Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)

ilustraciones, graficas

Autores:
Gonzalez Arango, Luis Miguel
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83141
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83141
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
METODO DE ELEMENTOS FINITOS
SOLDADURA
Finite element method
Welding
Soldadura por fricción rotacional
Fricción
Deformación plástica
Elementos finitos
Rotational friction welding
Friction
Plastic deformation
Finite elements
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_8aa3c69a54973227c40e3b9b47a577ef
oai_identifier_str oai:repositorio.unal.edu.co:unal/83141
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
dc.title.translated.eng.fl_str_mv Construction of a finite element model to study the thermomechanical behavior of a joint during the Rotary Friction Welding process by Direct Drive (RFWDD)
title Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
spellingShingle Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
METODO DE ELEMENTOS FINITOS
SOLDADURA
Finite element method
Welding
Soldadura por fricción rotacional
Fricción
Deformación plástica
Elementos finitos
Rotational friction welding
Friction
Plastic deformation
Finite elements
title_short Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
title_full Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
title_fullStr Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
title_full_unstemmed Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
title_sort Construcción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)
dc.creator.fl_str_mv Gonzalez Arango, Luis Miguel
dc.contributor.advisor.none.fl_str_mv Galeano, Carlos Humberto
dc.contributor.author.none.fl_str_mv Gonzalez Arango, Luis Miguel
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios
METODO DE ELEMENTOS FINITOS
SOLDADURA
Finite element method
Welding
Soldadura por fricción rotacional
Fricción
Deformación plástica
Elementos finitos
Rotational friction welding
Friction
Plastic deformation
Finite elements
dc.subject.lemb.spa.fl_str_mv METODO DE ELEMENTOS FINITOS
SOLDADURA
dc.subject.lemb.eng.fl_str_mv Finite element method
Welding
dc.subject.proposal.spa.fl_str_mv Soldadura por fricción rotacional
Fricción
Deformación plástica
Elementos finitos
dc.subject.proposal.eng.fl_str_mv Rotational friction welding
Friction
Plastic deformation
Finite elements
description ilustraciones, graficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-26T15:26:42Z
dc.date.available.none.fl_str_mv 2023-01-26T15:26:42Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83141
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83141
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv International Energy Agency, “World Energy Outlook 2013,” National Energy Information Center, 2013.
Grupo de las Naciones Unidas para el Desarrollo (UNDG), Desafíos y estrategias para el Desarrollo Sostenible en América Latina y el Caribe. 2018.
ONU, “Objetivos de desarrollo sustentable,” ExpoKnews, 2015. [Online]. Available: http://www.expoknews.com/20­ejemplos­de­empresas­que­trabajan­por­los­objetiv os­de­desarrollo­sostenible/.
REN21, Renewables 2015-Global status report, vol. 4, no. 3. 2015.
D. Baffari, G. Buffa, D. Campanella, L. Fratini, and F. Micari, “Friction based solid state welding techniques for transportation industry applications,” Procedia CIRP, vol. 18, pp. 162–167, 2014, doi: 10.1016/j.procir.2014.06.125.
M. M. ATTALLAH and M. Preuss, Welding and Joining of Aerospace Materials - 2 – Inertia friction welding (IFW) for aerospace applications. Woodhead Publishing Limited, 2012.
A. W. Society, Welding Handbook, vol. 3. 2007.
E. T. Akinlabi, A. Andrews, and S. A. Akinlabi, “Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper", Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 5, pp. 1323–1330, 2014, doi: 10.1016/S1003-6326(14)63195-2.
G. Qin, P. Geng, J. Zhou, and Z. Zou, “Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy,” Mater. Des., vol. 172, p. 107766, 2019, doi: 10.1016/j.matdes.2019.107766.
M. KIMURA, H. INOUE, M. KUSAKA, K. KAIZU, and A. FUJI, “Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding,” J. Solid Mech. Mater. Eng., vol. 4, no. 3, pp. 401–413, 2010, doi: 10.1299/jmmp.4.401.
M. Maalekian, “Friction welding - Critical assessment of literature,” Sci. Technol. Weld. Join., vol. 12, no. 8, pp. 738–759, 2007, doi: 10.1179/174329307X249333.
Sander, “Power and heating in the friction welding of t h i ck - walled steel pipes,” Weld. J. (Miami, Fla), pp. 53–61, 1959.
A. Słuzalec, “Thermal effects in friction welding,” Int. J. Mech. Sci., vol. 32, no. 6, pp. 467–478, 1990, doi: 10.1016/0020-7403(90)90153-A.
W. Li and F. Wang, “Modeling of continuous drive friction welding of mild steel,” Mater. Sci. Eng. A, vol. 528, no. 18, pp. 5921–5926, 2011, doi: 10.1016/j.msea.2011.04.001.
S. De Ji, J. G. Liu, Y. M. Yue, Z. Lü, and L. Fu, “3D numerical analysis of material flow behavior and flash formation of 45# steel in continuous drive friction welding,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. SUPPL.2, pp. 528–533, 2012, doi: 10.1016/S1003-6326(12)61756-7.
M. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., 2015, doi: 10.1016/j.jestch.2015.05.002.
L. Donati, E. Troiani, P. Proli, and L. Tomesani, FEM Analysis and Experimental Validation of Friction Welding Process of 6xxx Alloys for the Prediction of Welding Quality, vol. 2, no. 10. Elsevier Ltd., 2015.
K. Fraser, L. I. Kiss, L. St-Georges, and D. Drolet, “Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach,” Metals (Basel)., vol. 8, no. 2, 2018, doi: 10.3390/met8020101.
D. Schmicker, K. Naumenko, and J. Strackeljan, “A robust simulation of Direct Drive Friction Welding with a modified Carreau fluid constitutive model,” Comput. Methods Appl. Mech. Eng., vol. 265, pp. 186–194, 2013, doi: 10.1016/j.cma.2013.06.007.
D. Schmicker, K. Naumenko, and J. Strackeljan, “A holistic Approach on the Simulation of Rotary-Friction-Welding,” vol. 27, no. Thaut 2014, pp. 148–150, 2016.
W. Liu, F. Wang, X. Yang, and W. Li, “Upset prediction in friction welding using radial basis function neural network,” Adv. Mater. Sci. Eng., vol. 2013, 2013, doi: 10.1155/2013/196382.
S. A. A. A. Mousavi and A. R. Kelishami, “Experimental and numerical analysis of the friction welding process for the 4340 steel and mild steel combinations,” Weld. J. (Miami, Fla), vol. 87, no. 7, 2008.
J. Zimmerman, W. Wlosinski, and Z. R. Lindemann, “Thermo-mechanical and diffusion modelling in the process of ceramic-metal friction welding,” J. Mater. Process. Technol., vol. 209, no. 4, pp. 1644–1653, 2009, doi: 10.1016/j.jmatprotec.2008.04.012.
J. Leśniewski and A. Ambroziak, “Modelling the friction welding of titanium and tungsten pseudoalloy,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 142–150, 2015, doi: 10.1016/j.acme.2014.06.008.
A. Kurt, I. Uygur, and U. Paylasan, “Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints,” Weld. J., vol. 90, no. 5, pp. 102–106, 2011.
M. B. Uday, M. N. A. Fauzi, H. Zuhailawati, and A. B. Ismail, “Advances in friction welding process: A review,” Sci. Technol. Weld. Join., vol. 15, no. 7, pp. 534–558, 2010, doi: 10.1179/136217110X12785889550064.
V. T. Gaikwad, M. K. Mishra, V. D. Hiwarkar, and R. K. P. Singh, “Microstructure and mechanical properties of friction welded carbon steel (EN24) and nickel-based superalloy (IN718),” Int. J. Miner. Metall. Mater., vol. 28, no. 1, pp. 111–119, 2021, doi: 10.1007/s12613-020-2008-1.
J. A. James and R. Sudhish, “Study on Effect of Interlayer in Friction Welding for Dissimilar Steels: SS 304 and AISI 1040,” Procedia Technol., vol. 25, pp. 1191–1198, 2016, doi: 10.1016/j.protcy.2016.08.238.
E. oualid Bouarroudj, S. Chikh, S. Abdi, and D. Miroud, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, pp. 1543–1553, 2017, doi: 10.1016/j.applthermaleng.2016.09.067.
L. MTI Welding Technologies, “Direct Drive Friction Welding,” 2019. [Online]. Available: http://www.mtiwelding.co.uk/products/direct-drive.
M. Kimura, K. Ohara, M. Kusaka, K. Kaizu, and K. Hayashida, “Effects of tensile strength on friction welding condition and weld faying surface properties of friction welded joints between pure copper and austenitic stainless steel,” J. Adv. Join. Process., vol. 2, no. July, p. 100028, 2020, doi: 10.1016/j.jajp.2020.100028.
A. Goedecke and F. A. Creep, Transient Effects in Friction: Fractal Asperity Creep. 2011.
V. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications, Segunda Ed. 2017.
COMSOL Multiphysics®, Structural Mechanics Module. Estocolmo, 2018.
L. Qinghua, L. Fuguo, L. Miaoquan, W. Qiong, and F. Li, “Finite element simulation of deformation behavior in friction welding of Al-Cu-Mg alloy,” J. Mater. Eng. Perform., vol. 15, no. 6, pp. 627–631, 2006, doi: 10.1361/105994906X150821.
A. W. Society, Friction Welding of Metals. 1962.
F. F. Wang, W. Y. Li, J. L. Li, and A. Vairis, “Process parameter analysis of inertia friction welding nickel-based superalloy,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1909–1918, 2014, doi: 10.1007/s00170-013-5569-6.
H. Seli, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium,” J. Mater. Process. Technol., vol. 210, no. 9, pp. 1209–1216, 2010, doi: 10.1016/j.jmatprotec.2010.03.007.
K. Fraser, “ROBUST AND EFFICIENT MESHFREE SOLID THERMO-MECHANICS SIMULATION OF FRICTION STIR WELDING,” Université du Québec à Chicoutimi (UQAC), 2017.
X. Yang et al., “Finite element modeling of the linear friction welding of GH4169 superalloy,” Mater. Des., vol. 87, pp. 215–230, 2015, doi: 10.1016/j.matdes.2015.08.036.
G. Ravichandran, A. J. Rosakis, J. Hodowany, and P. Rosakis, “ON THE CONVERSION OF PLASTIC WORK INTO HEAT DURING HIGH-STRAIN-RATE DEFORMATION,” 2001.
COMSOL Multiphysics, “Heat Transfer Module,” Manual, pp. 1–222, 2015.
A. Foley, “Thermal contact resistance simulation.” [Online]. Available: https://www.comsol.com/blogs/thermal-contact-resistance-simulation/.
X. Oliver and C. Agelet De Saracíbar, Mecánica de medios continuos para ingenieros. 2010.
J. M. Gere and B. J. Goodno, Mecánica de materiales, 7ma ed. .
J. F. Shakelford, Introducción a la ciencia de materiales para ingenieros, 4ta ed. .
G. E. Dieter, “Mechanical metallurgy.,” Mechanical metallurgy. 1988, doi: 10.5962/bhl.title.35895.
P. Prat, Ecuaciones Constitutivas, ELASTICIDAD y PLASTICIDAD. Barcelona: Universitat Politécnica de Catalunya, 2006.
R. Hill, “A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY,” Q. J. Mech. Appl. Math., vol. 1, no. October, pp. 18–28, 1947.
B. Zhu, The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering, 1st ed. 2018.
L. Yang, “Modelling of the Inertia Welding of Inconel 718,” University of Birmingham, United Kingdom, 2010.
Comsol, “Elastoplastic Material Models.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.29.html.
G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985, doi: 10.1016/0013-7944(85)90052-9.
A. Iturbe et al., “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,” Mater. Sci. Eng. A, vol. 682, pp. 441–453, 2017, doi: 10.1016/j.msea.2016.11.054.
A. Iturbe et al., “Corrigendum to ‘Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,’” Mater. Sci. Eng. A, vol. 756, no. April, pp. 562–563, 2019, doi: 10.1016/j.msea.2019.02.026.
S. Rolshoven and M. Jirasek, Introduction to the mechanics of a continuous medium. 1969.
C. Garcia, “Mecánica de medios continuos-15904 Esfuerzo,” 2010.
W. B. Castello, “Análisis numérico de sólidos bidimensionales en grandes deformaciones elasto-viscoplásticas con acoplamiento termomecánico,” 2012.
J. Aboudi, “The effect of evolving damage on the finite strain response of inelastic and viscoelastic composites.” 2009.
WANG KK and NAGAPPAN P, “Transient Temperature Distribution in Inertia Welding of Steels,” Weld J, vol. 49, no. 9, pp. 419–426, 1970.
E. Bouarroudj, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, no. 7, pp. 2543–2553, 2017, doi: 10.1016/S1359-4311(02)00018-2
N. T.C. and W. D.C., “A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 37, no. 2, pp. 275–292, 2006.
V. Balasubramanian et al., “New friction law for the modelling of continuous drive friction welding: Applications to 1045 steel welds,” Mater. Manuf. Process., vol. 14, no. 6, pp. 845–860, 1999, doi: 10.1080/10426919908914877.
M. Maalekian, E. Kozeschnik, H. P. Brantner, and H. Cerjak, “Comparative analysis of heat generation in friction welding of steel bars,” Acta Mater., vol. 56, no. 12, pp. 2843–2855, 2008, doi: 10.1016/j.actamat.2008.02.016.
W. Li, S. Shi, F. Wang, Z. Zhang, T. Ma, and J. Li, “Numerical simulation of friction welding processes based on ABAQUS environment,” J. Eng. Sci. Technol. Rev., vol. 5, no. 3, pp. 10–19, 2012.
A. Can, M. Sahin, and M. Kucuk, “Modelling of Friction Welding,” Unitech 10, pp. 135–142, 2010.
A. Can, M. Sahin, and M. Kucuk, “Thermically evaluation and modelling of friction welding,” Strojarstvo, vol. 51, no. 1, pp. 5–13, 2009.
H. Seli, M. Awang, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Evaluation of properties and FEM model of the friction welded mild steel-Al6061-alumina,” Mater. Res., vol. 16, no. 2, pp. 453–467, 2013, doi: 10.1590/S1516-14392012005000178.
A. B. Dawood, S. I. Butt, G. Hussain, M. A. Siddiqui, A. Maqsood, and F. Zhang, “Thermal model of rotary friction welding for similar and dissimilar metals,” Metals (Basel)., vol. 7, no. 6, 2017, doi: 10.3390/met7060224.
A. Vairis, G. Papazafeiropoulos, and A. M. Tsainis, “A comparison between friction stir welding, linear friction welding and rotary friction welding,” Adv. Manuf., vol. 4, no. 4, pp. 296–304, 2016, doi: 10.1007/s40436-016-0163-4.
R. P. Turner, D. Howe, B. Thota, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weld,” J. Manuf. Process., vol. 24, pp. 186–194, 2016, doi: 10.1016/j.jmapro.2016.09.008.
C. Bennett, “Finite element modelling of the inertia friction welding of a CrMoV alloy steel including the effects of solid-state phase transformations,” J. Manuf. Process., vol. 18, pp. 84–91, 2015, doi: 10.1016/j.jmapro.2015.01.003.
C. J. Bennett, T. H. Hyde, and E. J. Williams, “Modelling and simulation of the inertia friction welding of shafts,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 221, no. 4, pp. 275–284, 2007, doi: 10.1243/14644207JMDA154.
A. Moal and E. Massoni, “Finite element simulation of the inertia welding of two similar parts,” Eng. Comput., vol. 12, p. 6, 1995.
L. D’Alvise, E. Massoni, and S. J. Walloe, “Finite element modelling of the inertia friction welding process between dissimilar materials,” J. Mater. Process. Technol., vol. 125–126, pp. 387–391, 2002, doi: 10.1016/S0924-0136(02)00349-7.
P. Geng, G. Qin, J. Zhou, and Z. Zou, “Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process,” J. Manuf. Process., vol. 32, pp. 469–481, 2018, doi: 10.1016/j.jmapro.2018.03.017.
M. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 704–712, 2015, doi: 10.1016/j.jestch.2015.05.002.
Q. Z. Zhang, L. W. Zhang, W. W. Liu, X. G. Zhang, W. H. Zhu, and S. Qu, “3D rigid viscoplastic FE modelling of continuous drive friction welding process,” Sci. Technol. Weld. Join., vol. 11, no. 6, pp. 737–743, 2006, doi: 10.1179/174329306X153222.
P. Geng, G. Qin, L. Chen, J. Zhou, and Z. Zou, “Simulation of plastic flow driven by periodically alternating pressure and related deformation mechanism in linear friction welding,” Mater. Des., vol. 178, p. 107863, 2019, doi: 10.1016/j.matdes.2019.107863.
E. P. Alves, F. P. Neto, and C. Y. An, “Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process,” J. Aerosp. Technol. Manag., vol. 2, no. 3, pp. 301–306, 2010, doi: 10.5028/jatm.2010.02037110.
COMSOL Multiphysics, “AutoRemesh.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_api_solver.42.18.html#4838671.
X. Nan et al., “Modeling of rotary friction welding process based on maximum entropy production principle,” J. Manuf. Process., vol. 37, no. April 2018, pp. 21–27, 2019, doi: 10.1016/j.jmapro.2018.11.016.
L. W. Zhang et al., “The coupled fem analysis of the transient temperature field during inertia friction welding of GH4169 alloy,” Acta Metall. Sin. (English Lett., vol. 20, no. 4, pp. 301–306, 2007, doi: 10.1016/S1006-7191(07)60043-X.
S. Tabaie, “Linear Friction Welding of AD730 TM Ni-Based Superalloy to Additively Manufactured Inconel 718 by,” 2021.
K. Yuan, W. Guo, P. Li, Y. Zhang, X. Li, and X. Lin, “Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling,” Mech. Mater., vol. 135, no. April, pp. 13–25, 2019, doi: 10.1016/j.mechmat.2019.04.024.
M. S. Lewandowski and R. A. Overfelt, “High temperature deformation behavior of solid and semi-solid alloy 718,” Acta Mater., vol. 47, no. 18, pp. 4695–4710, 1999, doi: 10.1016/S1359-6454(99)00252-9.
R. P. Turner, B. Perumal, Y. Lu, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 50, no. 2, pp. 1000–1011, 2019, doi: 10.1007/s11663-018-1489-z.
S. I. Okeke, N. Harrison, and M. Tong, “Thermomechanical modelling for the linear friction welding process of Ni-based superalloy and verification,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 234, no. 5, pp. 796–815, 2020, doi: 10.1177/1464420719900780.
C. Slama, “Aging of the Inconel 718 alloy between 500 and 750 ±C,” J. Mater. Res., vol. 235, no. 4784, pp. 2298–2316, 1997, doi: 10.1126/science.235.4784.9.
Y. Wei and F. Sun, “Microstructures and Mechanical Properties of Al/Fe and Cu/Fe Joints by Continuous Drive Friction Welding,” Adv. Mater. Sci. Eng., vol. 2018, 2018, doi: 10.1155/2018/2809356.
S. Jimenez and C. Rativa, “Determinación experimental del coeficiente de transferencia de calor por convección natural en la superficie de un esfera de cobre,” pp. 19–30, 2014.
J. Rojas, “DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE CALOR CONVECTIVO EN LA SUPERFICIE DE UNA ESFERA DE COBRE,” Rev. Electrónica, vol. 11, no. 11, pp. 33–43, 2009.
R. Bhadra, P. Pankaj, and P. Biswas, “Thermo ‑ Mechanical Analysis of ­ CO 2 Laser Butt Welding on AISI 304 Steel Thin Plates,” Int. J. Steel Struct., no. 2010, 2018, doi: 10.1007/s13296-018-0085-z.
S. Works, “Solidworks Help 2011,” 2011. [Online]. Available: http://help.solidworks.com/2011/english/solidworks/cworks/legacyhelp/simulation/analysisbackground/thermalanalysis/thermal_contact_resistance.htm.
S. H. Huang, S. X. Chai, X. S. Xia, Q. Chen, and D. Y. Shu, “Compression Deformation Behavior and Processing Map of Pure Copper,” Strength Mater., vol. 48, no. 1, pp. 98–106, 2016, doi: 10.1007/s11223-016-9743-6.
J. Y. Yang and W. J. Kim, “Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper,” J. Mater. Res. Technol., vol. 9, no. 1, pp. 960–968, 2020, doi: 10.1016/j.jmrt.2019.11.036.
B. Banerjee and N. Zealand, “An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals,” no. February, 2014, doi: 10.13140/RG.2.1.4289.9285.
J. Croteau, E. Cantergiani, N. Jacques, A. E. M. Malki, and G. Mazars, “Mechanical characterization of OFE-Cu at low and high strain rates for SRF cavity fabrication by electro-hydraulic forming Résumé : Abstract :,” pp. 1–12, 2019.
I. Iliuc, “Tribology of thin layer,” 1980, pp. 81–103.
J. Jellison, R. Predmore, and C. L. Staugaitis, “Sliding friction of copper alloys in vacuum,” ASLE Trans., vol. 12, no. 2, pp. 171–182, 1968, doi: 10.1080/05698196908972259.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 120 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83141/2/1015423661.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83141/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83141/4/1015423661.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8d67ae7289c7e87c9162bd49bbced897
eb34b1cf90b7e1103fc9dfd26be24b4a
e62745cfe8b8e192dc15144573334d08
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089999584329728
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Galeano, Carlos Humberto01dad1b58448dd98d813d5a0cd822cf1Gonzalez Arango, Luis Miguelee9e3eb8a1c4c36ad782b46d648386e82023-01-26T15:26:42Z2023-01-26T15:26:42Z2022https://repositorio.unal.edu.co/handle/unal/83141Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl presente trabajo describe y evalúa un modelo numérico desarrollado para la simulación del comportamiento termomecánico presente durante el proceso de soldadura de fricción rotativa de control directo (RFWDD). A nivel térmico el modelo considera de forma transitoria en el tiempo los fenómenos de generación de calor por fricción y transferencia de calor sobre las barras que intervienen en el proceso. Adicionalmente, se acopló un modelo mecánico que permite estudiar el comportamiento plástico de la junta al actualizar en el tiempo el esfuerzo de fluencia del material acorde con la evolución del perfil de temperaturas. Además, el modelo mecánico enriquece el modelo de generación de calor y permite considerar el calor generado por deformación. Para validar el modelo construido se simularon tres condiciones de proceso diferentes y se compararon con resultados experimentales reportados en la literatura. Los procesos de validación corresponden a una condición de RFWDD símil de baja deformación, RFWDD símil de alta deformación y RFWDD disímil entre cobre y hierro. (Texto tomado de la fuente)This research describes and evaluates a numerical model developed for the simulation of the thermomechanical behavior present during the Rotary Friction Welding process operate in Direct-Drive (RFWDD). At a thermal level, the model considers the phenomena of heat generation by friction and heat transfer on the bars that involved in the process in a transitory way over time. Additionally, a mechanical model was used to study the plastic behavior of the joint by updating the yield stress of the material over time according to the evolution of the temperature profile Furthermore, the mechanical model enriches the heat generation model and allows considering the heat generated by deformation. To validate the built model, three different process conditions were simulated and compared with experimental results reported in the literature. The validation processes correspond to a condition of RFWDD-similar low strain, RFWDD-similar high strain and RFWDD-dissimilar between copper and iron.MaestríaMagister en Ingeniería MecánicaLa metodología llevada a cabo fue la siguiente: primero se realizó una identificación de los fenómenos físicos que intervienen en el proceso de soldadura, luego se plantearon las respectivas ecuaciones que gobiernan el comportamiento termomecánico de las piezas a soldar. Posteriormente, se construyó un modelo FEM termomecánico acoplado que permitió describir y relacionar los fenómenos de generación de calor, transferencia de calor y deformación plástica. Este modelo se validó de forma secuencial empezando por una simulación símil de baja deformación donde se evaluaron diferentes estrategias para describir el comportamiento del esfuerzo de fluencia a diferentes temperaturas. Luego se validó el modelo con un caso símil de alta deformación. Posteriormente se realizó un análisis paramétrico que relacionó las variables de proceso de velocidad angular y presión axial, con las características macroscópicas de la junta. Finalmente se validó el modelo con un caso disímil de alta deformación entre cobre y hierro a diferentes condiciones de presión de fricción.Modelado matemático de sistemasxiv, 120 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosMETODO DE ELEMENTOS FINITOSSOLDADURAFinite element methodWeldingSoldadura por fricción rotacionalFricciónDeformación plásticaElementos finitosRotational friction weldingFrictionPlastic deformationFinite elementsConstrucción de un modelo de elementos finitos para el estudio del comportamiento termomecánico de una junta durante el proceso de soldadura por Fricción Rotativa de Control Directo (RFWDD)Construction of a finite element model to study the thermomechanical behavior of a joint during the Rotary Friction Welding process by Direct Drive (RFWDD)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMInternational Energy Agency, “World Energy Outlook 2013,” National Energy Information Center, 2013.Grupo de las Naciones Unidas para el Desarrollo (UNDG), Desafíos y estrategias para el Desarrollo Sostenible en América Latina y el Caribe. 2018.ONU, “Objetivos de desarrollo sustentable,” ExpoKnews, 2015. [Online]. Available: http://www.expoknews.com/20­ejemplos­de­empresas­que­trabajan­por­los­objetiv os­de­desarrollo­sostenible/.REN21, Renewables 2015-Global status report, vol. 4, no. 3. 2015.D. Baffari, G. Buffa, D. Campanella, L. Fratini, and F. Micari, “Friction based solid state welding techniques for transportation industry applications,” Procedia CIRP, vol. 18, pp. 162–167, 2014, doi: 10.1016/j.procir.2014.06.125.M. M. ATTALLAH and M. Preuss, Welding and Joining of Aerospace Materials - 2 – Inertia friction welding (IFW) for aerospace applications. Woodhead Publishing Limited, 2012.A. W. Society, Welding Handbook, vol. 3. 2007.E. T. Akinlabi, A. Andrews, and S. A. Akinlabi, “Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper", Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 5, pp. 1323–1330, 2014, doi: 10.1016/S1003-6326(14)63195-2.G. Qin, P. Geng, J. Zhou, and Z. Zou, “Modeling of thermo-mechanical coupling in linear friction welding of Ni-based superalloy,” Mater. Des., vol. 172, p. 107766, 2019, doi: 10.1016/j.matdes.2019.107766.M. KIMURA, H. INOUE, M. KUSAKA, K. KAIZU, and A. FUJI, “Analysis Method of Friction Torque and Weld Interface Temperature during Friction Process of Steel Friction Welding,” J. Solid Mech. Mater. Eng., vol. 4, no. 3, pp. 401–413, 2010, doi: 10.1299/jmmp.4.401.M. Maalekian, “Friction welding - Critical assessment of literature,” Sci. Technol. Weld. Join., vol. 12, no. 8, pp. 738–759, 2007, doi: 10.1179/174329307X249333.Sander, “Power and heating in the friction welding of t h i ck - walled steel pipes,” Weld. J. (Miami, Fla), pp. 53–61, 1959.A. Słuzalec, “Thermal effects in friction welding,” Int. J. Mech. Sci., vol. 32, no. 6, pp. 467–478, 1990, doi: 10.1016/0020-7403(90)90153-A.W. Li and F. Wang, “Modeling of continuous drive friction welding of mild steel,” Mater. Sci. Eng. A, vol. 528, no. 18, pp. 5921–5926, 2011, doi: 10.1016/j.msea.2011.04.001.S. De Ji, J. G. Liu, Y. M. Yue, Z. Lü, and L. Fu, “3D numerical analysis of material flow behavior and flash formation of 45# steel in continuous drive friction welding,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. SUPPL.2, pp. 528–533, 2012, doi: 10.1016/S1003-6326(12)61756-7.M. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., 2015, doi: 10.1016/j.jestch.2015.05.002.L. Donati, E. Troiani, P. Proli, and L. Tomesani, FEM Analysis and Experimental Validation of Friction Welding Process of 6xxx Alloys for the Prediction of Welding Quality, vol. 2, no. 10. Elsevier Ltd., 2015.K. Fraser, L. I. Kiss, L. St-Georges, and D. Drolet, “Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach,” Metals (Basel)., vol. 8, no. 2, 2018, doi: 10.3390/met8020101.D. Schmicker, K. Naumenko, and J. Strackeljan, “A robust simulation of Direct Drive Friction Welding with a modified Carreau fluid constitutive model,” Comput. Methods Appl. Mech. Eng., vol. 265, pp. 186–194, 2013, doi: 10.1016/j.cma.2013.06.007.D. Schmicker, K. Naumenko, and J. Strackeljan, “A holistic Approach on the Simulation of Rotary-Friction-Welding,” vol. 27, no. Thaut 2014, pp. 148–150, 2016.W. Liu, F. Wang, X. Yang, and W. Li, “Upset prediction in friction welding using radial basis function neural network,” Adv. Mater. Sci. Eng., vol. 2013, 2013, doi: 10.1155/2013/196382.S. A. A. A. Mousavi and A. R. Kelishami, “Experimental and numerical analysis of the friction welding process for the 4340 steel and mild steel combinations,” Weld. J. (Miami, Fla), vol. 87, no. 7, 2008.J. Zimmerman, W. Wlosinski, and Z. R. Lindemann, “Thermo-mechanical and diffusion modelling in the process of ceramic-metal friction welding,” J. Mater. Process. Technol., vol. 209, no. 4, pp. 1644–1653, 2009, doi: 10.1016/j.jmatprotec.2008.04.012.J. Leśniewski and A. Ambroziak, “Modelling the friction welding of titanium and tungsten pseudoalloy,” Arch. Civ. Mech. Eng., vol. 15, no. 1, pp. 142–150, 2015, doi: 10.1016/j.acme.2014.06.008.A. Kurt, I. Uygur, and U. Paylasan, “Effect of friction welding parameters on mechanical and microstructural properties of dissimilar AISI 1010-ASTM B22 joints,” Weld. J., vol. 90, no. 5, pp. 102–106, 2011.M. B. Uday, M. N. A. Fauzi, H. Zuhailawati, and A. B. Ismail, “Advances in friction welding process: A review,” Sci. Technol. Weld. Join., vol. 15, no. 7, pp. 534–558, 2010, doi: 10.1179/136217110X12785889550064.V. T. Gaikwad, M. K. Mishra, V. D. Hiwarkar, and R. K. P. Singh, “Microstructure and mechanical properties of friction welded carbon steel (EN24) and nickel-based superalloy (IN718),” Int. J. Miner. Metall. Mater., vol. 28, no. 1, pp. 111–119, 2021, doi: 10.1007/s12613-020-2008-1.J. A. James and R. Sudhish, “Study on Effect of Interlayer in Friction Welding for Dissimilar Steels: SS 304 and AISI 1040,” Procedia Technol., vol. 25, pp. 1191–1198, 2016, doi: 10.1016/j.protcy.2016.08.238.E. oualid Bouarroudj, S. Chikh, S. Abdi, and D. Miroud, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, pp. 1543–1553, 2017, doi: 10.1016/j.applthermaleng.2016.09.067.L. MTI Welding Technologies, “Direct Drive Friction Welding,” 2019. [Online]. Available: http://www.mtiwelding.co.uk/products/direct-drive.M. Kimura, K. Ohara, M. Kusaka, K. Kaizu, and K. Hayashida, “Effects of tensile strength on friction welding condition and weld faying surface properties of friction welded joints between pure copper and austenitic stainless steel,” J. Adv. Join. Process., vol. 2, no. July, p. 100028, 2020, doi: 10.1016/j.jajp.2020.100028.A. Goedecke and F. A. Creep, Transient Effects in Friction: Fractal Asperity Creep. 2011.V. L. Popov, Contact Mechanics and Friction: Physical Principles and Applications, Segunda Ed. 2017.COMSOL Multiphysics®, Structural Mechanics Module. Estocolmo, 2018.L. Qinghua, L. Fuguo, L. Miaoquan, W. Qiong, and F. Li, “Finite element simulation of deformation behavior in friction welding of Al-Cu-Mg alloy,” J. Mater. Eng. Perform., vol. 15, no. 6, pp. 627–631, 2006, doi: 10.1361/105994906X150821.A. W. Society, Friction Welding of Metals. 1962.F. F. Wang, W. Y. Li, J. L. Li, and A. Vairis, “Process parameter analysis of inertia friction welding nickel-based superalloy,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1909–1918, 2014, doi: 10.1007/s00170-013-5569-6.H. Seli, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium,” J. Mater. Process. Technol., vol. 210, no. 9, pp. 1209–1216, 2010, doi: 10.1016/j.jmatprotec.2010.03.007.K. Fraser, “ROBUST AND EFFICIENT MESHFREE SOLID THERMO-MECHANICS SIMULATION OF FRICTION STIR WELDING,” Université du Québec à Chicoutimi (UQAC), 2017.X. Yang et al., “Finite element modeling of the linear friction welding of GH4169 superalloy,” Mater. Des., vol. 87, pp. 215–230, 2015, doi: 10.1016/j.matdes.2015.08.036.G. Ravichandran, A. J. Rosakis, J. Hodowany, and P. Rosakis, “ON THE CONVERSION OF PLASTIC WORK INTO HEAT DURING HIGH-STRAIN-RATE DEFORMATION,” 2001.COMSOL Multiphysics, “Heat Transfer Module,” Manual, pp. 1–222, 2015.A. Foley, “Thermal contact resistance simulation.” [Online]. Available: https://www.comsol.com/blogs/thermal-contact-resistance-simulation/.X. Oliver and C. Agelet De Saracíbar, Mecánica de medios continuos para ingenieros. 2010.J. M. Gere and B. J. Goodno, Mecánica de materiales, 7ma ed. .J. F. Shakelford, Introducción a la ciencia de materiales para ingenieros, 4ta ed. .G. E. Dieter, “Mechanical metallurgy.,” Mechanical metallurgy. 1988, doi: 10.5962/bhl.title.35895.P. Prat, Ecuaciones Constitutivas, ELASTICIDAD y PLASTICIDAD. Barcelona: Universitat Politécnica de Catalunya, 2006.R. Hill, “A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY,” Q. J. Mech. Appl. Math., vol. 1, no. October, pp. 18–28, 1947.B. Zhu, The Finite Element Method: Fundamentals and Applications in Civil, Hydraulic, Mechanical and Aeronautical Engineering, 1st ed. 2018.L. Yang, “Modelling of the Inertia Welding of Inconel 718,” University of Birmingham, United Kingdom, 2010.Comsol, “Elastoplastic Material Models.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.29.html.G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985, doi: 10.1016/0013-7944(85)90052-9.A. Iturbe et al., “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,” Mater. Sci. Eng. A, vol. 682, pp. 441–453, 2017, doi: 10.1016/j.msea.2016.11.054.A. Iturbe et al., “Corrigendum to ‘Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment,’” Mater. Sci. Eng. A, vol. 756, no. April, pp. 562–563, 2019, doi: 10.1016/j.msea.2019.02.026.S. Rolshoven and M. Jirasek, Introduction to the mechanics of a continuous medium. 1969.C. Garcia, “Mecánica de medios continuos-15904 Esfuerzo,” 2010.W. B. Castello, “Análisis numérico de sólidos bidimensionales en grandes deformaciones elasto-viscoplásticas con acoplamiento termomecánico,” 2012.J. Aboudi, “The effect of evolving damage on the finite strain response of inelastic and viscoelastic composites.” 2009.WANG KK and NAGAPPAN P, “Transient Temperature Distribution in Inertia Welding of Steels,” Weld J, vol. 49, no. 9, pp. 419–426, 1970.E. Bouarroudj, “Thermal analysis during a rotational friction welding,” Appl. Therm. Eng., vol. 110, no. 7, pp. 2543–2553, 2017, doi: 10.1016/S1359-4311(02)00018-2N. T.C. and W. D.C., “A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 37, no. 2, pp. 275–292, 2006.V. Balasubramanian et al., “New friction law for the modelling of continuous drive friction welding: Applications to 1045 steel welds,” Mater. Manuf. Process., vol. 14, no. 6, pp. 845–860, 1999, doi: 10.1080/10426919908914877.M. Maalekian, E. Kozeschnik, H. P. Brantner, and H. Cerjak, “Comparative analysis of heat generation in friction welding of steel bars,” Acta Mater., vol. 56, no. 12, pp. 2843–2855, 2008, doi: 10.1016/j.actamat.2008.02.016.W. Li, S. Shi, F. Wang, Z. Zhang, T. Ma, and J. Li, “Numerical simulation of friction welding processes based on ABAQUS environment,” J. Eng. Sci. Technol. Rev., vol. 5, no. 3, pp. 10–19, 2012.A. Can, M. Sahin, and M. Kucuk, “Modelling of Friction Welding,” Unitech 10, pp. 135–142, 2010.A. Can, M. Sahin, and M. Kucuk, “Thermically evaluation and modelling of friction welding,” Strojarstvo, vol. 51, no. 1, pp. 5–13, 2009.H. Seli, M. Awang, A. I. M. Ismail, E. Rachman, and Z. A. Ahmad, “Evaluation of properties and FEM model of the friction welded mild steel-Al6061-alumina,” Mater. Res., vol. 16, no. 2, pp. 453–467, 2013, doi: 10.1590/S1516-14392012005000178.A. B. Dawood, S. I. Butt, G. Hussain, M. A. Siddiqui, A. Maqsood, and F. Zhang, “Thermal model of rotary friction welding for similar and dissimilar metals,” Metals (Basel)., vol. 7, no. 6, 2017, doi: 10.3390/met7060224.A. Vairis, G. Papazafeiropoulos, and A. M. Tsainis, “A comparison between friction stir welding, linear friction welding and rotary friction welding,” Adv. Manuf., vol. 4, no. 4, pp. 296–304, 2016, doi: 10.1007/s40436-016-0163-4.R. P. Turner, D. Howe, B. Thota, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weld,” J. Manuf. Process., vol. 24, pp. 186–194, 2016, doi: 10.1016/j.jmapro.2016.09.008.C. Bennett, “Finite element modelling of the inertia friction welding of a CrMoV alloy steel including the effects of solid-state phase transformations,” J. Manuf. Process., vol. 18, pp. 84–91, 2015, doi: 10.1016/j.jmapro.2015.01.003.C. J. Bennett, T. H. Hyde, and E. J. Williams, “Modelling and simulation of the inertia friction welding of shafts,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 221, no. 4, pp. 275–284, 2007, doi: 10.1243/14644207JMDA154.A. Moal and E. Massoni, “Finite element simulation of the inertia welding of two similar parts,” Eng. Comput., vol. 12, p. 6, 1995.L. D’Alvise, E. Massoni, and S. J. Walloe, “Finite element modelling of the inertia friction welding process between dissimilar materials,” J. Mater. Process. Technol., vol. 125–126, pp. 387–391, 2002, doi: 10.1016/S0924-0136(02)00349-7.P. Geng, G. Qin, J. Zhou, and Z. Zou, “Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process,” J. Manuf. Process., vol. 32, pp. 469–481, 2018, doi: 10.1016/j.jmapro.2018.03.017.M. Asif. M, K. A. Shrikrishana, and P. Sathiya, “Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints,” Eng. Sci. Technol. an Int. J., vol. 18, no. 4, pp. 704–712, 2015, doi: 10.1016/j.jestch.2015.05.002.Q. Z. Zhang, L. W. Zhang, W. W. Liu, X. G. Zhang, W. H. Zhu, and S. Qu, “3D rigid viscoplastic FE modelling of continuous drive friction welding process,” Sci. Technol. Weld. Join., vol. 11, no. 6, pp. 737–743, 2006, doi: 10.1179/174329306X153222.P. Geng, G. Qin, L. Chen, J. Zhou, and Z. Zou, “Simulation of plastic flow driven by periodically alternating pressure and related deformation mechanism in linear friction welding,” Mater. Des., vol. 178, p. 107863, 2019, doi: 10.1016/j.matdes.2019.107863.E. P. Alves, F. P. Neto, and C. Y. An, “Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process,” J. Aerosp. Technol. Manag., vol. 2, no. 3, pp. 301–306, 2010, doi: 10.5028/jatm.2010.02037110.COMSOL Multiphysics, “AutoRemesh.” [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_api_solver.42.18.html#4838671.X. Nan et al., “Modeling of rotary friction welding process based on maximum entropy production principle,” J. Manuf. Process., vol. 37, no. April 2018, pp. 21–27, 2019, doi: 10.1016/j.jmapro.2018.11.016.L. W. Zhang et al., “The coupled fem analysis of the transient temperature field during inertia friction welding of GH4169 alloy,” Acta Metall. Sin. (English Lett., vol. 20, no. 4, pp. 301–306, 2007, doi: 10.1016/S1006-7191(07)60043-X.S. Tabaie, “Linear Friction Welding of AD730 TM Ni-Based Superalloy to Additively Manufactured Inconel 718 by,” 2021.K. Yuan, W. Guo, P. Li, Y. Zhang, X. Li, and X. Lin, “Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling,” Mech. Mater., vol. 135, no. April, pp. 13–25, 2019, doi: 10.1016/j.mechmat.2019.04.024.M. S. Lewandowski and R. A. Overfelt, “High temperature deformation behavior of solid and semi-solid alloy 718,” Acta Mater., vol. 47, no. 18, pp. 4695–4710, 1999, doi: 10.1016/S1359-6454(99)00252-9.R. P. Turner, B. Perumal, Y. Lu, R. M. Ward, H. C. Basoalto, and J. W. Brooks, “Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 50, no. 2, pp. 1000–1011, 2019, doi: 10.1007/s11663-018-1489-z.S. I. Okeke, N. Harrison, and M. Tong, “Thermomechanical modelling for the linear friction welding process of Ni-based superalloy and verification,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 234, no. 5, pp. 796–815, 2020, doi: 10.1177/1464420719900780.C. Slama, “Aging of the Inconel 718 alloy between 500 and 750 ±C,” J. Mater. Res., vol. 235, no. 4784, pp. 2298–2316, 1997, doi: 10.1126/science.235.4784.9.Y. Wei and F. Sun, “Microstructures and Mechanical Properties of Al/Fe and Cu/Fe Joints by Continuous Drive Friction Welding,” Adv. Mater. Sci. Eng., vol. 2018, 2018, doi: 10.1155/2018/2809356.S. Jimenez and C. Rativa, “Determinación experimental del coeficiente de transferencia de calor por convección natural en la superficie de un esfera de cobre,” pp. 19–30, 2014.J. Rojas, “DETERMINACIÓN EXPERIMENTAL DEL COEFICIENTE DE TRANSFERENCIA DE CALOR CONVECTIVO EN LA SUPERFICIE DE UNA ESFERA DE COBRE,” Rev. Electrónica, vol. 11, no. 11, pp. 33–43, 2009.R. Bhadra, P. Pankaj, and P. Biswas, “Thermo ‑ Mechanical Analysis of ­ CO 2 Laser Butt Welding on AISI 304 Steel Thin Plates,” Int. J. Steel Struct., no. 2010, 2018, doi: 10.1007/s13296-018-0085-z.S. Works, “Solidworks Help 2011,” 2011. [Online]. Available: http://help.solidworks.com/2011/english/solidworks/cworks/legacyhelp/simulation/analysisbackground/thermalanalysis/thermal_contact_resistance.htm.S. H. Huang, S. X. Chai, X. S. Xia, Q. Chen, and D. Y. Shu, “Compression Deformation Behavior and Processing Map of Pure Copper,” Strength Mater., vol. 48, no. 1, pp. 98–106, 2016, doi: 10.1007/s11223-016-9743-6.J. Y. Yang and W. J. Kim, “Examination of high-temperature mechanisms and behavior under compression and processing maps of pure copper,” J. Mater. Res. Technol., vol. 9, no. 1, pp. 960–968, 2020, doi: 10.1016/j.jmrt.2019.11.036.B. Banerjee and N. Zealand, “An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals,” no. February, 2014, doi: 10.13140/RG.2.1.4289.9285.J. Croteau, E. Cantergiani, N. Jacques, A. E. M. Malki, and G. Mazars, “Mechanical characterization of OFE-Cu at low and high strain rates for SRF cavity fabrication by electro-hydraulic forming Résumé : Abstract :,” pp. 1–12, 2019.I. Iliuc, “Tribology of thin layer,” 1980, pp. 81–103.J. Jellison, R. Predmore, and C. L. Staugaitis, “Sliding friction of copper alloys in vacuum,” ASLE Trans., vol. 12, no. 2, pp. 171–182, 1968, doi: 10.1080/05698196908972259.EstudiantesInvestigadoresMaestrosORIGINAL1015423661.2022.pdf1015423661.2022.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf2647679https://repositorio.unal.edu.co/bitstream/unal/83141/2/1015423661.2022.pdf8d67ae7289c7e87c9162bd49bbced897MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83141/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1015423661.2022.pdf.jpg1015423661.2022.pdf.jpgGenerated Thumbnailimage/jpeg6603https://repositorio.unal.edu.co/bitstream/unal/83141/4/1015423661.2022.pdf.jpge62745cfe8b8e192dc15144573334d08MD54unal/83141oai:repositorio.unal.edu.co:unal/831412023-08-14 23:04:01.971Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=