Modelos de pronóstico del precio del crudo: Un acercamiento desde las redes neuronales artificiales

Los modelos enfocados en la predicción del precio de mercado del crudo WTI han tomado gran importancia en el contexto económico mundial, sobretodo en momentos recientes donde la caída extrema de los precios han llevado a multiples naciones a ver recortados significativamente sus ingresos derivados d...

Full description

Autores:
Andrade Burgos, Nicolas
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/55896
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/55896
http://bdigital.unal.edu.co/51407/
Palabra clave:
33 Economía / Economics
Series de Tiempo
Time Series
redes neuronales artificiales autorregresivas
Arquitectura
Medidas de error de pronóstico
Lenguaje $R$
Precio de mercado del crudo
WTI
Pronóstico
Artificial autoregressive neural networks
Architecture
Forecasting error measures
$R$ language
Oil spot price
Forecast
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Los modelos enfocados en la predicción del precio de mercado del crudo WTI han tomado gran importancia en el contexto económico mundial, sobretodo en momentos recientes donde la caída extrema de los precios han llevado a multiples naciones a ver recortados significativamente sus ingresos derivados de su explotación. Los acercamientos tradicionales de series de tiempo donde se proponen los modelos ARIMA, ARCH y GARCH, modelos financieros y modelos estructurales son algunos de los enfoques más utilizados en la literatura existente, sin embargo la no linealidad de la serie así como problemas de alta volatilidad y autocorrelación serial de los residuales de los distintos modelos ajustados han introducido en la escena la utilización de las redes neuronales artificiales autorregresivas (ARNN). En el presente trabajo se propone evaluar el desempeño de pronóstico de una arquitectura óptima ARNN en comparación con modelos de series de tiempo clásicos entre los que se incluyen los modelos ARCH y GARCH además de una red neuronal artificial cuyas entradas incluyen los indices DXY y S and P500 para las frecuencias mensual, anual, diaria y semanal del precio de mercado del crudo WTI. La estimación y selección de las distintas arquitecturas probadas para las ARNN, en las distintas frecuencias de trabajo, fueron realizadas a través del paquete ARNN del lenguaje R; adicionalmente para la medición del desempeño de los distintos modelos en el conjunto de validación fueron utilizadas distintas medidas de error de pronóstico así como criterios de información. Los resultados prácticos sugieren que las ARNN ajustadas para las series de precios de mercado mensuales, diarios y semanales revelan un mejor desempeño en cuanto al pronóstico de valores futuros de cada serie.