Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela
ilustraciones, graficas, mapas
- Autores:
-
Carrillo Cortés, Yeny Paola
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82205
- Palabra clave:
- Carbono orgánico del suelo
Paisaje agrícola
Caña de azúcar para panela
Covariables ambientales
Soil organic carbon
Agriculture landscape
Sugarcane
Environmental covariates
Jaggery
Uso de la tierra
Land use
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_89f66b9234895a2e06dac7e321fc2b77 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82205 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
dc.title.translated.eng.fl_str_mv |
Spatial distribution of soil organic carbon stock in landscapes occupied by sugarcane (Saccharum officinarum) for panela |
title |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
spellingShingle |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela Carbono orgánico del suelo Paisaje agrícola Caña de azúcar para panela Covariables ambientales Soil organic carbon Agriculture landscape Sugarcane Environmental covariates Jaggery Uso de la tierra Land use |
title_short |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
title_full |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
title_fullStr |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
title_full_unstemmed |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
title_sort |
Distribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panela |
dc.creator.fl_str_mv |
Carrillo Cortés, Yeny Paola |
dc.contributor.advisor.none.fl_str_mv |
Rubiano Sanabria, Yolanda Huertas Carranza, Bellanid |
dc.contributor.author.none.fl_str_mv |
Carrillo Cortés, Yeny Paola |
dc.subject.proposal.spa.fl_str_mv |
Carbono orgánico del suelo Paisaje agrícola Caña de azúcar para panela Covariables ambientales |
topic |
Carbono orgánico del suelo Paisaje agrícola Caña de azúcar para panela Covariables ambientales Soil organic carbon Agriculture landscape Sugarcane Environmental covariates Jaggery Uso de la tierra Land use |
dc.subject.proposal.eng.fl_str_mv |
Soil organic carbon Agriculture landscape Sugarcane Environmental covariates Jaggery |
dc.subject.unesco.spa.fl_str_mv |
Uso de la tierra |
dc.subject.unesco.eng.fl_str_mv |
Land use |
description |
ilustraciones, graficas, mapas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-31T13:35:12Z |
dc.date.available.none.fl_str_mv |
2022-08-31T13:35:12Z |
dc.date.issued.none.fl_str_mv |
2022-08-27 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82205 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82205 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abaunza, C. A., Forero, C. A., García, G. O., y Carvajal, G. H. (2012). Zonificación y organización de clúster empresariales para las cadenas de caña panelera, frutales y papa criolla en Cundinamarca. 116. Aguiar, S. B. (2001). Bases tecnicas para el establecimiento y manejo del cultivo de caña en el departamento de Casanare. Aguilar-Rivera, N., Rodríguez L, D. A., R.V., E., Castillo M, S. A., y Herrera, A. (2012). The Mexican Sugarcane Industry : Overview , Constraints , Current Status and Long-Term Trends. 14(September), 207–222. https://doi.org/10.1007/s12355-012-0151-3 Aguirre, N. (2018). Paisaje Agropecuario: incorporación en la planificación territorial. Ahammad, H., Clark, H., Dong, H., Elsidding, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N., Rice, C., Robledo, C., Romanovskaya, A., Sperling, F., y Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811–922). Álvarez, R., y Lavado, R. S. (1997). Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina (p. Geoderma). Anderson, N. M., Ford, R. M., y Williams, K. J. H. (2017). Contested beliefs about land-use are associated with divergent representations of a rural landscape as place. Landscape and Urban Planning, 157, 75–89. https://doi.org/10.1016/j.landurbplan.2016.05.020 Baquero, J., Ralish, R., de Conti, C., y Guimaraes, M. de F. (2012). Soil Physical ProPerties and Sugarcane root growth in a red oxisol. Revista Brasileña de La Ciencia Del Suelo, 1, 63–70. Baral, H., Keenan, R. J., Fox, J. C., Stork, N. E., y Kasel, S. (2013). Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecological Complexity, 13, 35–45. https://doi.org/10.1016/j.ecocom.2012.11.001 Besoain, E. (1985). Mineralogia de arcillas de suelos. Bishop, T. F. A., McBratney a, A. B., y Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 27–45. Blum, W. E. H. (2005). Functions of soil for society and the environment. 4, 75–79. https://doi.org/10.1007/s11157-005-2236-x Bolivar, A., Camacho, C., Ordoñez, N., Gutierrez, J., Alvarez, G., Guevara, M., Olivera, C., Olmedo, G., Bunning, S., y Vargas, R. (2021). aeet. Ecosistemas, 30(1), 1–11. Bone, J., Head, M., Barraclough, D., Archer, M., Voulvoulis, N., and Scheib, C. (2010). Soil Quality Assessment under Emerging Regulatory Requirements. Environment International, 36, 609–622. Braakhekke, M. C., Beer, C., Hoosbeek, M. R., Reichstein, M., Kruijt, B., Schrumpf, M., and Kabat, P. (2011). Somprof: A vertically explicit soil organic matter model. Ecological Modelling, 222(10), 1712–1730. https://doi.org/10.1016/j.ecolmodel.2011.02.015 Bronick, C. J., y Lal, R. (2004). Soil structure and management: a review. 124(2005), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005 Carvalho, L., Moniz, R., De Souza, E., Vieira, G., G R Schaefer, C. E., and Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007 Castillo, J., Navia, J., y Menjivar, J. (2008). Estimación de la estabilidad estructural de dos suelos al sur de Colombia con diferentes tipos de manejo. Acta Agronómica, 31–34. Castillo Poveda, M. (2016). Contextualización histórica del concepto de paisaje, sus implicaciones filosóficas y científicas. Revista de Filosofía de La Universidad de Costa Rica, 55(143), 11–24. Cerri, C. C., Galdos, M. V. ., Maia, S. M. ., Bernoux, M., Feigl, B. . J. ., Powlsonc, D., y Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil : an examination of existing data. February, 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., y Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188(April 2018), 41–52. https://doi.org/10.1016/j.still.2018.04.011 Cherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Oliveira, D. M. da S., Davies, C. A., y Cerri, C. C. (2015). Sugarcane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agriculture, Ecosystems and Environment, 211(2015), 173–184. https://doi.org/10.1016/j.agee.2015.06.006 de Carvalho, W., da Silva, C., Muselli, A., Koenow, H., Rendeiro, N., y Barge, S. (2014). MÉTODO DO HIPERCUBO LATINO CONDICIONADO PARA A AMOSTRAGEM DE SOLOS NA PRESENÇA DE COVARIÁVEIS AMBIENTAIS VISANDO O. Revista Brasileira de Ciencia Do Solo, 38(June), 386–396. https://doi.org/10.1590/S0100-06832014000200003 de Oliveira, R., Lal, R., Ronquim, C. C., Barretto, E., Nunes, J. L., Maldonado, W., Bastos, D., y La Scala, N. (2017). Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems and Environment, 240, 54–65. https://doi.org/10.1016/j.agee.2017.02.016 de Oliveira, R., Santos, L. M., Carneiro, L., Lal, R., Pereira, D. M., Kolln, O. T., Junqueira, H. C., y Nunes Carvalho, J. L. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328(March), 79–90. https://doi.org/10.1016/j.geoderma.2018.05.003 Deb, S., Mandal, B., Bhadoria, P. B. S., Singh, H. B., y Rakshit, A. (2015). Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability, 3(1), 26. https://doi.org/10.5958/2320-642x.2015.00003.4 Ellili, Y., Walter, C., Michot, D., Pichelin, P., y Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale Geoderma Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(May), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005 Estrada, N., Hart, A. K., DeClerck, F. A. J., Harvey, C. A., y Milder, J. C. (2014). Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11. https://doi.org/10.1016/j.landurbplan.2014.05.001 Etter, A. (1991). INTRODUCCIÓN A LA ECOLOGÍA DEL PAISAJE: Un Marco de Integración para los Levantamientos Ecológicos (Issue October 1991). https://doi.org/10.13140/2.1.4464.5121 FAO. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra. FAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. FAO. (2017a). Carbono Organico del suelo potencial oculto. FAO. (2017b). Liberación del potencial del carbono orgánico del suelo - Documento de resultados. http://www.fao.org/3/b-i7268s.pdf%0Awww.fao.org/publications Fernández-christlieb, F. (2010). El nacimiento del concepto de paisaje y su contraste en dos ámbitos culturales : el viejo y el nuevo mundo (pp. 55–79). Fernández, L., González, M., y Sáez Sáez, V. (2016). Relación entre un índice de estabilidad estructural de suelo, la zona bioclimática y la posición fisiográfica en Venezuela. Terra Nueva Etapa. Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., y Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149. https://doi.org/10.1016/j.catena.2016.09.016 Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., y Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(December). https://doi.org/10.1038/nature06275 Fries, A., Rollenbeck, R., Nauß, T., Peters, T., y Bendix, J. (2012). Agricultural and Forest Meteorology Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152, 17–30. https://doi.org/10.1016/j.agrformet.2011.08.004 García-Meléndez, E. (2007). Módulo VII : Sistemas de Información Geográfica y Teledetección, análisis visual de imágenes. García, H., L, A., Toscano LaTorre, A., Santana, N., y Insuasty, O. (2007). Guia tecnologica para el manejo integral del sistema productivo de la caña panelera. In Republica de Colombia (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 Geissen, V., Sánchez-hernández, R., Kampichler, C., Ramos-reyes, R., y Sepulveda-lozada, A. (2009). Geoderma Effects of land-use change on some properties of tropical soils — An example from Southeast Mexico. Geoderma, 151(3–4), 87–97. https://doi.org/10.1016/j.geoderma.2009.03.011 Gholizadeh, A., Zizala, D., Saberioon, M., y Boruvka, L. (2018). Soil Organic Carbon and Texture Retrieving and Mapping using Proximal , Airborne and Sentinel-2 Spectral Imaging. Remote Sensing of Environment, December. https://doi.org/10.1016/j.rse.2018.09.015 Gómez, E., y Miranda, J. (2009). Manejo agronómico de la caña panelera con énfasis en el control biológico. Fondo Nacional de La Panela, 32. http://www.fedepanela.org.co/publicaciones/cartillas/manejo_agronomico_de_la_cana_panelera.pdf Gougoulias, C., Clark, J. M., y Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577 Gray, J. M., Bishop, T. F. A., y Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741. https://doi.org/10.2136/sssaj2015.06.0224 Grimm, R., Behrens, T., Märker, M., y Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008 IDEAM. (2016). Inventario nacional y departamental de gases de efecto invernadero - Colombia. IGAC. (2000). Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca. IGAC. (2018). Sistema de clasificación geomorfológica aplicado a los levantamientos de suelos. IGAC. (2019). Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. In Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. Tomo 2 (Vol. 53, Issue 9, pp. 1689–1699). https://doi.org/10.1017/CBO9781107415324.004 Jha, P., Garg, N., Lakaria, B. L., Biswas, A. K., y Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. ttps://doi.org/https://doi.org/10.1016/j.still.2012.01.018 Jordan, N., y Warner, K. D. (2010). Enhancing the Multifunctionality of US Agriculture. BioScience, 60(January), 60–66. https://doi.org/10.1525/bio.2009.60.1.10 Kämpf, I., Hölzel, N., Störrle, M., Broll, G., y Kiehl, K. (2016). Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 566–567, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067 Kassambara, A. (2017). Practical Guide to Principal Component Methods in R. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van Der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., y Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016 Kumar, A., y Singh, P. (2021). Sugar and Sugar Derivatives : Changing Consumer Preferences. April. https://doi.org/10.1007/978-981-15-6663-9 Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., y Walter, C. (2014). High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213(January 2014), 296–311. https://doi.org/10.1016/j.geoderma.2013.07.002 Lal, R. (2004). World cropland soils as a source or sink for atmospheric carbon. 71, 145–191. https://doi.org/10.1016/s0065-2113(01)71014-0 Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 304(June), 1623–1627. Lal, Rattan. (2009). Soil Science. European Journam of Soil Science, April, 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.x Lal, Rattan. (2016). Soil health and carbon management. 1. https://doi.org/10.1002/fes3.96 Lal, Rattan, Follett, R. F., Kimble, J., y V, C. C. (1999). Managing U.S. cropland to sequester carbon in soil. Soil and Water Conservation. Leiva Gutiérrez, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos(MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. 145. http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdf Lisboa, I. P., Cherubin, M. R., Satiro, L. S., Siqueira-Neto, M., Lima, R. P., Gmach, M. R., Wienhold, B. J., Schmer, M. R., Jin, V. L., Cerri, C. C., y Cerri, C. E. P. (2019). Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops and Products, 129(June 2018), 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004 Lobo, D., y Pulido, M. (2006). Métodos e índices para evaluar la estabilidad estructural de los suelos Methods and index for evaluating soil structure stability. Venesuelos, 14, 22–37. Lorenz, K., Lal, R., y Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations ’ Sustainable Development Goals. Land Degrad Dev, December 2017, 824–838. https://doi.org/10.1002/ldr.3270 Lovell, S. T., DeSantis, S., Nathan, C. A., Olson, M. B., Ernesto Méndez, V., Kominami, H. C., Erickson, D. L., Morris, K. S., y Morris, W. B. (2010). Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agricultural Systems, 103(5), 327–341. https://doi.org/10.1016/j.agsy.2010.03.003 Lovell, S. T., y Johnston, D. M. (2009). Creating multifunctional landscapes : how can the field of ecology inform the design of the landscape ? May 2009. https://doi.org/10.1890/070178 Luengo, A. (2013). Los paisajes agrícolas del Patrimonio Mundial. Patrimonio Mundial, 69, 9–15. Ma, S., Karkee, M., y Zhang, Q. (2013). Sugarcane Harvesting System : a Critical Overview Sugarcane Harvesting System : a Critical Overview. July. https://doi.org/10.13031/aim.20131574361 Machado, F., Lima, E., Bacis, M., Urquiaga, S., Alves, B., y Moddey, R. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil, 333(February), 71–80. https://doi.org/10.1007/s11104-010-0320-7 Malone, B. P., Mcbratney, A. B., Minasny, B., y Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007 Marini, F., y Santamaría, M. (2019). Evaluación de índices verdes convencionales e índices del “borde rojo” en la discriminación de cultivos a nivel regional. Nadir: Rev. Elect. Geogr. Austral. Martínez Ardila, N. J., López Salgado, H. J., Samacá Torres, W., Vargas Tejedor, S. S., y Vargas Hernández, W. F. (2017). Tecnologías de la información para la consolidación ambiental y productiva del territorio. Análisis Geográficos, 53, 17–24. Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. 68–96. Meersmans, J., Wesemael, B. Van, Ridder, F. De, Geel, T. M., y Baets, S. De. (2009). Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands , 1960 – 2006. July 2019. https://doi.org/10.1111/j.1365-2486.2009.01855.x Meier, I. C., y Leuschner, C. (2010). Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 16, 1035–1045. https://doi.org/10.1111/j.1365-2486.2009.02074.x Minasny, B., y McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information $. Computers and Geosciences, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009 Mishra, G., y Francaviglia, R. (2021). Land Uses , Altitude and Texture Effects on Soil Parameters . A Comparative Study in Two Districts of Nagaland , Northeast India. Montenegro, J., y Chaves, M. (2011). Contribución del Sector Cañero a la Mitigación del Cambio Climático. XVIII Congreso Azucarero Nacional ATACORI, 506, 1–14. Nieder, R., y Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5 Nunes, J. L., Otto, R., Junqueira, H., y Ocheuze, P. C. (2013). Input of sugarcane post-harvest residues into the soil. Scientia Agricola, October, 336–344. Oostindie, H., Roep, D., y Renting, H. (2006). Definitions , references and interpretations of the concept of multifunctionality in The Netherlands. January. Osman, K. T. (2014). Chemical Soil Degradation. In Soil Degradation, Conservation and Remediation. https://doi.org/10.1007/978-94-007-7590-9 Osorio, G. (2007). Buenas Prácticas agrícolas y buenas prácticas de manufactura en la producción de caña panelera. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 Perez, J. (1992). Estudio de la estabilidad estructural del suelo en relación con el complejo de cambio. Pilgaard, S. B. (2016). Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy, 57, 759–763. https://doi.org/10.1016/j.landusepol.2016.05.025 Premrov, A., Cummins, T., y Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses , sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030 Pretty, J.,y Ball, A. (2001). Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Occasional Paper, May 2014, 03. Pulido, M., Lobo-Lujan, A. D., y Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de venezuela. Agrociencia. Ríos, G., Romero Carrascal, M., Botero Ospina, M. J., Franco, G., Pérez Cárdenas, J. C., Morales Muñoz, J. E., Gallego Duque, J. L., y Echeverry Agudelo, D. I. (2004). Zonificación, caracterización y tipificación de los sistemas de producción de lulo ( Solanum quitoense Lam) en el Eje Cafetero *. 5, 22–30. Rodriguez, G., Garcia, H., Roa, Z., y Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina. Fao, 98. http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdf Rodriguez, G., Huertas, B., Polo, S., Gonzáles, C., Tauta, J., Rodriguez, J., Ramírez, J., Velasquez, F., Espitia, J., y López, R. (2020). Modelo productivo de la caña de azúcar para la producción de panela en Cundinamarca. Roudier, P., Brugnard, C., Beaudette, D., y Louis, B. (2020). Package ‘ clhs .’ https://doi.org/10.1201/b12728> Rumpel, C., Chabbi, A., y Marschner, B. (2012). Carbon storage and sequestration in subsoil horizons: Knowledge, Gaps and potentials. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (Issue December 2014, pp. 1–559). https://doi.org/10.1007/978-94-007-4159-1 Saggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., y Hart, P. (1996). 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem, vo, 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7 Salas, R. (2017). ARQUEOLOGÍA DEL PAISAJE Colores en el valle de El Dorado Valle del Cauca-Colombia (100-1550 d.C.). Sánchez, M., Prager M, M., Naranjo, R. E., y Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34. Santos, M. L., Cantarella, H., Junqueira, H., Kölln, O. T., Borges, T. M., Martineli, G., Cândida, S., y Nunes Carvalho, J. L. (2017). Comprehensive assessment of sugarcane straw : implications for biomass and bioenergy production. Biofuels, Bioprod. Bioref., 1–17. https://doi.org/10.1002/bbb.1760 Schmiedt, T. M., Mariano, E., Boschiero, B. N., y Otto, R. (2017). Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems and Environment, 247(October 2016), 63–74. https://doi.org/10.1016/j.agee.2017.06.005 Schulten, H., y Leinweber, P. (2000). New insights into organic-mineral particles : composition , properties and models of molecular structure. Biol Fertil Soils, 30, 399–432. Selim, H. M., Newman, A., Zhang, L., Arceneaux, A., Tubaña, B., y Gaston, L. A. (2016). Distributions of organic carbon and related parameters in a Louisiana sugarcane soil. Soil and Tillage Research, 155, 401–411. https://doi.org/10.1016/j.still.2015.09.010 Senapati, N., Ghosh, S., Daniel, H., y Rakshit, A. (2014). Modelling and Simulation of Diffusive Processes. https://doi.org/10.1007/978-3-319-05657-9 Serrato, P. K. (2009). LA CLASIFICACIÓN FISIOGRÁFICA DEL TERRENO APARTIR DE LA INCLUSION NUEVOS ELEMENTOS CONCEPTUALES. Revista Perspectiva Geográfica, 14. SGC, S. G. C. (2014). Geolog+ia de la Plancha 208 Villeta. Sierra, C. A., Jorge, I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., y Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region , Colombia. 243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026 Six, J., Conant, R., Paul, E. A., y Paustian, K. (2002). Stabilization mechanisms of protected versus unprotected soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. Six, J., Paustian, K., Elliot, E., y Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal, 64. https://doi.org/10.2136/sssaj2000.642681x Smith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., Namara, N. P. M. C., Powlson, D., Cowie, A., Noordwijk, M. V. A. N., Sarah, C., Stuart, J., Kirton, A., y Eggar, D. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon : current capability and future vision. March, 2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x Stockmann, U., Padarian, J., Mcbratney, A., Minasny, B., Brogniez, D. De, Montanarella, L., Young, S., Rawlins, B. G., y Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.001 Taiz, L., y Zeiger, E. (2006). Photosynthesis: Carbon Reactions. In Plant Phisiology. Targulian, V. O., y Krasilnikov, P. V. (2007). Soil system and pedogenic processes : Self-organization , time scales , and environmental significance. 71, 373–381. https://doi.org/10.1016/j.catena.2007.03.007 Thorburn, P. J., Meier, E. A., Collins, K., y Robertson, F. A. (2012). Soil & Tillage Research Changes in soil carbon sequestration , fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil & Tillage Research, 120, 99–111. https://doi.org/10.1016/j.still.2011.11.009 Tisdall, M. J., y Oades, M. J. (1982). Organic matter and water-stable aggregates in soils. Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., y Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451 Trumbore, S. (1997). Potential responses of soil organic carbon to global environmental change. 94(August), 8284–8291. Trumbore, S. E., Torn, M. S., Rasse, D. P., Janssens, I. A., Abiven, S., Dittmar, T., Kleber, M., Guggenberger, G., Kögel-Knabner, I., Lehmann, J., Schmidt, M. W. I., Weiner, S., Manning, D. A. C., y Nannipieri, P. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386 USDA. (2010). Kays to soil taxonomy. USDA. (2014a). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service. USDA. (2014b). Soil Survey Field and Laboratory Methods Manual. 51. Vagen, T.-G., y Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. https://doi.org/10.1088/1748-9326/8/1/015011 Van Zuidam, R. A. (1985). AERIAL PHOTO-INTERPRETATION IN TERRAIN ANALYSIS AND GEOMORPHOLOGIC MAPPING. International Institue for Aerospace Survey and Earth Sciences. Verbruggen, E., Jansa, J., Hammer, E. C., y Rillig, M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? Journal of Ecology, 104(1), 261–269. https://doi.org/10.1111/1365-2745.12496 Villota, H. (1997). Una nueva aproximacion a la clasificacion fisiografica del terreno. CIAF. Wezel, A., Brives, H., Casagrande, M., Clément, C., y Dufour, A. (2016). Agroecology and Sustainable Food Systems Agroecology territories : places for sustainable agricultural and food systems and biodiversity conservation Agroecology territories : places for sustainable agricultural. 3565(January). https://doi.org/10.1080/21683565.2015.1115799 Whitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131). Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J.,y Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(July 2018), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026 Wu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., y Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4 Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., y Comerford, N. B. (2014). Interaction effects of climate and land use / land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088 Yu, P., Han, K., Li, Q., y Zhou, D. (2017). Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China. Ecological Indicators, 73, 331–337. https://doi.org/10.1016/j.ecolind.2016.10.002 Zapata, R. (2002). Química de los procesos pedogenéticos del suelo. Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., y Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Nature Publishing Group, June, 1–10. https://doi.org/10.1038/srep36587 Zhou, M., Liu, C., Wang, J., Meng, Q., Ye, Y., y Ma, X. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 1–13. https://doi.org/10.1038/s41598-019-57193-1 Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., y Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001 Zinck, J A. (2012). Geopedología. Zinck, Joseph Alfred, Metternicht, G., Bocco, G., y Del valle, H. (2016). Geopedology. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
124 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Agronomía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82205/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82205/2/1022371862.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82205/3/1022371862.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 23813244de4ca0f2a7c6b4bc3472871f a2e199195a785044b4383a7bb81d066e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089854369136640 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubiano Sanabria, Yolanda019716440377435f3ee30eb40d6935daHuertas Carranza, Bellanid9e4b6d5367eb34394fbf8c43e6920a84Carrillo Cortés, Yeny Paola7fce5b766d299647fab2f6ca0445b9792022-08-31T13:35:12Z2022-08-31T13:35:12Z2022-08-27https://repositorio.unal.edu.co/handle/unal/82205Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, mapasEl suelo, segundo reservorio global de carbono (C), es importante en la regulación del ciclo biogeoquímico de este elemento. Sin embargo, el equilibrio de este ciclo se ve perturbado por actividades antropogénicas que disminuyen el contenido de C en el suelo, aumentando sus concentraciones en la atmósfera. Las estrategias de conservación de suelo adoptadas desde el sector agrícola surgen como una propuesta a la mitigación de estos cambios, ya que le permiten recuperar sus facultades como regulador y depósito de C. El cultivo de caña de azúcar (Saccharum officinarum) para producción de panela presenta un alto potencial en la captura de carbono y su estabilidad en el suelo. Por lo cual, el objetivo de investigación fue evaluar la distribución espacial del stock de Carbono Orgánico del Suelo (COS) en paisajes ocupados por cultivos de caña de azúcar para panela. Para esto, se caracterizaron los paisajes agrícolas de caña panelera en los municipios de Quebradanegra y Nocaima mediante procesamiento de información geoespacial. Se utilizó el método de Hipercubo Latino para definir una muestra de 13 fincas con geoformas y manejos representativos donde se determinó el stock del COS y su distribución en una profundidad de 50 cm. Con esta información, las correlaciones entre variables y el entrenamiento de un modelo no paramétrico se pudo establecer un modelo conceptual sobre la influencia de las covariables ambientales en las existencias de COS. Se evidenció que el COS es controlado por las características propias de cada sitio, tanto de propiedades del suelo como factores clima, organismos y relieve. Específicamente, los factores importantes en la determinación del COS fueron la humedad del suelo (R2=0,38), contenido de arcillas (R2=0,36), diámetro ponderado medio (R2=0,20) y temperatura (R2=0,33). (Texto tomado de la fuente)Soil is the second global carbon (C) reservoir and it is important regulating the biogeochemical cycle of this element. However, balance in this cycle is disturbed by anthropogenic activities that decrease C content in the soil, while increasing its concentration in the atmosphere. Soil conservation strategies adopted in the agricultural sector emerge as a proposal to mitigate these changes, since they allow soil to recover its potential as a regulator and deposit of C. Sugar cane (Saccharum officinarum) cultivation to produce panela has a high potential in C sequestration and its stability in the soil. Therefore, the objective of this study was to evaluate Soil Organic Carbon (SOC) spatial distribution in landscapes occupied by sugar cane crops for panela production. Agricultural landscapes of sugarcane for panelera were characterized in the municipalities of Quebradanegra and Nocaima (Colombia) using geospatial information processing; sugar cane producers and management strategies were also characterized. Samples were defined using a Latin Hypercube in 13 farms of representative geoforms and agricultural management where SOC stock and its distribution in the first 50cm were determined. With this information, a conceptual nonparametric model of the influence of environmental covariates on SOC stocks was built. Model showed that SOC is controlled by local characteristics, such as soil properties and climate factors, organisms and topography. Specifically, the most important factors determining SOC were soil humidity (R2=0,38), clay content (R2=0,36), weighted average diameter (R2=0,20) and temperature (R2=0,33).MaestríaMagíster en Ciencias AgrariasSuelos y Aguas124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronomíaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáDistribución espacial del stock de carbono orgánico del suelo en paisajes ocupados por caña de azúcar (Saccharum officinarum) para panelaSpatial distribution of soil organic carbon stock in landscapes occupied by sugarcane (Saccharum officinarum) for panelaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbaunza, C. A., Forero, C. A., García, G. O., y Carvajal, G. H. (2012). Zonificación y organización de clúster empresariales para las cadenas de caña panelera, frutales y papa criolla en Cundinamarca. 116.Aguiar, S. B. (2001). Bases tecnicas para el establecimiento y manejo del cultivo de caña en el departamento de Casanare.Aguilar-Rivera, N., Rodríguez L, D. A., R.V., E., Castillo M, S. A., y Herrera, A. (2012). The Mexican Sugarcane Industry : Overview , Constraints , Current Status and Long-Term Trends. 14(September), 207–222. https://doi.org/10.1007/s12355-012-0151-3Aguirre, N. (2018). Paisaje Agropecuario: incorporación en la planificación territorial.Ahammad, H., Clark, H., Dong, H., Elsidding, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N., Rice, C., Robledo, C., Romanovskaya, A., Sperling, F., y Tubiello, F. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811–922).Álvarez, R., y Lavado, R. S. (1997). Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina (p. Geoderma).Anderson, N. M., Ford, R. M., y Williams, K. J. H. (2017). Contested beliefs about land-use are associated with divergent representations of a rural landscape as place. Landscape and Urban Planning, 157, 75–89. https://doi.org/10.1016/j.landurbplan.2016.05.020Baquero, J., Ralish, R., de Conti, C., y Guimaraes, M. de F. (2012). Soil Physical ProPerties and Sugarcane root growth in a red oxisol. Revista Brasileña de La Ciencia Del Suelo, 1, 63–70.Baral, H., Keenan, R. J., Fox, J. C., Stork, N. E., y Kasel, S. (2013). Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecological Complexity, 13, 35–45. https://doi.org/10.1016/j.ecocom.2012.11.001Besoain, E. (1985). Mineralogia de arcillas de suelos.Bishop, T. F. A., McBratney a, A. B., y Laslett, G. M. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 27–45.Blum, W. E. H. (2005). Functions of soil for society and the environment. 4, 75–79. https://doi.org/10.1007/s11157-005-2236-xBolivar, A., Camacho, C., Ordoñez, N., Gutierrez, J., Alvarez, G., Guevara, M., Olivera, C., Olmedo, G., Bunning, S., y Vargas, R. (2021). aeet. Ecosistemas, 30(1), 1–11.Bone, J., Head, M., Barraclough, D., Archer, M., Voulvoulis, N., and Scheib, C. (2010). Soil Quality Assessment under Emerging Regulatory Requirements. Environment International, 36, 609–622.Braakhekke, M. C., Beer, C., Hoosbeek, M. R., Reichstein, M., Kruijt, B., Schrumpf, M., and Kabat, P. (2011). Somprof: A vertically explicit soil organic matter model. Ecological Modelling, 222(10), 1712–1730. https://doi.org/10.1016/j.ecolmodel.2011.02.015Bronick, C. J., y Lal, R. (2004). Soil structure and management: a review. 124(2005), 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005Carvalho, L., Moniz, R., De Souza, E., Vieira, G., G R Schaefer, C. E., and Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340(December 2017), 337–350. https://doi.org/10.1016/j.geoderma.2019.01.007Castillo, J., Navia, J., y Menjivar, J. (2008). Estimación de la estabilidad estructural de dos suelos al sur de Colombia con diferentes tipos de manejo. Acta Agronómica, 31–34.Castillo Poveda, M. (2016). Contextualización histórica del concepto de paisaje, sus implicaciones filosóficas y científicas. Revista de Filosofía de La Universidad de Costa Rica, 55(143), 11–24.Cerri, C. C., Galdos, M. V. ., Maia, S. M. ., Bernoux, M., Feigl, B. . J. ., Powlsonc, D., y Cerri, C. E. P. (2011). Effect of sugarcane harvesting systems on soil carbon stocks in Brazil : an examination of existing data. February, 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.xChenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., y Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188(April 2018), 41–52. https://doi.org/10.1016/j.still.2018.04.011Cherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Oliveira, D. M. da S., Davies, C. A., y Cerri, C. C. (2015). Sugarcane expansion in Brazilian tropical soils-Effects of land use change on soil chemical attributes. Agriculture, Ecosystems and Environment, 211(2015), 173–184. https://doi.org/10.1016/j.agee.2015.06.006de Carvalho, W., da Silva, C., Muselli, A., Koenow, H., Rendeiro, N., y Barge, S. (2014). MÉTODO DO HIPERCUBO LATINO CONDICIONADO PARA A AMOSTRAGEM DE SOLOS NA PRESENÇA DE COVARIÁVEIS AMBIENTAIS VISANDO O. Revista Brasileira de Ciencia Do Solo, 38(June), 386–396. https://doi.org/10.1590/S0100-06832014000200003de Oliveira, R., Lal, R., Ronquim, C. C., Barretto, E., Nunes, J. L., Maldonado, W., Bastos, D., y La Scala, N. (2017). Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems and Environment, 240, 54–65. https://doi.org/10.1016/j.agee.2017.02.016de Oliveira, R., Santos, L. M., Carneiro, L., Lal, R., Pereira, D. M., Kolln, O. T., Junqueira, H. C., y Nunes Carvalho, J. L. (2018). Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328(March), 79–90. https://doi.org/10.1016/j.geoderma.2018.05.003Deb, S., Mandal, B., Bhadoria, P. B. S., Singh, H. B., y Rakshit, A. (2015). Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability, 3(1), 26. https://doi.org/10.5958/2320-642x.2015.00003.4Ellili, Y., Walter, C., Michot, D., Pichelin, P., y Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale Geoderma Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(May), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005Estrada, N., Hart, A. K., DeClerck, F. A. J., Harvey, C. A., y Milder, J. C. (2014). Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11. https://doi.org/10.1016/j.landurbplan.2014.05.001Etter, A. (1991). INTRODUCCIÓN A LA ECOLOGÍA DEL PAISAJE: Un Marco de Integración para los Levantamientos Ecológicos (Issue October 1991). https://doi.org/10.13140/2.1.4464.5121FAO. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra.FAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.FAO. (2017a). Carbono Organico del suelo potencial oculto.FAO. (2017b). Liberación del potencial del carbono orgánico del suelo - Documento de resultados. http://www.fao.org/3/b-i7268s.pdf%0Awww.fao.org/publicationsFernández-christlieb, F. (2010). El nacimiento del concepto de paisaje y su contraste en dos ámbitos culturales : el viejo y el nuevo mundo (pp. 55–79).Fernández, L., González, M., y Sáez Sáez, V. (2016). Relación entre un índice de estabilidad estructural de suelo, la zona bioclimática y la posición fisiográfica en Venezuela. Terra Nueva Etapa.Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M., y Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149. https://doi.org/10.1016/j.catena.2016.09.016Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., y Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(December). https://doi.org/10.1038/nature06275Fries, A., Rollenbeck, R., Nauß, T., Peters, T., y Bendix, J. (2012). Agricultural and Forest Meteorology Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization. Agricultural and Forest Meteorology, 152, 17–30. https://doi.org/10.1016/j.agrformet.2011.08.004García-Meléndez, E. (2007). Módulo VII : Sistemas de Información Geográfica y Teledetección, análisis visual de imágenes.García, H., L, A., Toscano LaTorre, A., Santana, N., y Insuasty, O. (2007). Guia tecnologica para el manejo integral del sistema productivo de la caña panelera. In Republica de Colombia (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004Geissen, V., Sánchez-hernández, R., Kampichler, C., Ramos-reyes, R., y Sepulveda-lozada, A. (2009). Geoderma Effects of land-use change on some properties of tropical soils — An example from Southeast Mexico. Geoderma, 151(3–4), 87–97. https://doi.org/10.1016/j.geoderma.2009.03.011Gholizadeh, A., Zizala, D., Saberioon, M., y Boruvka, L. (2018). Soil Organic Carbon and Texture Retrieving and Mapping using Proximal , Airborne and Sentinel-2 Spectral Imaging. Remote Sensing of Environment, December. https://doi.org/10.1016/j.rse.2018.09.015Gómez, E., y Miranda, J. (2009). Manejo agronómico de la caña panelera con énfasis en el control biológico. Fondo Nacional de La Panela, 32. http://www.fedepanela.org.co/publicaciones/cartillas/manejo_agronomico_de_la_cana_panelera.pdfGougoulias, C., Clark, J. M., y Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577Gray, J. M., Bishop, T. F. A., y Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741. https://doi.org/10.2136/sssaj2015.06.0224Grimm, R., Behrens, T., Märker, M., y Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis. Geoderma, 146(1–2), 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008IDEAM. (2016). Inventario nacional y departamental de gases de efecto invernadero - Colombia.IGAC. (2000). Estudio general de suelos y zonificación de tierras del departamento de Cundinamarca.IGAC. (2018). Sistema de clasificación geomorfológica aplicado a los levantamientos de suelos.IGAC. (2019). Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. In Estudio de Suelos a escala 1:25.000 para el plan de ordenación y manejo de la cuenca. Tomo 2 (Vol. 53, Issue 9, pp. 1689–1699). https://doi.org/10.1017/CBO9781107415324.004Jha, P., Garg, N., Lakaria, B. L., Biswas, A. K., y Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. ttps://doi.org/https://doi.org/10.1016/j.still.2012.01.018Jordan, N., y Warner, K. D. (2010). Enhancing the Multifunctionality of US Agriculture. BioScience, 60(January), 60–66. https://doi.org/10.1525/bio.2009.60.1.10Kämpf, I., Hölzel, N., Störrle, M., Broll, G., y Kiehl, K. (2016). Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, 566–567, 428–435. https://doi.org/10.1016/j.scitotenv.2016.05.067Kassambara, A. (2017). Practical Guide to Principal Component Methods in R.Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., Van Der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., y Fresco, L. O. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016Kumar, A., y Singh, P. (2021). Sugar and Sugar Derivatives : Changing Consumer Preferences. April. https://doi.org/10.1007/978-981-15-6663-9Lacoste, M., Minasny, B., McBratney, A., Michot, D., Viaud, V., y Walter, C. (2014). High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213(January 2014), 296–311. https://doi.org/10.1016/j.geoderma.2013.07.002Lal, R. (2004). World cropland soils as a source or sink for atmospheric carbon. 71, 145–191. https://doi.org/10.1016/s0065-2113(01)71014-0Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. 304(June), 1623–1627.Lal, Rattan. (2009). Soil Science. European Journam of Soil Science, April, 158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.xLal, Rattan. (2016). Soil health and carbon management. 1. https://doi.org/10.1002/fes3.96Lal, Rattan, Follett, R. F., Kimble, J., y V, C. C. (1999). Managing U.S. cropland to sequester carbon in soil. Soil and Water Conservation.Leiva Gutiérrez, N. (2012). Metodología para el cálculo de la humedad del suelo usando parámetros topográficos(MDE), climáticos y edáficos en un sector del piedemonte depositacional del municipio de Villavicencio. 145. http://www.bdigital.unal.edu.co/8910/1/795068.2012.pdfLisboa, I. P., Cherubin, M. R., Satiro, L. S., Siqueira-Neto, M., Lima, R. P., Gmach, M. R., Wienhold, B. J., Schmer, M. R., Jin, V. L., Cerri, C. C., y Cerri, C. E. P. (2019). Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops and Products, 129(June 2018), 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004Lobo, D., y Pulido, M. (2006). Métodos e índices para evaluar la estabilidad estructural de los suelos Methods and index for evaluating soil structure stability. Venesuelos, 14, 22–37.Lorenz, K., Lal, R., y Ehlers, K. (2019). Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations ’ Sustainable Development Goals. Land Degrad Dev, December 2017, 824–838. https://doi.org/10.1002/ldr.3270Lovell, S. T., DeSantis, S., Nathan, C. A., Olson, M. B., Ernesto Méndez, V., Kominami, H. C., Erickson, D. L., Morris, K. S., y Morris, W. B. (2010). Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agricultural Systems, 103(5), 327–341. https://doi.org/10.1016/j.agsy.2010.03.003Lovell, S. T., y Johnston, D. M. (2009). Creating multifunctional landscapes : how can the field of ecology inform the design of the landscape ? May 2009. https://doi.org/10.1890/070178Luengo, A. (2013). Los paisajes agrícolas del Patrimonio Mundial. Patrimonio Mundial, 69, 9–15.Ma, S., Karkee, M., y Zhang, Q. (2013). Sugarcane Harvesting System : a Critical Overview Sugarcane Harvesting System : a Critical Overview. July. https://doi.org/10.13031/aim.20131574361Machado, F., Lima, E., Bacis, M., Urquiaga, S., Alves, B., y Moddey, R. (2010). Impact of pre-harvest burning versus trash conservation on soil carbon and nitrogen stocks on a sugarcane plantation in the Brazilian Atlantic forest region. Plant Soil, 333(February), 71–80. https://doi.org/10.1007/s11104-010-0320-7Malone, B. P., Mcbratney, A. B., Minasny, B., y Laslett, G. M. (2009). Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154(1–2), 138–152. https://doi.org/10.1016/j.geoderma.2009.10.007Marini, F., y Santamaría, M. (2019). Evaluación de índices verdes convencionales e índices del “borde rojo” en la discriminación de cultivos a nivel regional. Nadir: Rev. Elect. Geogr. Austral.Martínez Ardila, N. J., López Salgado, H. J., Samacá Torres, W., Vargas Tejedor, S. S., y Vargas Hernández, W. F. (2017). Tecnologías de la información para la consolidación ambiental y productiva del territorio. Análisis Geográficos, 53, 17–24.Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). CARBONO ORGÁNICO Y PROPIEDADES DEL SUELO. 68–96.Meersmans, J., Wesemael, B. Van, Ridder, F. De, Geel, T. M., y Baets, S. De. (2009). Spatial analysis of soil organic carbon evolution in Belgian croplands and grasslands , 1960 – 2006. July 2019. https://doi.org/10.1111/j.1365-2486.2009.01855.xMeier, I. C., y Leuschner, C. (2010). Variation of soil and biomass carbon pools in beech forests across a precipitation gradient. Global Change Biology, 16, 1035–1045. https://doi.org/10.1111/j.1365-2486.2009.02074.xMinasny, B., y McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information $. Computers and Geosciences, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009Mishra, G., y Francaviglia, R. (2021). Land Uses , Altitude and Texture Effects on Soil Parameters . A Comparative Study in Two Districts of Nagaland , Northeast India.Montenegro, J., y Chaves, M. (2011). Contribución del Sector Cañero a la Mitigación del Cambio Climático. XVIII Congreso Azucarero Nacional ATACORI, 506, 1–14.Nieder, R., y Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5Nunes, J. L., Otto, R., Junqueira, H., y Ocheuze, P. C. (2013). Input of sugarcane post-harvest residues into the soil. Scientia Agricola, October, 336–344.Oostindie, H., Roep, D., y Renting, H. (2006). Definitions , references and interpretations of the concept of multifunctionality in The Netherlands. January.Osman, K. T. (2014). Chemical Soil Degradation. In Soil Degradation, Conservation and Remediation. https://doi.org/10.1007/978-94-007-7590-9Osorio, G. (2007). Buenas Prácticas agrícolas y buenas prácticas de manufactura en la producción de caña panelera. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004Perez, J. (1992). Estudio de la estabilidad estructural del suelo en relación con el complejo de cambio.Pilgaard, S. B. (2016). Agriculture and landscape interaction—landowners’ decision-making and drivers of land use change in rural Europe. Land Use Policy, 57, 759–763. https://doi.org/10.1016/j.landusepol.2016.05.025Premrov, A., Cummins, T., y Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses , sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030Pretty, J.,y Ball, A. (2001). Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Occasional Paper, May 2014, 03.Pulido, M., Lobo-Lujan, A. D., y Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de venezuela. Agrociencia.Ríos, G., Romero Carrascal, M., Botero Ospina, M. J., Franco, G., Pérez Cárdenas, J. C., Morales Muñoz, J. E., Gallego Duque, J. L., y Echeverry Agudelo, D. I. (2004). Zonificación, caracterización y tipificación de los sistemas de producción de lulo ( Solanum quitoense Lam) en el Eje Cafetero *. 5, 22–30.Rodriguez, G., Garcia, H., Roa, Z., y Santacoloma, P. (2004). Producción de panela como estrategia de diversificación en la generación de ingresos en áreas rurales de América Latina. Fao, 98. http://www.fao.org/fileadmin/user_upload/ags/publications/AGSF_WD6s.pdfRodriguez, G., Huertas, B., Polo, S., Gonzáles, C., Tauta, J., Rodriguez, J., Ramírez, J., Velasquez, F., Espitia, J., y López, R. (2020). Modelo productivo de la caña de azúcar para la producción de panela en Cundinamarca.Roudier, P., Brugnard, C., Beaudette, D., y Louis, B. (2020). Package ‘ clhs .’ https://doi.org/10.1201/b12728>Rumpel, C., Chabbi, A., y Marschner, B. (2012). Carbon storage and sequestration in subsoil horizons: Knowledge, Gaps and potentials. In Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (Issue December 2014, pp. 1–559). https://doi.org/10.1007/978-94-007-4159-1Saggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., y Hart, P. (1996). 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem, vo, 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7Salas, R. (2017). ARQUEOLOGÍA DEL PAISAJE Colores en el valle de El Dorado Valle del Cauca-Colombia (100-1550 d.C.).Sánchez, M., Prager M, M., Naranjo, R. E., y Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.Santos, M. L., Cantarella, H., Junqueira, H., Kölln, O. T., Borges, T. M., Martineli, G., Cândida, S., y Nunes Carvalho, J. L. (2017). Comprehensive assessment of sugarcane straw : implications for biomass and bioenergy production. Biofuels, Bioprod. Bioref., 1–17. https://doi.org/10.1002/bbb.1760Schmiedt, T. M., Mariano, E., Boschiero, B. N., y Otto, R. (2017). Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems and Environment, 247(October 2016), 63–74. https://doi.org/10.1016/j.agee.2017.06.005Schulten, H., y Leinweber, P. (2000). New insights into organic-mineral particles : composition , properties and models of molecular structure. Biol Fertil Soils, 30, 399–432.Selim, H. M., Newman, A., Zhang, L., Arceneaux, A., Tubaña, B., y Gaston, L. A. (2016). Distributions of organic carbon and related parameters in a Louisiana sugarcane soil. Soil and Tillage Research, 155, 401–411. https://doi.org/10.1016/j.still.2015.09.010Senapati, N., Ghosh, S., Daniel, H., y Rakshit, A. (2014). Modelling and Simulation of Diffusive Processes. https://doi.org/10.1007/978-3-319-05657-9Serrato, P. K. (2009). LA CLASIFICACIÓN FISIOGRÁFICA DEL TERRENO APARTIR DE LA INCLUSION NUEVOS ELEMENTOS CONCEPTUALES. Revista Perspectiva Geográfica, 14.SGC, S. G. C. (2014). Geolog+ia de la Plancha 208 Villeta.Sierra, C. A., Jorge, I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., y Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region , Colombia. 243, 299–309. https://doi.org/10.1016/j.foreco.2007.03.026Six, J., Conant, R., Paul, E. A., y Paustian, K. (2002). Stabilization mechanisms of protected versus unprotected soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176.Six, J., Paustian, K., Elliot, E., y Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal, 64. https://doi.org/10.2136/sssaj2000.642681xSmith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., Namara, N. P. M. C., Powlson, D., Cowie, A., Noordwijk, M. V. A. N., Sarah, C., Stuart, J., Kirton, A., y Eggar, D. (2012). Towards an integrated global framework to assess the impacts of land use and management change on soil carbon : current capability and future vision. March, 2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.xStockmann, U., Padarian, J., Mcbratney, A., Minasny, B., Brogniez, D. De, Montanarella, L., Young, S., Rawlins, B. G., y Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6, 9–16. https://doi.org/10.1016/j.gfs.2015.07.001Taiz, L., y Zeiger, E. (2006). Photosynthesis: Carbon Reactions. In Plant Phisiology.Targulian, V. O., y Krasilnikov, P. V. (2007). Soil system and pedogenic processes : Self-organization , time scales , and environmental significance. 71, 373–381. https://doi.org/10.1016/j.catena.2007.03.007Thorburn, P. J., Meier, E. A., Collins, K., y Robertson, F. A. (2012). Soil & Tillage Research Changes in soil carbon sequestration , fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil & Tillage Research, 120, 99–111. https://doi.org/10.1016/j.still.2011.11.009Tisdall, M. J., y Oades, M. J. (1982). Organic matter and water-stable aggregates in soils.Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., y Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451Trumbore, S. (1997). Potential responses of soil organic carbon to global environmental change. 94(August), 8284–8291.Trumbore, S. E., Torn, M. S., Rasse, D. P., Janssens, I. A., Abiven, S., Dittmar, T., Kleber, M., Guggenberger, G., Kögel-Knabner, I., Lehmann, J., Schmidt, M. W. I., Weiner, S., Manning, D. A. C., y Nannipieri, P. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386USDA. (2010). Kays to soil taxonomy.USDA. (2014a). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service.USDA. (2014b). Soil Survey Field and Laboratory Methods Manual. 51.Vagen, T.-G., y Winowiecki, L. (2013). Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential. https://doi.org/10.1088/1748-9326/8/1/015011Van Zuidam, R. A. (1985). AERIAL PHOTO-INTERPRETATION IN TERRAIN ANALYSIS AND GEOMORPHOLOGIC MAPPING. International Institue for Aerospace Survey and Earth Sciences.Verbruggen, E., Jansa, J., Hammer, E. C., y Rillig, M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? Journal of Ecology, 104(1), 261–269. https://doi.org/10.1111/1365-2745.12496Villota, H. (1997). Una nueva aproximacion a la clasificacion fisiografica del terreno. CIAF.Wezel, A., Brives, H., Casagrande, M., Clément, C., y Dufour, A. (2016). Agroecology and Sustainable Food Systems Agroecology territories : places for sustainable agricultural and food systems and biodiversity conservation Agroecology territories : places for sustainable agricultural. 3565(January). https://doi.org/10.1080/21683565.2015.1115799Whitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H. J.,y Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma, 333(July 2018), 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026Wu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., y Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4Xiong, X., Grunwald, S., Myers, D. B., Ross, C. W., Harris, W. G., y Comerford, N. B. (2014). Interaction effects of climate and land use / land cover change on soil organic carbon sequestration. Science of the Total Environment, 493, 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088Yu, P., Han, K., Li, Q., y Zhou, D. (2017). Soil organic carbon fractions are affected by different land uses in an agro-pastoral transitional zone in Northeastern China. Ecological Indicators, 73, 331–337. https://doi.org/10.1016/j.ecolind.2016.10.002Zapata, R. (2002). Química de los procesos pedogenéticos del suelo.Zhang, Q., Wu, J., Yang, F., Lei, Y., Zhang, Q., y Cheng, X. (2016). Alterations in soil microbial community composition and biomass following agricultural land use change. Nature Publishing Group, June, 1–10. https://doi.org/10.1038/srep36587Zhou, M., Liu, C., Wang, J., Meng, Q., Ye, Y., y Ma, X. (2020). Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Scientific Reports, 1–13. https://doi.org/10.1038/s41598-019-57193-1Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., y Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001Zinck, J A. (2012). Geopedología.Zinck, Joseph Alfred, Metternicht, G., Bocco, G., y Del valle, H. (2016). Geopedology.Carbono orgánico del sueloPaisaje agrícolaCaña de azúcar para panelaCovariables ambientalesSoil organic carbonAgriculture landscapeSugarcaneEnvironmental covariatesJaggeryUso de la tierraLand useEstudiantesGrupos comunitariosInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82205/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1022371862.2022.pdf1022371862.2022.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf6709414https://repositorio.unal.edu.co/bitstream/unal/82205/2/1022371862.2022.pdf23813244de4ca0f2a7c6b4bc3472871fMD52THUMBNAIL1022371862.2022.pdf.jpg1022371862.2022.pdf.jpgGenerated Thumbnailimage/jpeg5378https://repositorio.unal.edu.co/bitstream/unal/82205/3/1022371862.2022.pdf.jpga2e199195a785044b4383a7bb81d066eMD53unal/82205oai:repositorio.unal.edu.co:unal/822052023-08-08 23:04:06.987Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |