Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L

ilustraciones, diagramas

Autores:
León Burgos, Andrés Felipe
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85806
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85806
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Crecimiento de planta
Producción de productos agrícolas
Industria cafetera
plant growth
agricultural production
coffee industry
Relación área foliar por fruto
Intercambio de gases foliar
Azúcares solubles
Partición de masa seca
Contenido bioquímico en granos
Leaf-to-fruit ratio
Leaf gas exchanges
Soluble sugars
Dry mass partitioning
Bean biochemical content
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_89c78e935349e8ca5e5b714f40740503
oai_identifier_str oai:repositorio.unal.edu.co:unal/85806
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
dc.title.translated.eng.fl_str_mv Effect of the fruit load on growth, physiological performance, plant production, and bean biochemical composition of Coffea arabica L
title Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
spellingShingle Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Crecimiento de planta
Producción de productos agrícolas
Industria cafetera
plant growth
agricultural production
coffee industry
Relación área foliar por fruto
Intercambio de gases foliar
Azúcares solubles
Partición de masa seca
Contenido bioquímico en granos
Leaf-to-fruit ratio
Leaf gas exchanges
Soluble sugars
Dry mass partitioning
Bean biochemical content
title_short Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
title_full Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
title_fullStr Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
title_full_unstemmed Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
title_sort Efecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica L
dc.creator.fl_str_mv León Burgos, Andrés Felipe
dc.contributor.advisor.spa.fl_str_mv Balaguera López, Helber Enrique
Rendón Sáenz, José Raúl
dc.contributor.author.spa.fl_str_mv León Burgos, Andrés Felipe
dc.contributor.researchgroup.spa.fl_str_mv Agronomía-Cenicafé
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
topic 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Crecimiento de planta
Producción de productos agrícolas
Industria cafetera
plant growth
agricultural production
coffee industry
Relación área foliar por fruto
Intercambio de gases foliar
Azúcares solubles
Partición de masa seca
Contenido bioquímico en granos
Leaf-to-fruit ratio
Leaf gas exchanges
Soluble sugars
Dry mass partitioning
Bean biochemical content
dc.subject.agrovoc.spa.fl_str_mv Crecimiento de planta
Producción de productos agrícolas
Industria cafetera
dc.subject.agrovoc.eng.fl_str_mv plant growth
agricultural production
coffee industry
dc.subject.proposal.spa.fl_str_mv Relación área foliar por fruto
Intercambio de gases foliar
Azúcares solubles
Partición de masa seca
Contenido bioquímico en granos
dc.subject.proposal.eng.fl_str_mv Leaf-to-fruit ratio
Leaf gas exchanges
Soluble sugars
Dry mass partitioning
Bean biochemical content
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-03-13T18:49:54Z
dc.date.available.none.fl_str_mv 2024-03-13T18:49:54Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85806
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85806
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv Ahmed, S., Brinkley, S., Smith, E., Sela, A., Theisen, M., Thibodeau, C., Warne, T., Anderson, E., Van Dusen, N., Giuliano, P., Ionescu, K. E., & Cash, S. B. (2021). Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.708013
Almeida, W. L., Ávila, R. T., Pérez-Molina, J. P., Barbosa, M. L., Marçal, D. M. S., de Souza, R. P. B., Martino, P. B., Cardoso, A. A., Martins, S. C. V., & DaMatta, F. M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. Tree Physiology, 41(1), 35-49. https://doi.org/10.1093/treephys/tpaa116
Arcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19-27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.x
Arcila P, J. (2007). Capítulo 2. Crecimiento y desarrollo de la planta de café. Cap. 21-60 Pp. En Arcila P, J., Farfán V, F., Moreno B, A., Salazar G, L F & Hincapié G, E. (2007). Sistemas de producción de café en Colombia. Centro Nacional de investigaciones del café. Chinchiná, Caldas. 309 p. http://hdl.handle.net/10778/720
Avila, R. T., Martins, S. C. V., Sanglard, L. M. V. P., dos Santos, M. S., Menezes-Silva, P. E., Detman, K. C., Sanglard, M. L., Cardoso, A. A., Morais, L. E., Vital, C. E., Araújo, W. L., Nunes-Nesi, A., & DaMatta, F. M. (2020). Starch accumulation does not lead to feedback photosynthetic downregulation in girdled coffee branches under varying source-to-sink ratios. Trees, 34(1), 1-16. https://doi.org/10.1007/s00468-019-01893-8
Bastianin, A., Lanza, A., & Manera, M. (2018). Economic impacts of El Niño southern oscillation: Evidence from the Colombian coffee market. Agricultural Economics, 49(5), 623-633. https://doi.org/10.1111/agec.12447
Bote, A. D., & Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30(4), 1275-1285. https://doi.org/10.1007/s00468-016-1365-x
Bote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39-46. https://doi.org/10.1016/j.njas.2017.09.002
Cannell, M. G. (1985). Chapter 5. Physiology of the coffee crop.108-134Pp. In Clifford, M. N. (Ed.).Coffee: Botany, Biochemistry and Production of Beans and Beverage. Springer US. https://doi.org/10.1007/978-1-4615-6657-1
Ceballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190, 103126. https://doi.org/10.1016/j.agsy.2021.103126
Cunha, R. L. (2007). Crescimento, metabolismo do carbono e partição de assimilados, em resposta à manipulação da razão fonte:dreno, em Coffea arabica L. sob condições de campo. https://locus.ufv.br//handle/123456789/995
Chaves, A. R. M., Martins, S. C. V., Batista, K. D., Celin, E. F., & DaMatta, F. M. (2012). Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77, 207-218. https://doi.org/10.1016/j.envexpbot.2011.11.011
Chemura, A., Mudereri, B. T., Yalew, A. W., & Gornott, C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-87647-4
DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485-510. https://doi.org/10.1590/S1677-04202007000400014
DaMatta, F. M., Cunha, R. L., Antunes, W. C., Martins, S. C. V., Araujo, W. L., Fernie, A. R., & Moraes, G. A. B. K. (2008). In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist, 178(2), 348-357. https://doi.org/10.1111/j.1469-8137.2008.02367.x
DaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537
Federación Nacional de Cafeteros de Colombia. (2020b). Publicaciones en Informe de Gestión. (2022). https://federaciondecafeteros.org/app/uploads/2022/12/Informe-del-Gerente-D.pdf (consultado abril, 2023)
Filho L, O. F. de, & Malavolta, E. (2003). Studies on mineral nutrition of the coffee plant (Coffea arabica L. cv. Catuaí Vermelho): LXIV. Remobilization and re-utilization of nitrogen and potassium by normal and deficient plants. Brazilian Journal of Biology, 63(3), 481-490. https://doi.org/10.1590/S1519-69842003000300014
Franck, N., Vaast, P., Génard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. https://doi.org/10.1093/treephys/26.4.517
García L, J. C., Posada-Suárez, H., & Läderach, P. (2014). Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. Plos one, 9(12), e113510. https://doi.org/10.1371/journal.pone.0113510
Gómez G., L. F. (2012). Metabolismo de carbono y relación fuente-demanda en el cafeto (Coffea arabica L). Tesis de doctorado. Universidad Nacional de Colombia, Sede Medellín.
González O, Hernán., Sadeghian K, Siavosh & Jaramillo R, Álvaro. (2014). Épocas recomendables para la fertilización de cafetales. Avances Técnicos 442: 1-12 p. http://hdl.handle.net/10778/498
Hameed, A., Hussain, S. A., & Suleria, H. A. R. (2020). “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. En J.-M. Mérillon & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp. 641-705). Springer International Publishing. https://doi.org/10.1007/978-3-319-96397-6_21
International Coffee Organization. Trade Statistics Table. (2023). Coffee production by exporting countries. https://www.ico.org/trade_statistics.asp?section=Statistics (Consultado Abril, 2023)
Jawo, T. O., Kyereh, D., & Lojka, B. (2022). The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Climate and Development, 0(0), 1-17. https://doi.org/10.1080/17565529.2022.2057906
Leibovich, J., Sánchez-Céspedes, L. M., Marín, Córdoba, C. C., Y. A., Méndez, J. D., & Izquierdo, J. M. (2022). Proyección de productores y de la población en hogares cafeteros a 2050. Ensayos de Economía Cafetera, 35(1), 9-95. https://doi.org/10.38141/10788/035-1-1
Leguizamón C., J. E., & Arcila P., J. (1991). Secamiento de ramas y frutos del cafeto y su relación con la roya. Avances Técnicos Nº 166. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/944
Molina, D. M., & Rivera, R. M. (2022). Identifying Coffea genotypes tolerant to water deficit. Coffee Science - ISSN 1984-3909, 17, e171994-e171994. https://doi.org/10.25186/.v17i.1994
Unigarro-Muñoz, C. A., Hernández-Arredondo, J. D., Montoya-Restrepo, E. C., Medina-Rivera, R. D., Ibarra-Ruales, L. N., Carmona-González, C. Y., Flórez-Ramos, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412-416. https://doi.org/10.1590/1678-4499.0026
Unigarro, C. A. U., Bejarano, L. M. D., & Acuña, J. R. (2022). Effect of fruit load of the first coffee harvests on leaf gas exchange. Pesquisa Agropecuária Tropical, 51, e69865. https://doi.org/10.1590/1983-40632021v5169865
Valencia A., G. (1974). El paloteo del cafeto. Avances Técnicos Nº 82. Cenicafé. 2Pp. https://biblioteca.cenicafe.org/handle/10778/873
Valencia A., G. (1999). Fisiología, nutrición y fertilización del cafeto. Agroinsumos del café S.A.-Cenicafé. 94 Pp.
Vaast, P., Angrand, J., Franck, N., Dauzat, J., & Génard, M. (2005). Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiology, 25(6), 753-760. https://doi.org/10.1093/treephys/25.6.753
Agroclimática cafetera-Agroclima. (2023). Portal web. Disponible en https://agroclima.cenicafe.org/ (Consultado en Mayo, 2023)
Amaral, J. a. T., Da Matta, F. M., & Rena, A. B. (2001). Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira de Fisiologia Vegetal, 13(1), 66-74. https://doi.org/10.1590/S0103-31312001000100008
Bihmidine, S., Hunter, C. T., Johns, C. E., Koch, K. E., & Braun, D. M. (2013). Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 4, 177. https://doi.org/10.3389/fpls.2013.00177
Castro-Tanzi, S., Flores, M., Wanner, N., Dietsch, T. V., Banks, J., Ureña-Retana, N., & Chandler, M. (2014). Evaluation of a non-destructive sampling method and a statistical model for predicting fruit load on individual coffee (Coffea arabica) trees. Scientia Horticulturae, 167, 117-126. https://doi.org/10.1016/j.scienta.2013.12.013
Centro Nacional de Investigaciones de Café. (2021). Guía más agronomía, más productividad, más calidad (3a ed.). Cenicafé. https://doi.org/10.38141/cenbook-0014
De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18, 175-199. https://doi.org/10.1590/S1677-04202006000100013
Dias, E. C., Borém, F. M., Pereira, R. G. F. A., & Guerreiro, M. C. (2012). Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. European Food Research and Technology, 234(1), 25-32. https://doi.org/10.1007/s00217-011-1607-5
Duque O, H., Salazar, H. M., Rojas-Sepúlveda, L. A., & Gaitán, Á. (2021). Análisis económico de tecnologías para la producción de café en Colombia. Cenicafé. https://doi.org/10.38141/cenbook-0016
Federación Nacional de Cafeteros de Colombia. (2021b). Publicaciones en Informe de Gestión 2020. https://federaciondecafeteros.org/wp/tipos/informes/ (Consultado mayo, 2023).
Flórez, C. P., Maldonado, C. E., Cortina, H. A., Moncada, M. del P., Montoya, E. C., Ibarra, L. N., Unigarro, C. A., Rendón, J. R., & Duque Orrego, H. (2016). Cenicafé 1 : Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Avances Técnicos Cenicafé, 469, 1-8. https://doi.org/10.38141/10779/0469
Jaramillo, A. (2018). El clima de la caficultura en Colombia. Cenicafé. 206 p. https://doi.org/10.38141/cenbook-0031
Laviola, B. G., Martínez, H. E. P., Souza, R. B. de, Salomão, L. C. C., & Cruz, C. D. (2009). Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions. Journal of Plant Nutrition, 32(6), 980-995. https://doi.org/10.1080/01904160902872164
León-Rojas, F. R., Valderrama-Palacios, D., Borjas-Ventura, R., Alvarado-Huaman, L., Julca-Otiniano, A., Figueroa, L. T. y, Castro-Cepero, V., Ninahuanca, S. M., & Cardoza-Sánchez, A. (2023). Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature. Agronomía Colombiana, 41(1), Article 1. https://doi.org/10.15446/agron.colomb.v41n1.105778
Maldonado, C. E. M., & Giraldo, L. Á. (2020). Resistencia genética a la enfermedad de la cereza del café en variedades cultivadas en Colombia. Revista Cenicafé, 71(1), 69-90. https://doi.org/10.38141/10778/1121
Mendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. https://cran.rproject.org/web/packages/agricolae/index.html
Osorio Pérez, V., Matallana Pérez, L. G., Fernandez-Alduenda, M. R., Alvarez Barreto, C. I., Gallego Agudelo, C. P., & Montoya Restrepo, E. C. (2023). Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020341
R Development Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.0.4/
Rakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305-316. https://doi.org/10.1007/s10725-020-00607-2
Rakocevic, M., dos Santos Scholz, M. B., Pazianotto, R. A. A., Matsunaga, F. T., & Ramalho, J. C. (2023). Variation in Yield, Berry Distribution and Chemical Attributes of Coffea arabica Beans among the Canopy Strata of Four Genotypes Cultivated under Contrasted Water Regimes. Horticulturae, 9(2), Article 2. https://doi.org/10.3390/horticulturae9020215
Rendón S., J. R., & Montoya R., E. C. (2015). Cómo registrar las floraciones en los cafetales. Avances Técnico Nº 455,1-8. https://biblioteca.cenicafe.org/handle/10778/598
Rendón S., J., Arcila P., J., Montoya-Restrepo, E C. (2008). Estimación de la producción de café con base en los registros de floración. Revista Cenicafé 59 (3): 238-259. https://doi.org/10.38141/rev.cenicafe59-3
Rendón S., J. R. (2020). Administración de sistemas de producción de café a libre exposición solar. En Centro Nacional de Investigaciones de Café (Ed.), Manejo Agronómico de los Sistemas de Producción de Café (pp. 34–71). Cenicafé. https://doi.org/10.38141/10791/0002_2
Ságio, S. A., Lima, A. A., Barreto, H. G., de Carvalho, C. H. S., Paiva, L. V., & Chalfun-Junior, A. (2013). Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 35(11), 3091-3098. https://doi.org/10.1007/s11738-013-1342-6
Sadeghian, S. (2022). Nutrición de café. Consideraciones para el manejo de la fertilidad del suelo. Cenicafé. https://doi.org/10.38141/cenbook-0017
Sanz-Uribe, J. R., Oliveros-Tascón, C. E., Duque Orrego, H., Mejía, C. G., Benavides Machado, P., & Medina-Rivera, R. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1-8. https://doi.org/10.38141/10779/0488
Somarriba, E., & Quesada, F. (2022). Modeling age and yield dynamics in Coffea arabica pruning systems. Agricultural Systems, 201, 103450. https://doi.org/10.1016/j.agsy.2022.103450
Taiz, L., Zeiger, E., Maller, I A., & Murphy, A. (2015). Plant Physiology and Development. Six edition. Massachusetts, USA. Sinauer Associates Inc Publisher. 692 pp.
Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197-204. https://doi.org/10.1002/jsfa.2338
Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465
Ávila, E. A. da S., Sousa, C. M., Pereira, W., Melo, H. C. de, Almeida, V. G., & Sarti, J. K. (2020). Relationship of gas exchanges in different phenological phases with coffee productivity in the Cerrado. Research, Society and Development, 9(7), Art. 7. https://doi.org/10.33448/rsd-v9i7.4123
Cannell, M. G. R. (1971). Production and distribution of dry matter in trees of Coffea arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Annals of Applied Biology, 67(1), 99-120. https://doi.org/10.1111/j.1744-7348.1971.tb02910.x
Carrillo, I.F., Mejía, B, Franco, H.F. (1994). Manual de laboratorio análisis foliares. Cenicafé, 1-52p.
de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446-2469. https://doi.org/10.1111/nph.17074
Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. https://doi.org/10.1016/j.pbi.2009.05.006
Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Rosado, L. D. S. (2007). Acúmulo de nutrientes em frutos de cafeeiro em duas altitudes de cultivo: Micronutrientes. Revista Brasileira de Ciência do Solo, 31, 1439-1449. https://doi.org/10.1590/S0100-06832007000600021
León-Burgos, A. F., Unigarro, C., & Balaguera-López, H. E. (2022). Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombian? South African Journal of Botany, 149, 366-375. https://doi.org/10.1016/j.sajb.2022.06.034
Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. En Methods in Enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1
Martinez, H. E. P., Menezes, J. F. S., Souza, R. B. de, Alvarez Venegas, V. H., & Guimarães, P. T. G. (2003). Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesquisa Agropecuária Brasileira, 38, 703-713. https://doi.org/10.1590/S0100-204X2003000600006
Mohan, M. M., Narayanan, S. L., & Ibrahim, S. M. (2000). Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, 25(2), 38-39.
Ocampo A., D.M.; Riaño H., N.M.; López R., J.C.; López F., Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos del pericarpio durante el desarrollo del fruto del cafeto. Cenicafé, 61(4):327-343. https://doi.org/10.38141/rev.cenicafe61-4
Pillitteri, L. J., & Torii, K. U. (2012). Mechanisms of Stomatal Development. Annual Review of Plant Biology, 63(1), 591-614. https://doi.org/10.1146/annurev-arplant-042811-105451
Pompelli, M. F., Martins, S. C. V., Antunes, W. C., Chaves, A. R. M., & DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060. https://doi.org/10.1016/j.jplph.2010.03.001
Revelle, W. (2020). Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.0.8.
Roby, J. F., & White, B.J., (1987). Biochemical techniques: Theory and practice. Books/Cole, Publishing Company, Monterey, CA, USA. 267-275 pp.
Sadeghian K., S., Mejia M, B., & González O, H. (2012). Acumulación de nitrogeno, fosforo y potasio en los frutos de café (Coffea arabica L). Revista de Cenicafé, 63(1), 7-18. https://doi.org/10.38141/rev.cenicafe63-1
Sadeghian K., S.; Salamanca J., A. (2015). Micronutrientes en frutos y hojas de café. Revista Cenicafé 66 (2): 73-87.
Salamanca, A., & González-Osorio, H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), Article 2. https://doi.org/10.38141/10778/71210
Sousa, J. S., Neves, J. C. L., Martinez, H. E. P., & Alvarez, V. H. V. (2018). Relationship between Coffee Leaf Analysis and Soil Chemical Analysis. Revista Brasileira de Ciência Do Solo, 42, e0170109. https://doi.org/10.1590/18069657rbcs20170109
Souza, B. P., Martinez, H. E. P., de Carvalho, F. P., Loureiro, M. E., & Sturião, W. P. (2020). Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16), 2455-2465. https://doi.org/10.1080/01904167.2020.1771589
Toro-Herrera, M. A., Pennacchi, J. P., Vieira, D. A., Costa, V. E., Honda Filho, C. P., Barbosa, A. C. M. C., & Barbosa, J. P. R. a. D. (2023). Source-sink patterns on coffee trees related to annual climate variability: An approach through stable isotopes analysis. Annals of Applied Biology, 1-13. https://doi.org/10.1111/aab.12872
Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37(7), 139. https://doi.org/10.1007/s11738-015-1870-3
Valencia A., G. (1986). Niveles adecuados de nutrimentos en suelos y hojas para varios cultivos. Avances Técnicos Cenicafé, 130, 1-4.
Wang, Y., Chen, Y.-F., & Wu, W.-H. (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63(1), 34-52. https://doi.org/10.1111/jipb.13053
Araújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. https://doi.org/10.1111/j.1365-3040.2011.02332.x
Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239-1248. https://doi.org/10.1093/treephys/26.9.1239
Cambou, A., Thaler, P., Clément-Vidal, A., Barthès, B. G., Charbonnier, F., Van den Meersche, K., Aguilar Vega, M. E., Avelino, J., Davrieux, F., Labouisse, J.-P., de Melo Virginio Filho, E., Deleporte, P., Brunet, D., Lehner, P., & Roupsard, O. (2021). Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica). Tree Physiology, 41(12), 2308-2325. https://doi.org/10.1093/treephys/tpab075
Clemente, J. M., Martinez, H. E. P., Alves, L. C., Finger, F. L., & Cecon, P. R. (2015). Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy, 37, 297-305. https://doi.org/10.4025/actasciagron.v37i3.19063
Crisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127-139. https://doi.org/10.1093/treephys/10.2.127
Koutouleas, A., Sarzynski, T., Bordeaux, M., Bosselmann, A. S., Campa, C., Etienne, H., Turreira-García, N., Rigal, C., Vaast, P., Ramalho, J. C., Marraccini, P., & Ræbild, A. (2022). Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.877476
Koshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242-250. https://doi.org/10.1016/j.plantsci.2006.03.017
Koshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2022, 4, 378–383. Disponible en: http://www.eurchembull.com/.../_193 (Consultado 23 Julio 2023).
Läderach, P., Oberthür, T., Cook, S., Estrada Iza, M., Pohlan, J. A., Fisher, M., & Rosales Lechuga, R. (2011). Systematic agronomic farm management for improved coffee quality. Field Crops Research, 120(3), 321-329. https://doi.org/10.1016/j.fcr.2010.10.006
Linne, B. M., Tello, E., Simons, C. T., & Peterson, D. G. (2023). Characterization of the impact of chlorogenic acids on tactile perception in coffee through an inverse effect on mouthcoating sensation. Food Research International, 172, 113167. https://doi.org/10.1016/j.foodres.2023.113167
López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., Chalfun-Junior, A., López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., & Chalfun-Junior, A. (2021). An overview of the endogenous and environmental factors related to the Coffea arabica flowering process. Beverage Plant Research, 1(1), 1-16. https://doi.org/10.48130/BPR-2021-0013
Osorio, V., Medina, R., Acuña, J. R., Pabón, J., Álvarez, C. I., Matallana, L. G., & Fernández-Alduenda, M. R. (2023b). Transformation of organic acids and sugars in the mucilage and coffee beans during prolonged fermentation. Journal of Food Composition and Analysis, 105551. https://doi.org/10.1016/j.jfca.2023.105551
Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad - Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546
Sarmiento-Herrera, N., Ramírez-Carabalí, C., García-López, J. C., Hincapié-Velásquez, K. A., & Orozco-Jaramillo, D. (2022). Aplicativo de balance hídrico para el cultivo de café en Colombia. Avances Técnicos Cenicafé, 539, 1-8. https://doi.org/10.38141/10779/0539
Silva, P. C. da, Junior, W. Q. R., Ramos, M. L. G., Rocha, O. C., Veiga, A. D., Silva, N. H., Brasileiro, L. de O., Santana, C. C., Soares, G. F., Malaquias, J. V., & Vinson, C. C. (2022). Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. Plants, 11(17), Art. 17. https://doi.org/10.3390/plants11172198
Tognetti, J. A., Horacio, P., & Martinez-Noel, G. (2013). Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 8(3), e23316. https://doi.org/10.4161/psb.23316
Vélez A., B. E., Jaramillo R., A., Chaves C., B., & Franco A., M. (2000). Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Nº 272. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/794
Vinecky, F., Davrieux, F., Mera, A. C., Alves, G. S. C., Lavagnini, G., Leroy, T., Bonnot, F., Rocha, O. C., Bartholo, G. F., Guerra, A. F., Rodrigues, G. C., Marraccini, P., & Andrade, A. C. (2017). Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. The Journal of Agricultural Science, 155(6), 902-918. https://doi.org/10.1017/S0021859616000988
Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry, 71(14), 1610-1614. https://doi.org/10.1016/j.phytochem.2010.07.007
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 107 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85806/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85806/2/1121936615.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85806/3/1121936615.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
93ee140edb883c07d25f54abcb43b26a
165be5fd68cae0a78c85d02fa901a94d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089744566452224
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Balaguera López, Helber Enrique29447b082be6906c87e15a8eefe553d9600Rendón Sáenz, José Raúl4878772c4f41be2a10f18f2483082972León Burgos, Andrés Felipe782960b9d09d89605c6fd60f91032909600Agronomía-Cenicafé2024-03-13T18:49:54Z2024-03-13T18:49:54Z2023https://repositorio.unal.edu.co/handle/unal/85806Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl incremento de la carga de frutos en las plantas de café, afecta el crecimiento vegetativo, las concentraciones de nutrientes, clorofilas y azúcares solubles a nivel foliar, y la composición bioquímica de las almendras. El objetivo de esta investigación fue evaluar el efecto de la carga de frutos sobre el crecimiento y desarrollo de las plantas de C. arabica, en etapa de producción, en un cultivo ubicado en la zona central cafetera colombiana. Se empleó plantas de la variedad “Cenicafé 1” de tres años de edad después de establecidas en campo, las cuales, se sometieron a nueve tratamientos con diferentes intensidades de cargas de frutos aplicados en toda la planta (desde el 20% hasta 100%), bajo un diseño experimental completamente aleatorio con seis repeticiones. Se realizaron mediciones de crecimiento vegetativo y reproductivo, intercambio de gases, concentración de nutrientes, clorofilas y azúcares solubles en las hojas, acumulación de biomasa seca y mediciones bioquímicas en las almendras. Se determinó que con cargas de frutos del 100% se afectó de manera significativa y con disminuciones el crecimiento vegetativo aéreo, el contenido de clorofilas foliar, concentraciones de macronutrientes y micronutrientes, así como la relación del área foliar específica-RAE, área foliar específica-AFE y cantidad de frutos mal formados. Asimismo, se observaron disminuciones lineales de la tasa de crecimiento de las ramas, azúcares solubles en hojas y almendras, reducciones de ácidos orgánicos y alcaloides en las almendras. Con estos resultados se evidenció el efecto de las altas cargas de frutos en el desempeño fisiológico y crecimiento vegetativo de la planta, así como en la composición bioquímica de las almendras de la variedad “Cenicafé 1” ampliamente sembrada en la caficultura de Colombia. (Texto tomado de la fuente).The increased fruit loads in the coffee trees affects the vegetative growth, the concentrations of nutrients, chlorophylls, and soluble sugars at the foliar level, as well as the biochemical composition of the bean. The objective of this research was to evaluate the effect of fruit load on the growth and development of C. arabica coffee plants at the production stage located in the central Colombian coffee zone. The evaluations were carried out on three-year-old "Cenicafé 1" variety plants established under field conditions and were subjected to nine treatments with different intensities of fruit loads applied whole-plant-level (20% until 100%) under a completely randomized experimental design with six repetitions. Measurements of vegetative and reproductive growth, gas exchange, and content of nutrients, chlorophylls, and soluble sugars in the leaves were performed; additionally, the accumulation of dry biomass and bean biochemical content also were analyzed. It was determined that with 100%-fruit loads, the vegetative shoot growth, the concentrations of chlorophylls, macronutrients, and micronutrients, and the specific leaf area ratio-LAR were significantly affected, as well as the significant increase of the specific leaf area-SLA and malformed fruits were reported. Likewise, linear decreases in the growth rate of the branches, soluble sugars in leaves and beans, and reductions in organic acids and alkaloids are evident. The results indicated that the high fruit loads alter the physiological performance and vegetative plant growth, and biochemical composition of beans from coffee cv “Cenicafé 1” plants widely sown in the coffee growing areas of ColombianMaestríaMagíster en Ciencias AgrariasFisiología de cultivosCiencias Agronómicas.Sede Bogotáxviii, 107 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónCrecimiento de plantaProducción de productos agrícolasIndustria cafeteraplant growthagricultural productioncoffee industryRelación área foliar por frutoIntercambio de gases foliarAzúcares solublesPartición de masa secaContenido bioquímico en granosLeaf-to-fruit ratioLeaf gas exchangesSoluble sugarsDry mass partitioningBean biochemical contentEfecto de la carga de frutos sobre el crecimiento, desempeño fisiológico, producción de la planta y composición bioquímica de la almendra de Coffea arabica LEffect of the fruit load on growth, physiological performance, plant production, and bean biochemical composition of Coffea arabica LTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovocAhmed, S., Brinkley, S., Smith, E., Sela, A., Theisen, M., Thibodeau, C., Warne, T., Anderson, E., Van Dusen, N., Giuliano, P., Ionescu, K. E., & Cash, S. B. (2021). Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.708013Almeida, W. L., Ávila, R. T., Pérez-Molina, J. P., Barbosa, M. L., Marçal, D. M. S., de Souza, R. P. B., Martino, P. B., Cardoso, A. A., Martins, S. C. V., & DaMatta, F. M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. Tree Physiology, 41(1), 35-49. https://doi.org/10.1093/treephys/tpaa116Arcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1), 19-27. https://doi.org/10.1111/j.1744-7348.2002.tb00191.xArcila P, J. (2007). Capítulo 2. Crecimiento y desarrollo de la planta de café. Cap. 21-60 Pp. En Arcila P, J., Farfán V, F., Moreno B, A., Salazar G, L F & Hincapié G, E. (2007). Sistemas de producción de café en Colombia. Centro Nacional de investigaciones del café. Chinchiná, Caldas. 309 p. http://hdl.handle.net/10778/720Avila, R. T., Martins, S. C. V., Sanglard, L. M. V. P., dos Santos, M. S., Menezes-Silva, P. E., Detman, K. C., Sanglard, M. L., Cardoso, A. A., Morais, L. E., Vital, C. E., Araújo, W. L., Nunes-Nesi, A., & DaMatta, F. M. (2020). Starch accumulation does not lead to feedback photosynthetic downregulation in girdled coffee branches under varying source-to-sink ratios. Trees, 34(1), 1-16. https://doi.org/10.1007/s00468-019-01893-8Bastianin, A., Lanza, A., & Manera, M. (2018). Economic impacts of El Niño southern oscillation: Evidence from the Colombian coffee market. Agricultural Economics, 49(5), 623-633. https://doi.org/10.1111/agec.12447Bote, A. D., & Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30(4), 1275-1285. https://doi.org/10.1007/s00468-016-1365-xBote, A. D., & Vos, J. (2017). Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, 83, 39-46. https://doi.org/10.1016/j.njas.2017.09.002Cannell, M. G. (1985). Chapter 5. Physiology of the coffee crop.108-134Pp. In Clifford, M. N. (Ed.).Coffee: Botany, Biochemistry and Production of Beans and Beverage. Springer US. https://doi.org/10.1007/978-1-4615-6657-1Ceballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190, 103126. https://doi.org/10.1016/j.agsy.2021.103126Cunha, R. L. (2007). Crescimento, metabolismo do carbono e partição de assimilados, em resposta à manipulação da razão fonte:dreno, em Coffea arabica L. sob condições de campo. https://locus.ufv.br//handle/123456789/995Chaves, A. R. M., Martins, S. C. V., Batista, K. D., Celin, E. F., & DaMatta, F. M. (2012). Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77, 207-218. https://doi.org/10.1016/j.envexpbot.2011.11.011Chemura, A., Mudereri, B. T., Yalew, A. W., & Gornott, C. (2021). Climate change and specialty coffee potential in Ethiopia. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-87647-4DaMatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19(4), 485-510. https://doi.org/10.1590/S1677-04202007000400014DaMatta, F. M., Cunha, R. L., Antunes, W. C., Martins, S. C. V., Araujo, W. L., Fernie, A. R., & Moraes, G. A. B. K. (2008). In field-grown coffee trees source–sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist, 178(2), 348-357. https://doi.org/10.1111/j.1469-8137.2008.02367.xDaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. Journal of Agricultural and Food Chemistry, 66(21), 5264-5274. https://doi.org/10.1021/acs.jafc.7b04537Federación Nacional de Cafeteros de Colombia. (2020b). Publicaciones en Informe de Gestión. (2022). https://federaciondecafeteros.org/app/uploads/2022/12/Informe-del-Gerente-D.pdf (consultado abril, 2023)Filho L, O. F. de, & Malavolta, E. (2003). Studies on mineral nutrition of the coffee plant (Coffea arabica L. cv. Catuaí Vermelho): LXIV. Remobilization and re-utilization of nitrogen and potassium by normal and deficient plants. Brazilian Journal of Biology, 63(3), 481-490. https://doi.org/10.1590/S1519-69842003000300014Franck, N., Vaast, P., Génard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. https://doi.org/10.1093/treephys/26.4.517García L, J. C., Posada-Suárez, H., & Läderach, P. (2014). Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. Plos one, 9(12), e113510. https://doi.org/10.1371/journal.pone.0113510Gómez G., L. F. (2012). Metabolismo de carbono y relación fuente-demanda en el cafeto (Coffea arabica L). Tesis de doctorado. Universidad Nacional de Colombia, Sede Medellín.González O, Hernán., Sadeghian K, Siavosh & Jaramillo R, Álvaro. (2014). Épocas recomendables para la fertilización de cafetales. Avances Técnicos 442: 1-12 p. http://hdl.handle.net/10778/498Hameed, A., Hussain, S. A., & Suleria, H. A. R. (2020). “Coffee Bean-Related” Agroecological Factors Affecting the Coffee. En J.-M. Mérillon & K. G. Ramawat (Eds.), Co-Evolution of Secondary Metabolites (pp. 641-705). Springer International Publishing. https://doi.org/10.1007/978-3-319-96397-6_21International Coffee Organization. Trade Statistics Table. (2023). Coffee production by exporting countries. https://www.ico.org/trade_statistics.asp?section=Statistics (Consultado Abril, 2023)Jawo, T. O., Kyereh, D., & Lojka, B. (2022). The impact of climate change on coffee production of small farmers and their adaptation strategies: A review. Climate and Development, 0(0), 1-17. https://doi.org/10.1080/17565529.2022.2057906Leibovich, J., Sánchez-Céspedes, L. M., Marín, Córdoba, C. C., Y. A., Méndez, J. D., & Izquierdo, J. M. (2022). Proyección de productores y de la población en hogares cafeteros a 2050. Ensayos de Economía Cafetera, 35(1), 9-95. https://doi.org/10.38141/10788/035-1-1Leguizamón C., J. E., & Arcila P., J. (1991). Secamiento de ramas y frutos del cafeto y su relación con la roya. Avances Técnicos Nº 166. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/944Molina, D. M., & Rivera, R. M. (2022). Identifying Coffea genotypes tolerant to water deficit. Coffee Science - ISSN 1984-3909, 17, e171994-e171994. https://doi.org/10.25186/.v17i.1994Unigarro-Muñoz, C. A., Hernández-Arredondo, J. D., Montoya-Restrepo, E. C., Medina-Rivera, R. D., Ibarra-Ruales, L. N., Carmona-González, C. Y., Flórez-Ramos, C. P. (2015). Estimation of leaf area in coffee leaves (Coffea arabica L.) of the Castillo® variety. Bragantia, 74(4), 412-416. https://doi.org/10.1590/1678-4499.0026Unigarro, C. A. U., Bejarano, L. M. D., & Acuña, J. R. (2022). Effect of fruit load of the first coffee harvests on leaf gas exchange. Pesquisa Agropecuária Tropical, 51, e69865. https://doi.org/10.1590/1983-40632021v5169865Valencia A., G. (1974). El paloteo del cafeto. Avances Técnicos Nº 82. Cenicafé. 2Pp. https://biblioteca.cenicafe.org/handle/10778/873Valencia A., G. (1999). Fisiología, nutrición y fertilización del cafeto. Agroinsumos del café S.A.-Cenicafé. 94 Pp.Vaast, P., Angrand, J., Franck, N., Dauzat, J., & Génard, M. (2005). Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field. Tree Physiology, 25(6), 753-760. https://doi.org/10.1093/treephys/25.6.753Agroclimática cafetera-Agroclima. (2023). Portal web. Disponible en https://agroclima.cenicafe.org/ (Consultado en Mayo, 2023)Amaral, J. a. T., Da Matta, F. M., & Rena, A. B. (2001). Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira de Fisiologia Vegetal, 13(1), 66-74. https://doi.org/10.1590/S0103-31312001000100008Bihmidine, S., Hunter, C. T., Johns, C. E., Koch, K. E., & Braun, D. M. (2013). Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science, 4, 177. https://doi.org/10.3389/fpls.2013.00177Castro-Tanzi, S., Flores, M., Wanner, N., Dietsch, T. V., Banks, J., Ureña-Retana, N., & Chandler, M. (2014). Evaluation of a non-destructive sampling method and a statistical model for predicting fruit load on individual coffee (Coffea arabica) trees. Scientia Horticulturae, 167, 117-126. https://doi.org/10.1016/j.scienta.2013.12.013Centro Nacional de Investigaciones de Café. (2021). Guía más agronomía, más productividad, más calidad (3a ed.). Cenicafé. https://doi.org/10.38141/cenbook-0014De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology, 18, 175-199. https://doi.org/10.1590/S1677-04202006000100013Dias, E. C., Borém, F. M., Pereira, R. G. F. A., & Guerreiro, M. C. (2012). Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. European Food Research and Technology, 234(1), 25-32. https://doi.org/10.1007/s00217-011-1607-5Duque O, H., Salazar, H. M., Rojas-Sepúlveda, L. A., & Gaitán, Á. (2021). Análisis económico de tecnologías para la producción de café en Colombia. Cenicafé. https://doi.org/10.38141/cenbook-0016Federación Nacional de Cafeteros de Colombia. (2021b). Publicaciones en Informe de Gestión 2020. https://federaciondecafeteros.org/wp/tipos/informes/ (Consultado mayo, 2023).Flórez, C. P., Maldonado, C. E., Cortina, H. A., Moncada, M. del P., Montoya, E. C., Ibarra, L. N., Unigarro, C. A., Rendón, J. R., & Duque Orrego, H. (2016). Cenicafé 1 : Nueva variedad de porte bajo altamente productiva resistente a la roya y al CBD con mayor calidad física del grano. Avances Técnicos Cenicafé, 469, 1-8. https://doi.org/10.38141/10779/0469Jaramillo, A. (2018). El clima de la caficultura en Colombia. Cenicafé. 206 p. https://doi.org/10.38141/cenbook-0031Laviola, B. G., Martínez, H. E. P., Souza, R. B. de, Salomão, L. C. C., & Cruz, C. D. (2009). Macronutrient Accumulation in Coffee Fruits at Brazilian Zona Da Mata Conditions. Journal of Plant Nutrition, 32(6), 980-995. https://doi.org/10.1080/01904160902872164León-Rojas, F. R., Valderrama-Palacios, D., Borjas-Ventura, R., Alvarado-Huaman, L., Julca-Otiniano, A., Figueroa, L. T. y, Castro-Cepero, V., Ninahuanca, S. M., & Cardoza-Sánchez, A. (2023). Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature. Agronomía Colombiana, 41(1), Article 1. https://doi.org/10.15446/agron.colomb.v41n1.105778Maldonado, C. E. M., & Giraldo, L. Á. (2020). Resistencia genética a la enfermedad de la cereza del café en variedades cultivadas en Colombia. Revista Cenicafé, 71(1), 69-90. https://doi.org/10.38141/10778/1121Mendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. https://cran.rproject.org/web/packages/agricolae/index.htmlOsorio Pérez, V., Matallana Pérez, L. G., Fernandez-Alduenda, M. R., Alvarez Barreto, C. I., Gallego Agudelo, C. P., & Montoya Restrepo, E. C. (2023). Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy, 13(2), Article 2. https://doi.org/10.3390/agronomy13020341R Development Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org/bin/windows/base/old/4.0.4/Rakocevic, M., Braga, K. S. M., Batista, E. R., Maia, A. H. N., Scholz, M. B. S., & Filizola, H. F. (2020). The vegetative growth assists to reproductive responses of Arabic coffee trees in a long-term FACE experiment. Plant Growth Regulation, 91(2), 305-316. https://doi.org/10.1007/s10725-020-00607-2Rakocevic, M., dos Santos Scholz, M. B., Pazianotto, R. A. A., Matsunaga, F. T., & Ramalho, J. C. (2023). Variation in Yield, Berry Distribution and Chemical Attributes of Coffea arabica Beans among the Canopy Strata of Four Genotypes Cultivated under Contrasted Water Regimes. Horticulturae, 9(2), Article 2. https://doi.org/10.3390/horticulturae9020215Rendón S., J. R., & Montoya R., E. C. (2015). Cómo registrar las floraciones en los cafetales. Avances Técnico Nº 455,1-8. https://biblioteca.cenicafe.org/handle/10778/598Rendón S., J., Arcila P., J., Montoya-Restrepo, E C. (2008). Estimación de la producción de café con base en los registros de floración. Revista Cenicafé 59 (3): 238-259. https://doi.org/10.38141/rev.cenicafe59-3Rendón S., J. R. (2020). Administración de sistemas de producción de café a libre exposición solar. En Centro Nacional de Investigaciones de Café (Ed.), Manejo Agronómico de los Sistemas de Producción de Café (pp. 34–71). Cenicafé. https://doi.org/10.38141/10791/0002_2Ságio, S. A., Lima, A. A., Barreto, H. G., de Carvalho, C. H. S., Paiva, L. V., & Chalfun-Junior, A. (2013). Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 35(11), 3091-3098. https://doi.org/10.1007/s11738-013-1342-6Sadeghian, S. (2022). Nutrición de café. Consideraciones para el manejo de la fertilidad del suelo. Cenicafé. https://doi.org/10.38141/cenbook-0017Sanz-Uribe, J. R., Oliveros-Tascón, C. E., Duque Orrego, H., Mejía, C. G., Benavides Machado, P., & Medina-Rivera, R. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en la cosecha de café. Avances Técnicos Cenicafé, 488, 1-8. https://doi.org/10.38141/10779/0488Somarriba, E., & Quesada, F. (2022). Modeling age and yield dynamics in Coffea arabica pruning systems. Agricultural Systems, 201, 103450. https://doi.org/10.1016/j.agsy.2022.103450Taiz, L., Zeiger, E., Maller, I A., & Murphy, A. (2015). Plant Physiology and Development. Six edition. Massachusetts, USA. Sinauer Associates Inc Publisher. 692 pp.Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., & Génard, M. (2006). Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86(2), 197-204. https://doi.org/10.1002/jsfa.2338Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465Ávila, E. A. da S., Sousa, C. M., Pereira, W., Melo, H. C. de, Almeida, V. G., & Sarti, J. K. (2020). Relationship of gas exchanges in different phenological phases with coffee productivity in the Cerrado. Research, Society and Development, 9(7), Art. 7. https://doi.org/10.33448/rsd-v9i7.4123Cannell, M. G. R. (1971). Production and distribution of dry matter in trees of Coffea arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Annals of Applied Biology, 67(1), 99-120. https://doi.org/10.1111/j.1744-7348.1971.tb02910.xCarrillo, I.F., Mejía, B, Franco, H.F. (1994). Manual de laboratorio análisis foliares. Cenicafé, 1-52p.de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446-2469. https://doi.org/10.1111/nph.17074Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. https://doi.org/10.1016/j.pbi.2009.05.006Laviola, B. G., Martinez, H. E. P., Salomão, L. C. C., Cruz, C. D., Mendonça, S. M., & Rosado, L. D. S. (2007). Acúmulo de nutrientes em frutos de cafeeiro em duas altitudes de cultivo: Micronutrientes. Revista Brasileira de Ciência do Solo, 31, 1439-1449. https://doi.org/10.1590/S0100-06832007000600021León-Burgos, A. F., Unigarro, C., & Balaguera-López, H. E. (2022). Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombian? South African Journal of Botany, 149, 366-375. https://doi.org/10.1016/j.sajb.2022.06.034Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. En Methods in Enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1Martinez, H. E. P., Menezes, J. F. S., Souza, R. B. de, Alvarez Venegas, V. H., & Guimarães, P. T. G. (2003). Faixas críticas de concentrações de nutrientes e avaliação do estado nutricional de cafeeiros em quatro regiões de Minas Gerais. Pesquisa Agropecuária Brasileira, 38, 703-713. https://doi.org/10.1590/S0100-204X2003000600006Mohan, M. M., Narayanan, S. L., & Ibrahim, S. M. (2000). Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, 25(2), 38-39.Ocampo A., D.M.; Riaño H., N.M.; López R., J.C.; López F., Y. (2010). Intercambio de dióxido de carbono y cambios bioquímicos del pericarpio durante el desarrollo del fruto del cafeto. Cenicafé, 61(4):327-343. https://doi.org/10.38141/rev.cenicafe61-4Pillitteri, L. J., & Torii, K. U. (2012). Mechanisms of Stomatal Development. Annual Review of Plant Biology, 63(1), 591-614. https://doi.org/10.1146/annurev-arplant-042811-105451Pompelli, M. F., Martins, S. C. V., Antunes, W. C., Chaves, A. R. M., & DaMatta, F. M. (2010). Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, 167(13), 1052-1060. https://doi.org/10.1016/j.jplph.2010.03.001Revelle, W. (2020). Psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, https://CRAN.r-project.org/package=psych. R package version 2.0.8.Roby, J. F., & White, B.J., (1987). Biochemical techniques: Theory and practice. Books/Cole, Publishing Company, Monterey, CA, USA. 267-275 pp.Sadeghian K., S., Mejia M, B., & González O, H. (2012). Acumulación de nitrogeno, fosforo y potasio en los frutos de café (Coffea arabica L). Revista de Cenicafé, 63(1), 7-18. https://doi.org/10.38141/rev.cenicafe63-1Sadeghian K., S.; Salamanca J., A. (2015). Micronutrientes en frutos y hojas de café. Revista Cenicafé 66 (2): 73-87.Salamanca, A., & González-Osorio, H. (2020). Respuesta del café a la aplicación foliar de nutrientes. Revista Cenicafé, 71(2), Article 2. https://doi.org/10.38141/10778/71210Sousa, J. S., Neves, J. C. L., Martinez, H. E. P., & Alvarez, V. H. V. (2018). Relationship between Coffee Leaf Analysis and Soil Chemical Analysis. Revista Brasileira de Ciência Do Solo, 42, e0170109. https://doi.org/10.1590/18069657rbcs20170109Souza, B. P., Martinez, H. E. P., de Carvalho, F. P., Loureiro, M. E., & Sturião, W. P. (2020). Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16), 2455-2465. https://doi.org/10.1080/01904167.2020.1771589Toro-Herrera, M. A., Pennacchi, J. P., Vieira, D. A., Costa, V. E., Honda Filho, C. P., Barbosa, A. C. M. C., & Barbosa, J. P. R. a. D. (2023). Source-sink patterns on coffee trees related to annual climate variability: An approach through stable isotopes analysis. Annals of Applied Biology, 1-13. https://doi.org/10.1111/aab.12872Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 37(7), 139. https://doi.org/10.1007/s11738-015-1870-3Valencia A., G. (1986). Niveles adecuados de nutrimentos en suelos y hojas para varios cultivos. Avances Técnicos Cenicafé, 130, 1-4.Wang, Y., Chen, Y.-F., & Wu, W.-H. (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology, 63(1), 34-52. https://doi.org/10.1111/jipb.13053Araújo, W. L., Nunes-Nesi, A., Nikoloski, Z., Sweetlove, L. J., & Fernie, A. R. (2012). Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment, 35(1), 1-21. https://doi.org/10.1111/j.1365-3040.2011.02332.xBertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239-1248. https://doi.org/10.1093/treephys/26.9.1239Cambou, A., Thaler, P., Clément-Vidal, A., Barthès, B. G., Charbonnier, F., Van den Meersche, K., Aguilar Vega, M. E., Avelino, J., Davrieux, F., Labouisse, J.-P., de Melo Virginio Filho, E., Deleporte, P., Brunet, D., Lehner, P., & Roupsard, O. (2021). Concurrent starch accumulation in stump and high fruit production in coffee (Coffea arabica). Tree Physiology, 41(12), 2308-2325. https://doi.org/10.1093/treephys/tpab075Clemente, J. M., Martinez, H. E. P., Alves, L. C., Finger, F. L., & Cecon, P. R. (2015). Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy, 37, 297-305. https://doi.org/10.4025/actasciagron.v37i3.19063Crisosto, C. H., Grantz, D. A., & Meinzer, F. C. (1992). Effects of water deficit on flower opening in coffee (Coffea arabica L.). Tree Physiology, 10(2), 127-139. https://doi.org/10.1093/treephys/10.2.127Koutouleas, A., Sarzynski, T., Bordeaux, M., Bosselmann, A. S., Campa, C., Etienne, H., Turreira-García, N., Rigal, C., Vaast, P., Ramalho, J. C., Marraccini, P., & Ræbild, A. (2022). Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.877476Koshiro, Y., Zheng, X.-Q., Wang, M.-L., Nagai, C., & Ashihara, H. (2006). Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits. Plant Science, 171(2), 242-250. https://doi.org/10.1016/j.plantsci.2006.03.017Koshiro, Y.; Jackson, M.C.; Nagai, C.; Ashihara, H. Changes in the content of sugars and organic acids during ripening of Coffea arabica and Coffea canephora fruits. Eur. Chem. Bull. 2022, 4, 378–383. Disponible en: http://www.eurchembull.com/.../_193 (Consultado 23 Julio 2023).Läderach, P., Oberthür, T., Cook, S., Estrada Iza, M., Pohlan, J. A., Fisher, M., & Rosales Lechuga, R. (2011). Systematic agronomic farm management for improved coffee quality. Field Crops Research, 120(3), 321-329. https://doi.org/10.1016/j.fcr.2010.10.006Linne, B. M., Tello, E., Simons, C. T., & Peterson, D. G. (2023). Characterization of the impact of chlorogenic acids on tactile perception in coffee through an inverse effect on mouthcoating sensation. Food Research International, 172, 113167. https://doi.org/10.1016/j.foodres.2023.113167López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., Chalfun-Junior, A., López, M. E., Santos, I. S., Oliveira, R. R. de, Lima, A. A., Cardon, C. H., & Chalfun-Junior, A. (2021). An overview of the endogenous and environmental factors related to the Coffea arabica flowering process. Beverage Plant Research, 1(1), 1-16. https://doi.org/10.48130/BPR-2021-0013Osorio, V., Medina, R., Acuña, J. R., Pabón, J., Álvarez, C. I., Matallana, L. G., & Fernández-Alduenda, M. R. (2023b). Transformation of organic acids and sugars in the mucilage and coffee beans during prolonged fermentation. Journal of Food Composition and Analysis, 105551. https://doi.org/10.1016/j.jfca.2023.105551Peñuela-Martínez, A. E., Sanz-Uribe, J. R., Guerrero, A., & Ramírez, C. A. (2022). Siete prácticas en el beneficio para obtener café de buena calidad - Proceso 7P®. Avances Técnicos Cenicafé, 546, 1-8. https://doi.org/10.38141/10779/0546Sarmiento-Herrera, N., Ramírez-Carabalí, C., García-López, J. C., Hincapié-Velásquez, K. A., & Orozco-Jaramillo, D. (2022). Aplicativo de balance hídrico para el cultivo de café en Colombia. Avances Técnicos Cenicafé, 539, 1-8. https://doi.org/10.38141/10779/0539Silva, P. C. da, Junior, W. Q. R., Ramos, M. L. G., Rocha, O. C., Veiga, A. D., Silva, N. H., Brasileiro, L. de O., Santana, C. C., Soares, G. F., Malaquias, J. V., & Vinson, C. C. (2022). Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. Plants, 11(17), Art. 17. https://doi.org/10.3390/plants11172198Tognetti, J. A., Horacio, P., & Martinez-Noel, G. (2013). Sucrose signaling in plants: A world yet to be explored. Plant Signaling & Behavior, 8(3), e23316. https://doi.org/10.4161/psb.23316Vélez A., B. E., Jaramillo R., A., Chaves C., B., & Franco A., M. (2000). Distribución de la floración y la cosecha de café en tres altitudes. Avances Técnicos Nº 272. Cenicafé. 4 Pp. https://biblioteca.cenicafe.org/handle/10778/794Vinecky, F., Davrieux, F., Mera, A. C., Alves, G. S. C., Lavagnini, G., Leroy, T., Bonnot, F., Rocha, O. C., Bartholo, G. F., Guerra, A. F., Rodrigues, G. C., Marraccini, P., & Andrade, A. C. (2017). Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. The Journal of Agricultural Science, 155(6), 902-918. https://doi.org/10.1017/S0021859616000988Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: Metabolite and signaling molecule. Phytochemistry, 71(14), 1610-1614. https://doi.org/10.1016/j.phytochem.2010.07.007Centro Nacional de Investigaciones del Café-CenicaféUniversidad Nacional de Colombia-Sede BogotáGrupos comunitariosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85806/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1121936615.2024.pdf1121936615.2024.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2932428https://repositorio.unal.edu.co/bitstream/unal/85806/2/1121936615.2024.pdf93ee140edb883c07d25f54abcb43b26aMD52THUMBNAIL1121936615.2024.pdf.jpg1121936615.2024.pdf.jpgGenerated Thumbnailimage/jpeg5505https://repositorio.unal.edu.co/bitstream/unal/85806/3/1121936615.2024.pdf.jpg165be5fd68cae0a78c85d02fa901a94dMD53unal/85806oai:repositorio.unal.edu.co:unal/858062024-03-13 23:04:35.749Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=