. May, p. 155946, 2022, doi: 10.1016/j.scitotenv.2022.155946.R. Newton and S. Bottrel, “Bicentennial Review Stable isotopes of carbon and sulphur as indicators of environmental change :,” J. Geol. Soc. London., vol. 164, pp. 691–708, 2015.V. N. Bashkin, Carbon biogeochemical cycle and consequences of climate changes, 2nd ed., no. February. Elsevier Inc., 2018.L. Aristizábal Losada and T. (Doctor en A.--U. de los Andes, “Alimentación y sociedad - paleodieta de una población muisca de la Sabana de Bogotá, el caso de Tibanica - Soacha,” instnameUniversidad los Andes, 2016, [Online]. Available: http://hdl.handle.net/1992/7673.M. I. García-Collado, P. Ricci, R. Catalán Ramos, S. Altieri, C. Lubritto, and J. A. Quirós Castillo, “Palaeodietary reconstruction as an alternative approach to poorly preserved early medieval human bone assemblages: the case of Boadilla (Toledo, Spain),” Archaeol. Anthropol. Sci., vol. 11, no. 8, pp. 3765–3782, 2019, doi: 10.1007/s12520-018-0672-0.M. K. Arroyo, E. Medina, and H. Ziegler, “Distribution and δ 13C Values of Portulacaceae Species of the High Andes in Northern Chile,” Bot. Acta, vol. 103, no. 3, pp. 291–295, 1990, doi: 10.1111/j.1438-8677.1990.tb00163.W. Yamori, K. Hikosaka, and D. A. Way, “Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation,” Photosynth. Res., vol. 119, no. 1–2, pp. 101–117, 2014, doi: 10.1007/s11120-013-9874-6.ISO 9001:2015, “ISO 9001: 2015 Quality Management Systems- Requirements,” Int. Stand. Organ., vol. 2015, p. 13, 2015.I. and O. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, International vocabulary of metrology – Basic and general concepts and associated terms (VIM), 3rd editio. 2012.C. Guide, “Traceability in Chemical Measurement A guide to achieving comparable results,” 2003.ISO, Guide 35, Reference materials- Guidance for characterization and assessment of homogeneity and stability, vol. 2017. 2017.I. (International O. for Standardization), “ISO Guide 30 : 2015 Reference materials — Selected terms and definitions,” 2015.IAEA, “Reference materials for Stable Isotope analysis,” 2021, 2021. https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx (accessed Jun. 07, 2021).Z. D. Sharp, Principles of Stable Isotope Geochemistry. .C. on A. W. and I. A. IUPAC and Dances, “Atomic Weights of the Emements 1993,” in Atomic Weights of the Emements 1995, 1995, pp. 1561–1573.M. Baskaran, Handbook of Environmental Isotope Geochemistry. Detroit Michigan, 2002.K. C. MISRA, Introduction to Geochemistry Principles and Applications. Tennessee, USA, 2012M. Gröning, “International Stable Isotope Reference Materials,” Handb. Stable Isot. Anal. Tech., vol. 1, pp. 874–906, 2004, doi: 10.1016/B978-044451114-0/50042-9.T. W. Golden and R. D. Murphy, “Report of Investigation,” A Guid. to Forensic Account. Investig., vol. 1, no. January, pp. 363–387, 2015, doi: 10.1002/9781119200048.ch18.W. A. Brand, T. B. Coplen, J. Vogl, M. Rosner, and T. Prohaska, “Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report),” Pure Appl. Chem., vol. 86, no. 3, pp. 425–467, 2014, doi: 10.1515/pac-2013-1023.I. S. O. Guide, I. As, I. S. O. Guide, and C. Url, “Guidance for the in-house preparation of quality control materials (QCMs) GUIDE 80,” 2014, [Online]. Available: www.iso.org.UNODC, “la validación de métodos analíticos y la calibración del equipo utilizado para el análisis de drogas ilícitas en materiales incautados y especímenes biológicos Por,” p. 69, 2010, [Online]. Available: http://srjcstaff.santarosa.edu/~oraola/Assets/APHA_SM_20.pdf.V. Barwick et al., The Fitness for Purpose of Analytical Methods. Eurachem., Second Edi. 2014.M. Thompson, S. L. R. Ellison, and R. Wood, “Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report),” Pure Appl. Chem., vol. 74, no. 5, pp. 835–855, 2002, doi: 10.1351/pac200274050835.S. Rasul, A. M. Kajal, and A. Khan, “Quantifying Uncertainty in Analytical Measurements,” J. Bangladesh Acad. Sci., vol. 41, no. 2, pp. 145–163, 2018, doi: 10.3329/jbas.v41i2.35494.J. C. F. G. I. M. ISBN, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” Int. Organ. Stand. Geneva ISBN, no. September, 2008, [Online]. Available: https://www.bipm.org/en/committees/jc/jcgm/publications.SGC LAB, “Cómo calcular la incertidumbre del muestreo de una manera fácil empleando el método de la Eurachem,” Octubre, 2020. https://sgc-lab.com/como-calcular-la-incertidumbre-del-muestreo-de-una-manera-facil/ (accessed Aug. 15, 2022).W. A. Schmid and J. L. Martínez, “Guía para estimar la incertidumbre de la medición,” pp. 1–27, 2000.N. D. Martínez, A. M. Rodríguez, A. R. Gutiérrez, M. D. Di Carlo Vitolino, and A. D. los Á. Durán, “Determinación de la incertidumbre del método de análisis de aflatoxinas por HPLC en pasa de uva,” Tecnura, vol. 22, no. 58, pp. 25–36, 2018, doi: 10.14483/22487638.12896.L. G. Carmona Aparicio et al., “Conciliación de inventarios top-down y bottom-up de emisiones de fuentes móviles en Bogotá, Colombia,” Rev. Tecnura, vol. 20, no. 49, p. 59, 2016, doi: 10.14483/udistrital.jour.tecnura.2016.3.a04.INM. Instituto Nacional de Metrología, “¿Qué es un Material de referencia? y ¿Qué es un material de referencia certificado?” https://inm.gov.co/web/servicios/materiales-de-referencia/.I. (International O. for Standardization), “ISO 17034, General requirements for the competence of reference material producers,” vol. 2016, 2016.T. P. J. Linsinger, J. Pauwels, A. M. H. Van Der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001, doi: 10.1007/s007690000261.E. D. F. Guimarães, E. C. P. Do Rego, H. C. M. Cunha, J. M. Rodrigues, J. D. F. Villar, and V. S. Da Cunha, “Homogeneity study for certification of a candidate reference material for polycyclic aromatic hydrocarbons,” 19th IMEKO World Congr. 2009, vol. 4, no. January, pp. 2377–2381, 2009.A. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3–4, pp. 359–361, 1998, doi: 10.1007/s002160050711.International Atomic Energy Agency (IAEA), “Reference Material for δ13C and δ2H. REFERENCE SHEET IAEA-CH-7,” 2022.Elemental Microanalysis Ltd, “Certificate of Analysis IRMS Certified Reference Material EMA-P2,” 2012. [Online]. Available: www.sigma-aldrich.com.International Atomic Energy Agency (IAEA), “Reference sheet USGS24,” 2000.Instituto de Salud Pública de Chile, “Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos",” 2010.American Standard Testing Material (ASTM), “ASTM D3172-13(2021)e1 Standard Practice for Proximate Analysis of Coal and Coke,” Annual Book of ASTM Standards, vol. 13. pp. 3174–3175, 2013.American Standard Testing Material (ASTM), “ASTM D7582-15 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis,” Program, vol. i, no. 3. pp. 1–9, 2012.American Standard Testing Material (ASTM), “ASTM D4239-18e1 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion.” pp. 4–6, 2018.American Standard Testing Material (ASTM), “ASTM D5865/D5865M-19 Standard Test Method for Gross Calorific Value of Coal and Coke,” Astm D 5865 – 03, vol. 5, pp. 1–11, 2003.American Standard Testing Material (ASTM), “ASTM D5373-21 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” vol. 552, pp. 1–11, 2014, [Online]. Available: http://www.astm.org/Standards/D5373.htm.R. Shimizu, H. Masaki, and S. Yasuike, “Simple and rapid quantification of chromium, arsenic, and selenium in bituminous coal samples using a desktop energy dispersive X-ray fluorescence analyzer,” Appl. Radiat. Isot., vol. 176, no. July, p. 109877, 2021, doi: 10.1016/j.apradiso.2021.109877.I. (International O. for Standardization), “GUIDE 80 Guidance for the in-house preparation of quality control materials (QCMs).” 2014.International Atomic Energy Agency (IAEA), “Reference Materials Website for IAEA Reference Products.” https://nucleus.iaea.org/sites/referencematerials/SitePages/Home.aspx (accessed Oct. 26, 2022).R. Barrera Zapata, J. F. Pérez Bayer, and C. Salazar Jiménez, “Colombian coals: classification and thermochemical characterization for energy applications,” Rev. ION, vol. 27, no. 2, pp. 43–54, 2014.nternational Atomic Energy Agency (IAEA), “Reference Materials Characterized for Stable Isotope Ratios.” https://nucleus.iaea.org/sites/ReferenceMaterials/Pages/Stable-Isotopes.aspx#InplviewHashf8b9c06a-d02e-4b74-b4f1-6312bc2bc774= (accessed Oct. 13, 2022).R. N. & S. BOTTRELL, “Stable isotopes of carbon and sulphur as indicators of environmental change: past and present,” Earth, vol. 164, pp. 691–708, 2007.D. Ding, G. Liu, X. Sun, and R. Sun, “Journal of Asian Earth Sciences Response of carbon isotopic compositions of Early-Middle Permian coals in North China to palaeo-climate change,” J. Asian Earth Sci., vol. 151, no. October 2017, pp. 190–196, 2018, doi: 10.1016/j.jseaes.2017.10.043.S. Africa and J. M. Smith, “A COMPARISON OF CHARCOAL AND STABLE CARBON ISOTOPE RESULTS FOR THE CALEDON RIVER VALLEY , SOUTHERN AFRICA , FOR THE PERIOD 13 500-5000 YR BP,” vol. 58, no. 177, pp. 1–5, 2014.A. Hentschel, J. S. Esterle, S. D. Golding, and D. V. Pacey, “Petrologic and stable isotopic study of the Walloon Coal Measures, Surat Basin, Queensland: Peat accumulation under changing climate and base level,” Int. J. Coal Geol., vol. 160–161, pp. 11–27, 2016, doi: 10.1016/j.coal.2016.04.010.M. W. Rahman, S. M. Rimmer, H. D. Rowe, and W. W. Huggett, “Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence for thermogenic methane generation,” Chem. Geol., vol. 453, pp. 1–11, 2017, doi: 10.1016/j.chemgeo.2017.02.012.Y. Liu, G. Liu, B. Yousaf, J. Zhang, and L. Zhou, “Carbon fractionation and stable carbon isotopic fingerprint of road dusts near coal power plant with emphases on coal-related source apportionment,” Ecotoxicol. Environ. Saf., vol. 202, no. June, p. 110888, 2020, doi: 10.1016/j.ecoenv.2020.110888.M. J. Kotarba and J. L. Clayton, “A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales,” Int. J. Coal Geol., vol. 55, no. 2–4, pp. 73–94, 2003, doi: 10.1016/S0166-5162(03)00082-X.M. Panda, S. M. Equeenuddin, and D. Mohanty, “Organic petrography and stable isotopic characteristics of Permian Talcher coal, India: Implications on depositional environment,” Int. J. Coal Geol., vol. 264, no. December, 2022, doi: 10.1016/j.coal.2022.104130.T. Kanduč, M. Markič, S. Zavšek, and J. McIntosh, “Carbon cycling in the Pliocene Velenje Coal Basin, Slovenia, inferred from stable carbon isotopes,” Int. J. Coal Geol., vol. 89, no. 1, pp. 70–83, 2012, doi: 10.1016/j.coal.2011.08.008.M. K. Bertil Magnusson, Teemu Näykki, Håvard Hovind, “HANDBOOK FOR CALCULATION OF MEASUREMENT UNCERTAINTY IN Håvard Hovind,” 2003.J. H. Lee, J. H. Choi, J. S. Youn, Y. J. Cha, W. Song, and A. J. Park, “Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty,” Clin. Chem. Lab. Med., vol. 53, no. 7, pp. 1025–1032, 2015, doi: 10.1515/cclm-2014-0801.M. 20742 Department of Physics - University of Maryland - College Park, “Random vs Systematic Error.” https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorAnalysis.html (accessed Nov. 05, 2022).B. S. K. Kumar, V. V. S. S. Sarma, and D. Cardinal, “Tracing terrestrial versus marine sources of dissolved organic carbon in the largest monsoonal Godavari estuary in India using stable carbon isotopes,” Estuar. Coast. Shelf Sci., vol. 276, no. October, 2022, doi: 10.1016/j.ecss.2022.108004.A. S. Raghavendra, B. Sunil, and R. B. Bapatla, “C3 Plants,” Encycl. Appl. Plant Sci., vol. 1, pp. 44–51, 2016, doi: 10.1016/B978-0-12-394807-6.00090-3.Y. Dong et al., “Paleozoic carbon cycle dynamics: Insights from stable carbon isotopes in marine carbonates and C3 land plants,” Earth-Science Rev., vol. 222, no. November, 2021, doi: 10.1016/j.earscirev.2021.103813.G. Gleixner, N. Poirier, R. Bol, and J. Balesdent, “Molecular dynamics of organic matter in a cultivated soil,” Org. Geochem., vol. 33, no. 3, pp. 357–366, 2002, doi: 10.1016/S0146-6380(01)00166-8.D. Dortzbach, M. G. Pereira, É. Blainski, and A. P. González, “Estoque de c e abundância natural de 13c em razão da conversão de áreas de floresta e pastagem em bioma mata atlântica,” Rev. Bras. Cienc. do Solo, vol. 39, no. 6, pp. 1643–1660, 2015, doi: 10.1590/01000683rbcs20140531.C. A. Raines, “Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: Current and future strategies,” Plant Physiol., vol. 155, no. 1, pp. 36–42, 2011, doi: 10.1104/pp.110.168559.Khan Academy, “Photorespiration: C3, C4, and CAM plants.” https://www.khanacademy.org/science/biology/photosynthesis-in-plants/photorespiration--c3-c4-cam-plants/a/c3-c4-and-cam-plants-agriculture (accessed Sep. 13, 2022).L. Stryer, Biochemmistry, Fourth Edition, Fourth Edi. New York: 1995, 1995.K. R. Hanson and R. B. Peterson, “The stoichiometry of photorespiration during C3-photosynthesis is not fixed: Evidence from combined physical and stereochemical methods,” Arch. Biochem. Biophys., vol. 237, no. 2, pp. 300–313, 1985, doi: 10.1016/0003-9861(85)90281-4.S. Schulze, P. Westhoff, and U. Gowik, “Glycine decarboxylase in C3, C4 and C3-C4 intermediate species,” Curr. Opin. Plant Biol., vol. 31, pp. 29–35, 2016, doi: 10.1016/j.pbi.2016.03.011.A. Scott Holaday, S. Talkmitt, and M. E. Doohan, “Anatomical and enzymic studies of leaves of a C3 × C4 Flaveria F1 hybrid exhibiting reduced photorespiration,” Plant Sci., vol. 41, no. 1, pp. 31–39, 1985, doi: 10.1016/0168-9452(85)90062-7.R. ISHII, T. TAKEHARA, Y. MURATA, and S. MIYACHI, Effects of Light Intensity on the Rates of Photosynthesis and Photorespiration in C3 and C4 Plants. ACADEMIC PRESS, INC., 1977.Z. S. Zhang et al., “Contribution of the Alternative Respiratory Pathway to PSII Photoprotection in C3 and C4 Plants,” Mol. Plant, vol. 10, no. 1, pp. 131–142, 2017, doi: 10.1016/j.molp.2016.10.004.L. S. Jeremy M. Berg, John L. Tymoczko, BIOCHEMISTRY FIFTH EDITION, FIFTH EDIT. New York, 2001.R. F. Sage, P. A. Christin, and E. J. Edwards, “The C 4 plant lineages of planet Earth,” J. Exp. Bot., vol. 62, no. 9, pp. 3155–3169, 2011, doi: 10.1093/jxb/err048.J. R. E. á T. E. C. B. R. Helliker, “C4 photosynthesis, atmospheric CO2, and climate,” Ecologia, vol. 112, pp. 285–299, 1997.MARY LUZ PEÑA URUEÑA, “CARACTERIZACIÓN DE CENIZAS DE ALGUNOS CARBONES COLOMBIANOS IN SITU POR RETRODISPERSIÓN GAMMA-GAMMA MARY,” Universidad Nacional de Colombia, 2011.I. Journal and C. Geology, “First insights into mineralogy , geochemistry , and isotopic signatures of the Upper Triassic high-sulfur coals from the Thai Nguyen Coal field , NE Vietnam,” vol. 261, no. September, pp. 2022–2023, 2022.Y. Lin, S. Wang, H. H. Schobert, Q. Guo, and X. Li, “Sulfur and nitrogen isotopic composition of Late Permian bark coals: Source identification and associated environmental assessment,” Org. Geochem., vol. 164, no. February, 2022, doi: 10.1016/j.orggeochem.2022.104369.N. Islam, B. K. Saikia, C. H. Sampaio, T. J. Crissien, and L. F. O. Silva, “Petrography and geochemistry of exported Colombian coals : Implications from correlation and regression analyses,” Energy Geosci., vol. 2, 2021.E. GALLEGO CARMONA and J. V. REALPE SALCEDO, “Poder calorífico de carbones colombianos a partir de análisis próximo,” pp. 1–78, 2015.IGME, “Abundancia y fracionamiento de los isótopos estables,” Inst. Geológico y Min. España.A. N. De Hidrocarburos and H. Office, “Análisis de tecnología y estrategia de promoción para desarrollos de Gas Metano Asociado al Carbón ( CBM ) en Colombia Fase I : Caracterización de Cuencas de CBM en Colombia,” no. 1, 2010.J. C. M. James N. Miller, Estadística y Quimiometría para Química Analítica, 4th ed. Madrid, 2002.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84350/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL52861348.2023.pdf52861348.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf3402628https://repositorio.unal.edu.co/bitstream/unal/84350/4/52861348.2023.pdf8785d07a67ae8afb35d27f940dc2af24MD54THUMBNAIL52861348.2023.pdf.jpg52861348.2023.pdf.jpgGenerated Thumbnailimage/jpeg4820https://repositorio.unal.edu.co/bitstream/unal/84350/5/52861348.2023.pdf.jpg1646f9ee209f977ef2f6ab100ba32473MD55unal/84350oai:repositorio.unal.edu.co:unal/843502023-08-14 23:04:41.851Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |