Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes
ilustraciones, diagramas, tablas
- Autores:
-
León Vasco, Santiago
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81688
- Palabra clave:
- 550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Cuencas hidrográficas
Watersheds
Rocas - Análisis
Forearc basins
Northern Andes
Arc-continent collision
Atrato Basin
Sedimentary provenance
Tectonostratigraphy
Cuencas antearco
Andes del Norte
Colisión arco-continente
Cuenca Atrato
Procedencia sedimentaria
Tectonoestratigrafía
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_890c3ce01d492d7c92ec67667952546e |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81688 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
dc.title.translated.spa.fl_str_mv |
Evolución de cuencas de antearco en respuesta a un régimen de subducción cambiante: Registro geológico Neógeno al Reciente del noroccidente de los Andes Colombianos |
title |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
spellingShingle |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes 550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Cuencas hidrográficas Watersheds Rocas - Análisis Forearc basins Northern Andes Arc-continent collision Atrato Basin Sedimentary provenance Tectonostratigraphy Cuencas antearco Andes del Norte Colisión arco-continente Cuenca Atrato Procedencia sedimentaria Tectonoestratigrafía |
title_short |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
title_full |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
title_fullStr |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
title_full_unstemmed |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
title_sort |
Forearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian Andes |
dc.creator.fl_str_mv |
León Vasco, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Monsalve Mejía, Gaspar |
dc.contributor.author.none.fl_str_mv |
León Vasco, Santiago |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Cuencas hidrográficas Watersheds Rocas - Análisis Forearc basins Northern Andes Arc-continent collision Atrato Basin Sedimentary provenance Tectonostratigraphy Cuencas antearco Andes del Norte Colisión arco-continente Cuenca Atrato Procedencia sedimentaria Tectonoestratigrafía |
dc.subject.lemb.none.fl_str_mv |
Cuencas hidrográficas Watersheds Rocas - Análisis |
dc.subject.proposal.eng.fl_str_mv |
Forearc basins Northern Andes Arc-continent collision Atrato Basin Sedimentary provenance Tectonostratigraphy |
dc.subject.proposal.spa.fl_str_mv |
Cuencas antearco Andes del Norte Colisión arco-continente Cuenca Atrato Procedencia sedimentaria Tectonoestratigrafía |
description |
ilustraciones, diagramas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-07T15:20:19Z |
dc.date.available.none.fl_str_mv |
2022-07-07T15:20:19Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81688 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81688 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Aizprua, C., Witt, C., Johansen, S.E., Barba, D., 2019. Cenozoic stages of forearc evolution following the accretion of a sliver from the Late Cretaceous-Caribbean Large Igneous Province: SW Ecuador-NW Peru. Tectonics 38, 1441–1465. https://doi.org/10.1029/2018TC005235 Allen, P.A., Allen, J.R., 2013. Basin analysis: Principles and application to petroleum play assessment, 3rd ed. Wiley-Blackwell Almeida, J.J., Villamizar, F., 2012. Petrografía y geoquímica del Batolito Antioqueño en un sector del municipio de Santa Rosa de Osos, Antioquia (Bachelor thesis). Universidad Industrial de Santander, Bucaramanga Álvarez-Gómez, J.A., 2019. FMC -arthquake focal mechanis Ems data management, cluster and classification. Softw. X 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008 Arnott, R.W.C., 2010. Deep-marine sediments and sedimentary systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 295–322 Avellaneda-Jiménez, D.S., Cardona, A., Valencia, V., Barbosa, J.S., Jaramillo, J.S., Monsalve, G., Ramírez-Hoyos, L.F., 2020. Erosion and regional exhumation of an Early Cretaceous subduction/accretion complex in the Northern Andes. Int. Geol. Rev. 62, 186–209. https://doi.org/10.1080/00206814.2019.1596042 Baes, M., Sobolev, S., Gerya, T., Brune, S., 2020. Plume-induced subduction initiation: Single-slab or multi-slab subduction? Geochemistry, Geophys. Geosystems 21, e2019GC008663. https://doi.org/10.1029/2019GC008663 Baes, M., Stern, R.J., Whattam, S., Gerya, T. V., Sobolev, S. V., 2021. Plume-induced subduction initiation: Revisiting models and observations. Front. Earth Sci. 9, 1032. https://doi.org/10.3389/feart.2021.766604 Baillard, C., Crawford, W.C., Ballu, V., Regnier, M., Pelletier, B., Garaebiti, E., 2015. Seismicity and shallow slab geometry in the central Vanuatu subduction zone. J. Geophys. Res. Solid Earth 120, 5606–5623. https://doi.org/10.1002/2014JB011853 Baker, P.A., Fritz, S.C., Dick, C.W., Eckert, A.J., Horton, B.K., Manzoni, S., Ribas, C.C., Garzione, C.N., Battisti, S., 2014. The emerging field of geogenomics: Constraining geological problems with genetic data. Earth-Science Rev. 135, 38–47. https://doi.org/10.1016/j.earscirev.2014.04.001 Barbosa-Espitia, A.A., Kamenov, G.D., Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., 2019. Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos 348–349, 105185. https://doi.org/10.1016/j.lithos.2019.105185 Bayona, G., 2018. El inicio de la emergencia de los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 1–15. https://doi.org/10.18257/raccefyn.632 Bayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A.M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez-Marulanda, S., Cárdenas-Rozo, A.L., 2020. Unraveling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Res. https://doi.org/10.1111/bre.12496 Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., Ibañez-Mejia, M., 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth Planet. Sci. Lett. 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015 Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 120, 1171–1197. https://doi.org/10.1130/B26187.1 Becker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A.R., Miller, M.S., 2014. Static and dynamic support of western United States topography. Earth Planet. Sci. Lett. 402, 234–246. https://doi.org/10.1016/j.epsl.2013.10.012 Belousova, E., Griffin, W., O’Reilly, S.Y., Fisher, N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. to Mineral. Petrol. 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7 Blanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785 Blisniuk, P.M., Stern, L.A., Chamberlain, P., Zeitler, P.K., Ramos, V.A., Sobel, E.R., Haschke, M., Strecker, M. R., Warkus, F., 2006. Links between mountain uplift, climate, and surface processes in the Southern Patagonian Andes, in: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-. J., Ramos, V.A., Strecker, Manfred R., Wigger, P. (Eds.), The Andes, Active Subduction Orogeny. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 429–440. https://doi.org/10.1007/978-3-540-48684-8_20 Blow, W.A., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, in: Bronnimann, P., Renz, H.H. (Eds.), First International Conference on Planktonic Microfossils. Geneva, pp. 199–421 Borrero, C., Pardo, A., Jaramillo, C.M., Osorio, J.A., Cardona, A., Flores, A., Echeverri, S., Rosero, S., García, J., Castillo, H., 2012. Tectonostratigraphy of the Cenozoic Tumaco forearc basin (Colombian Pacific) and its relationship with the northern Andes orogenic build up. J. South Am. Earth Sci. 39, 75–92. https://doi.org/10.1016/j.jsames.2012.04.004 Boschman, L.M., van der Wiel, E., Flores, K.E., Langereis, C.G., van Hinsbergen, D.J.J., 2019. The Caribbean and Farallon plates connected: Constraints from stratigraphy and paleomagnestism of the Nicoya Peninsula, Costa Rica. J. Geophys. Res. Solid Earth 124, 6243–6266. https://doi.org/10.1029/2018JB016369 Bostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538. https://doi.org/10.1038/417536a Boutelier, D., Chemenda, A., Burg, J.P., 2003. Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth Planet. Sci. Lett. 212, 31–45. https://doi.org/10.1016/S0012-821X(03)00239-5 Brown, D., Alvarez-Marrón, J., Pérez-Estaún, A., Puchkov, V., Gorozhanina, Y., Ayarza, P., 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continent collision in the southern Urals. Tectonics 20, 364–375. https://doi.org/10.1029/2001TC900002 Buchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner-Mora, C., Ulianov, A., 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophys. Geosystems 11, 1–35. https://doi.org/10.1029/2009GC002901 Buchs, D.M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., Pitchford, S., 2019a. Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016 Buchs, D.M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., Portugal, E., Franceschi, P., Chichaco, E., Redwood, S.D., 2019b. Volcanic contribution to the emergence of Central Panama in the Early Miocene. Sci. Rep. 9, 1417. https://doi.org/10.1038/s41598-018-37790-2 Buchs, D.M., Kerr, A.C., Brims, J.C., Zapata-Villada, J.P., Correa-Restrepo, T., Rodríguez, G., 2018. Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth Planet. Sci. Lett. 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020 Bustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M., Valencia, V., 2017. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025 Calvo, C., 2003. Provenance of plutonic detritus in cover sandstones of Nicoya Complex, Costa Rica: Cretaceous unroofing history of a Mesozoic ophiolite sequence. Geol. Soc. Am. Bull. 115, 832–844. https://doi.org/10.1130/0016-7606(2003)115<0832:POPDIC>2.0.CO;2 Cardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032 Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo-Trujillo, A., Schmitt, A.K., Mejía, D., Arenas, J.C., 2020. Cretaceous record from a Mariana to an Andean-type margin in the Central Cordillera of the Colombian Andes, in: Gómez, J., Pinilla-Pachón, A.O. (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, Bogotá, p. 39. https://doi.org/10.32685/pub.esp.36.2019.10 Cardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M.N., Gehrels, G.E., Jaramillo, C., Montes, C., Ojeda, G., Ruiz, J., 2011. Early-subduction-related orogen in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nov. 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.x Cardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U.G., Muñoz, C.M., 2014. Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin. J. South Am. Earth Sci. 50, 75–92. https://doi.org/10.1016/j.jsames.2013.12.006 Case, J.E., Duran, L.G., López, A., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Geol. Soc. Am. Bull. 82, 2685–2712. Cassel, E.J., Smith, M.E., Jicha, B.R., 2018. The impact of slab rollback on Earth’s surface: Uplift and extension in the hinterland of the North American Cordillera. Geophys. Res. Lett. 45, 10996–11004. https://doi.org/10.1029/2018GL079887 Cawood, P.A., Kröner, Alfred, Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history, in: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318, 1-36 Cediel, F., Restrepo, I., Marín-Cerón, M.I., Duque-Caro, H., Cuartas, C., Mora, C., Montenegro, G., García, E., Tovar, D., Muñoz, G., 2009. Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia. Fondo Editorial EAFIT, Medellín Celestino, M.A.L., Miranda, T.S., Mariano, G., Lima, M.A., Carvalho, B.R.B.M., Falcão, T.C., Topan, J.G., Barbosa, J.A., Gomes, I.F., 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe basin, Brazil, NE, Brazil. J. Struct. Geol. 104116. https://doi.org/10.1016/j.jsg.2020.104116 Champagnac, J.-. D., Molnar, P., Sue, C., Herman, F., 2012. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403. https://doi.org/10.1029/2011JB008348 Chang, Z., Vervoort, J.D., McClelland, W.C., Knaack, C., 2006. U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophys. Geosystems 7, 1–14. https://doi.org/10.1029 /2005GC001100 Chapman, J.B., Ducea, M.N., DeCelles, P.G., Profeta, L., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 43, 919–922. https://doi.org/10.1130/G36996.1 Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048 Clift, P.D., Hartley, A.J., 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506. https://doi.org/10.1130/G23584A.1 Clift, P.D., MacLeod, C.J., 1999. Slow rates of subbduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology 27, 411–414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2 Clift, P.D., Pecher, I., Kukowski, N., Hampel, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22, 1023. https://doi.org/10.1029/2002TC001386 Clift, P.D., Vannucchi, P., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001. https://doi.org/10.1029/2003RG000127 Cloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715 Coates, A.G., Collins, L.S., Aubry, M.-P., Berggren, W.A., 2004. The Geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geol. Soc. Am. Bull. 116, 1327. https://doi.org/10.1130/B25275.1 Collot, J.-Y., Ratzov, G., Silva, P., Proust, J.-N., Migeon, S., Hernández, M.J., Michaud, F., Pazmino, A., Barba Castillo, D., Alvarado, A., Khurama, S., 2019. The Esmeraldas Canyon: A helpful marker of the Pliocene-Pleistocene tectonic deformation of the North Ecuador-Southwest Colombia convergent margin. Tectonics 38, 3140–3166. https://doi.org/10.1029/2019TC005501 Copete, J.C., Sánchez, M., Cámara-Leret, R., Balslev, H., 2019. Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia 41, 358–369. https://doi.org/10.15446/caldasia.v41n2.66576 Correa, I., Morton, R., 2010. Pacific coast of Colombia, in: Bird, E.C.F. (Ed.), Encyclopedia of the World’s Coastal Landforms. Springer, Dordrecht, pp. 193–197. https://doi.org/10.1007/978-1-4020-8639-7 Cortés, M., Angelier, J., 2005. Current state of stress inthe northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020 Crameri, F., Magni, V., Domeier, M., Shepard, G.E., Chotalia, K., Cooper, G., Eakin, C.M., Grima, A.G., Gürer, D., Király, A., Mulyukova, E., Peters, K., Robert, B., Thielmann, M., 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750. https://doi.org/10.1038/s41467-020-17522-9 Dalrymple, R.W., 2010. Tidal depositional systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 201–232. Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102. https://doi.org/10.1016/0012-821X(94)00237-S Delph, J.R., Thomas, A.M., Levander, A., 2021. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett. 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724 DePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., Mo, X., 2019. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 ans 32 Ma at the southern margin of Tibet. Gondwana Res. 73, 123–135. https://doi.org/10.1016/j.gr.2019.03.011 Dickinson, W.R., 1995. Forearc basins, in: Busby, C.J., Ingersoll, R. V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Oxford, UK, pp. 221–261. Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of Sandstones, in: Zuffa, G.G. (Ed.), Provenance of Arenites. pp. 333–361. Dickinson, W.R., 1973. Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs. J. Geophys. Res. 78, 3376–3389. https://doi.org/10.1029/JB078i017p03376 Dielforder, A., Hetzel, R., Oncken, O., 2020. Megathrust shear force controls mountain heigth at convergent plate margins. Nature 582, 225–229. https://doi.org/10.1038/s41586-020-2340-7 Duarte, E., Cardona, A., Lopera, S., Valencia, V., Estupiñan, H., 2018. Provenance and diagenesis from two stratigraphic sections of the Lower Cretaceous Caballos Formation in the Upper Magdalena Valley: Geological and reservoir quality implications. Ciencia, Tecnol. y Futur. 8, 5–29. https://doi.org/10.29047/01225383.88 Duque-Caro, H., 1990a. The Choco Block in the northwestern corner of South America : Structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci. 3, 71–84. https://doi.org/10.1016/0895-9811(90)90019-W Duque-Caro, H., 1990b. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and evolution of the Panama Seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 203–234. https://doi.org/10.1016/0031-0182(90)90178-A Duque-Caro, H., 1990c. Estratigrafía, paleoceanografía y paleobiogeografía de la Cuenca del Atrato y la evolución del Istmo de Panamá. Boletín Geológico 31, 4–45. Duque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, A., Toro-Villegas, G., Hoyos, S., 2019. Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geol. 46, 82–101. https://doi.org/10.5027/andgeoV46n1-3120 Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.-. A., van den Bogaard, P., Werner, R., 2019. Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province. Lithos 328–329, 69–87. https://doi.org/10.1016/j.lithos.2018.12.021 Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825 Echeverri, S., Cardona, A., Pardo-Trujillo, A., Borrero, C., Rosero, S., López, S., 2015a. Correlación y geocronología Ar-Ar del basamento Cretácico y el relleno sedimentario Eoceno Superior - Mioceno (Aquitaniano inferior) de la cuenca de ante-arco de Tumaco, SW de Colombia. Rev. Mex. Ciencias Geológicas 32, 179–189. Echeverri, S., Cardona, A., Pardo-Trujillo, A., Monsalve, G., Valencia, V.A., Borrero, C., Rosero, S., López, S., 2015b. Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the northern Andes. Terra Nov. 27, 356–363. https://doi.org/10.1111/ter.12167 Echeverri, S., Pardo-Trujillo, A., Borrero, C., Cardona, A., Rosero, S., Celis, S.A., López, S.A., 2016. Estratigrafía del Neógeno Superior al sur de la Cuenca Tumaco (Pacífico Colombiano): La Formación Cascajal, propuesta de redefinición litoestratigráfica. Boletín Geol. 38, 43–60. https://doi.org/10.18273/revbol.v38n4-2016003 Ekström, G., Nettles, M., Dziewonski, A.M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002 Encinas, A., Sagripanti, L., Rodríguez, M.P., Orts, D., Anavalón, A., Giroux, P., Otero, J., Echaurren, A., Zambrano, P., Valencia, V., 2021. Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chila (36°30’-42°S). Earth-Science Rev. 213, 103465. https://doi.org/10.1016/j.earscirev.2020.103465 England, P., Molnar, P., 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2 Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics 27, TC3011. https://doi.org/10.1029/2007TC002175 Faccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C.-, Billi, A., 2011. Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics 30, TC1003. https://doi.org/10.1029/2010TC002694 Faccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201. Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 Finzel, E.S., Enkelmann, E., 2017. Miocene-Recent sediment flux in the south-central Alaskan forearc basin governed by flat-slab subduction. Geochemistry, Geophys. Geosystems 18, 1739–1760. https://doi.org/10.1002/2016GC006783 Finzel, E.S., Enkelmann, E., Falkowski, S., Hedeen, T., 2016. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska. Tectonics 35, 1735–1759. https://doi.org/10.1002/2016TC004171 Finzel, E.S., Trop, J.M., Ridgway, K.D., Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet. Sci. Lett. 303, 348–360. https://doi.org/10.1016/j.epsl.2011.01.014 Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas. Frohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198. https://doi.org/10.1016/0031-9201(92)90130-N Galvis, J., 1980. Un arco de islas terciarion en el occidente Colombiano. Geol. Colomb. 11, 7–43. Gao, X., Wang, K., 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science (80-. ). 345, 1038–1041. https://doi.org/10.1126/science.1255487 Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science (80-. ). 320, 1304–1307. https://doi.org/10.1126/science.1148615 Geldmacher, J., Hanan, B.B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., Kerr, A.C., 2003. Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophys. Geosystems 4, 1062. https://doi.org/10.1029/2002GC000477 Genge, M.C., Witt, C., Chanier, F., Reynaud, J.-. Y., Calderon, Y., 2020. Outer forearc high control in an erosional subduction regime: The case of the central Peruvian forearc (6-10°S). Tectonophysics 228546. Gentry, A., 1986. Species richness and floristic composition of Chocó region plant communities. Caldasia 15, 71–91. George, S.W.M., Horton, B.K., Vallejo, C., Jackson, L.J., Gutiérrez, E.G., 2021. Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology. Gianni, G.M., Navarrete, C., Echaurren, A., Díaz, M., Butler, K.L., Horton, B.K., Encinas, A., Folguera, A., 2020. Northward propagation of Andean genesis: Insights from Early Cretaceous synorogenic deposits in the Aysén-Río Mayo basin. Gondwana Res. 77, 238–259. https://doi.org/10.1016/j.gr.2019.07.014 Gómez-Tapias, J., Montes-Ramírez, N.E., Almanza-Meléndez, M.F., Alcárcel-Gutiérrez, F.A., Madrid-Montoya, C.A., Diederix, H., 2017. Geological map of Colombia. Episodes 40, 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023 Gómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A., 2015. Notas explicativas: Mapa Geológico de Colombia, in: Gómez-Tapias, J., Almanza, M.F. (Eds.), Compilando La Geología de Colombia: Una Visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33, Bogotá, pp. 9–33 Gómez, E., Jordan, T.E., Allmendinger, R.W., Cardozo, N., 2005. Development of the Colombian foreland-basin system as consequence of diachronous exhumation of the northern Andes. Geol. Soc. Am. Bull. 117, 1272–1292. https://doi.org/10.1130/B25456.1 Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K., Kelley, S., Heizler, M., 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geol. Soc. Am. Bull. 115, 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2 González, J.L., Shen, Z., Mauz, B., 2014. New constraints on Holocene uplift rates for the Baudo Mountain Range, northwestern Colombia. J. South Am. Earth Sci. 52, 194–202. Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hangøj, K., Schwarts, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35, 643–646. https://doi.org/10.1130/G23603A.1 Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. to Mineral. Petrol. 170, 46. https://doi.org/10.1007/s00410-015-1199-3 Groome, W.G., Thorkelson, D.J., 2009. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics 464, 70–83. https://doi.org/10.1016/j.tecto.2008.07.003 Gutscher, M.-A., 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. J. South Am. Earth Sci. 15, 3–10. https://doi.org/10.1016/S0895-9811(02)00002-0 Gutscher, M.-A., Malavieille, J., Lallemand, S., Collot, J.-Y., 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6 Gvirtzman, Z., Faccenna, C., Becker, T.W., 2016. Isostasy, flexure, and dynamic topography. Tectonophysics 683, 255–271. https://doi.org/10.1016/j.tecto.2016.05.041 Haffer, J., 1967. On the geology of the Urabá and northern Chocó regions, northwestern Colombia. Hastie, A.R., Kerr, A.C., 2010. Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Rev. 98, 283–293. https://doi.org/10.1016/j.earscirev.2009.11.001 Hawkins Jr., J.W., 1995. The geology of the Lau Basin, in: Taylor, B. (Ed.), Backarc Basins. Springer, Boston, pp. 63–138. https://doi.org/10.1007/978-1-4615-1843-3_3 Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362, 58–61. https://doi.org/10.1126/science.aat4723 Hayward, B.W., Carter, R., Grenfell, H.R., Hayward, J., 2001. Depth distribution of Recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas. New Zeal. J. Geol. Geophys. 44, 555–587. https://doi.org/10.1080/00288306.2001.9514955 Hernández, M.J., Michaud, F., Collot, J.-Y., Proust, J.-N., d’Acremont, E., 2020. Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics 781, 228374. https://doi.org/10.1016/j.tecto.2020.228374 Heuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51. https://doi.org/10.1016/j.pepi.2004.08.022 Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., Faccenna, C., 2011. Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophys. Geosystems 12, Q01004. https://doi.org/10.1029/2010GC003230 Hijmans, R., 2017. raster: Geographic data analysis and modeling. R package version 2.6-7 [WWW Document]. URL http://cran.r-project.org/package=raster Hincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Hoyos-Ramírez, L., Bayona, G., 2018. Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: Paleogeographic connections with the Caribbean Plate. Stud. Geophys. Geod. 62, 485–511. https://doi.org/10.1007/s11200-016-0678-y Holbourn, A., Henderson, A.S., MacLeod, N., 2013. Atlas of benthic foraminifera. John Wiley & Sons, Ltd. Horton, B.K., 2018a. Sedimentary record of Andean mountain building. Earth-Science Rev. 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025 Horton, B.K., 2018b. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37, 402–429. https://doi.org/10.1002/2017TC004624 Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochemistry 53, 27–62. https://doi.org/10.2113/0530027 Hu, F., Wu, F., Chapman, J.B., Ducea, M.N., Ji, W., Liu, S., 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202. https://doi.org/10.1029/2020GL089202 Hurtado, C., Roddaz, M., Santos, R. V., Baby, P., Antoine, P.-O., Dantas, E.L., 2018. Cretaceous early-Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 63, 152–168. https://doi.org/10.1016/j.gr.2018.05.012 Jaramillo, C., 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic and paleoclimatological implications, in: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.), Mountains, Climate and Biodiversity. John Wiley & Sons, Ltd, pp. 323–338 Jaramillo, J.S., Cardona, A., León, S., Valencia, V., Vinasco, C., 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35’N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc-growth and collision. J. South Am. Earth Sci. 76, 460–481. https://doi.org/10.1016/j.jsames.2017.04.012 Jaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V., León, S., 2019. Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017 Jicha, B.R., Kay, S.M., 2018. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99. https://doi.org/10.1016/j.jvolgeores.2018.06.016 Johnson, H.D., Baldwin, C.T., 1996. Shallow clastic seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 232–280 Jones, R.W., 1994. The challenger foraminifera. Oxford University Press Kasaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Makropoulos, K. Popandopoulos, G., Moshou, A., 2014. The April-June 2007 Trichonis Lake earthquake swarm (W. Greece); New implications toward causative fault zone. J. Geodyn. 73, 60–80. https://doi.org/10.1016/j.jog.2013.09.004 Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous Basaltic Terranes in Western Colombia : Elemental, Chronological and Sr – Nd Isotopic Constraints on Petrogenesis. J. Petrol. 38, 677–702. https://doi.org/10.1093/petrology/38.6.677 Kerr, A.C., Pearson, D.G., Nowell, G.M., 2009. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328., pp. 809–827. https://doi.org/10.1144/SP328.31 Kerr, A.C., White, R. V., Thompson, P.M.E., Tarney, J., Saunders, A.D., 2003. No oceanic plateau - No Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution, in: Bartolini, C., Buffler, R.T., Blickwede, J.F. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: AAPG Memoir 79. pp. 126–168. https://doi.org/10.1306/M79877C6 Lamb, S., 2006. Shear stresses on megathrust: Implications for mountain building behind subduction zones. J. Geophys. Res. Solid Earth 111, B07401. https://doi.org/10.1029/2005JB003916 Lamb, S., Davis, P., 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797. https://doi.org/10.1038/nature02049 Lara, M., Salazar-Franco, A.M., Silva-Tamayo, J.C., 2018. Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sediment. Geol. 373, 147–162. https://doi.org/10.1016/j.sedgeo.2018.06.003 Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658 Leal-Mejía, H., Shaw, R.P., Melgarejo, J.C., 2019. Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 253–410. https://doi.org/10.1007/978-3-319-76132-9_5 Lee, C.-T.A., Thurner, S., Patterson, S., Cao, W., 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 425, 105–119. https://doi.org/10.1016/j.epsl.2015.05.045 Lefeldt, M., Grevemeyer, I., 2008. Centroid depth and mechanism of trench-outer rise earthquakes. Geophys. J. Int. 172, 240–251. https://doi.org/10.1111/j.1365-246X.2007.03616.x León, S., Avellaneda-Jiménez, D.S., Monsalve, G., Bustamante, C., Valencia, V., In review. Evidence for magmatic activity of the Central American arc at ~100-84 Ma supports its spontaneous origin by plume-lithosphere interaction. Geol. Soc. Am. Bull León, S., Cardona, A., Mejía, D., Botello, G.E., Villa, V., Collo, G., Valencia, V., Zapata, S., Avellaneda-Jiménez, D.S., 2019. Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. J. South Am. Earth Sci. 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229 León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition from collisional to subduction-related regimes: an example from Neogene Panama-Nazca-South-America interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785 León, S., Monsalve, G., Bustamante, C., 2021a. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, e2021GL093362. https://doi.org/10.1029/2021GL093362 León, S., Monsalve, G., Jaramillo, C., Posada, G., Miranda, T.S., Echeverri, S., Valencia, V., 2021b. Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics 820, 229132. https://doi.org/10.1016/j.tecto.2021.229132 Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series. Earth Planet. Sci. Lett. 59, 139–154. https://doi.org/10.1016/0012-821X(82)90122-4 Loader, M.A., Wilkinson, J.J., Armstrong, R.N., 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 472, 107–119. https://doi.org/10.1016/j.epsl.2017.05.010 Lonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011 Macía, C., 1985. Características petrográficas y geoquímicas de rocas basálticas de la península de Cabo Corrientes (Serranía de Baudó), Colombia. Geol. Colomb. 14, 25–37 Malkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L., Graham, S.A., 2019. Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). Am. J. Sci. 319, 846–902. https://doi.org/10.2475/10.2019.02 Mamani, M., Wörner, G., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull. 122, 162–182. https://doi.org/10.1130/B26538.1 Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60. Marcaillou, B., Collot, J.-Y., 2008. Chronostratigraphy and tectonic deformation of the North Ecuadorian-South Colombian offshore Manglares forearc basin. Mar. Geol. 255, 30–44. https://doi.org/10.1016/j.margeo.2008.07.003 Martinez, F., Parra, M., Gonzalez, R., López, C., Patiño, A., Muñoz, B., Robledo, F., Sobel, E.R., Glodny, J., 2022. Deciphering the Late Paleozoic-Cenozoic tectonic history of the inner Central Andes forearc: An update from the Salar de Punta Negra Basin of northern Chile. Front. Earth Sci. 9, 790526. https://doi.org/10.3389/feart.2021.790526 Martinez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from “Pampean” subduction segment. Basin Res. 33, 2706–2724. https://doi.org/10.1111/bre.12580 Martinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart, S., Carretier, S., 2016. How do subduction processes contribute to forearc Andean uplift? J. Geodyn. 96, 6–18. https://doi.org/10.1016/j.jog.2015.04.001 Mason, C.C., Romans, B.W., Stockli, D.F., Mapes, R.W., Fildani, A., 2019. Detrital zircon reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer. Geology 47, 563–567. https://doi.org/10.1130/G45852.1 McClay, K.R., 1987. The mapping of geological structures. Geological Society of London handbook. Open University Press. McDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 McGirr, R., Seton, M., Williams, S., 2020. Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geol. Soc. Am. Bull. 133, 867–884. https://doi.org/10.1130/B35595.1 McKay, M.P., Jackson Jr., W.T., Hessler, A.M., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Res. 57, 1–9. https://doi.org/10.1016/j.gr.2018.01.004 Mibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S., 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl. Acad. Sci. U. S. A. 108, 8177–8182. https://doi.org/10.1073/pnas.1010968108 Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396. https://doi.org/10.1029/93RG02030 Monsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep crustal faults, shear zones, and magmatism in the Eastern Cordillera of Colombia: Growth of a plateau from teleseismic receiver function and geochemical Mio-Pliocene volcanism constraints. J. Geophys. Res. Solid Earth 124. https://doi.org/10.1029/2019JB017835 Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodríguez-Parra, L.A., Ramírez, V., Niño, H., 2015. Middle Miocene closure of the Central American Seaway. Science (80-. ). 348, 226–229. https://doi.org/10.1126/science.aaa2815 Montes, C., Cardona, A., McFadden, R., Moron, S.E., Silva, C.A., Restrepo-Moreno, S.A., Ramirez, D.A., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geol. Soc. Am. Bull. 124, 780–799. https://doi.org/10.1130/B30528.1 Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V.A., Jaramillo, C., 2010. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Rancheria basins. J. South Am. Earth Sci. 29, 832–848. https://doi.org/10.1016/j.jsames.2009.07.010 Montes, C., Rodríguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to the multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903 Mora-Bohórquez, J.A., Ibañez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L., 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. J. South Am. Earth Sci. 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001 Mora-Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orosco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002 Mora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795 Mora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic uplift of the Northern Andes: Paleogeographic implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 89–121. https://doi.org/10.32685/pub.esp.37.2019.04 Mora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., de Freitas, M., 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Mar. Pet. Geol. 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032 Mountney, N.P., Westbrook, G.K., 1997. Quantitative analysis of Miocene to recent forearc basin evolution along the Colombian convergent margin. Basin Res. 9, 177–196. https://doi.org/10.1046/j.1365-2117.1997.00040.x Moxon, I.W., Graham, S.A., 1987. History and controls of subsidence in the Late Cretaceous-Tertiary Great Vally forearc basin, California. Geology 15, 626–629. https://doi.org/10.1130/0091-7613(1987)15<626:HACOSI>2.0.CO;2 Mukasa, S.B., 1986. Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes. Geol. Soc. Am. Bull. 97, 241–254. https://doi.org/10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2 Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems 9, Q04006. https://doi.org/0.1029/2007GC001743 Myers, N., Mitteimer, R.A., Mitteimer, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 Nakakuki, T., Mura, E., 2013. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett. 361, 287–297. https://doi.org/10.1016/j.epsl.2012.10.031 National Hydrocarbons Agency of Colombia, 2010. Total Bouguer Anomalies Map of Colombia. 1:2.500.000. Noda, A., 2016. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895. https://doi.org/10.1130/B31345.1 O’ Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson, J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883. https://doi.org/10.1126/sciadv.1600883 Odin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology 28, 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x Oguchi, T., Aoki, T., Matsuta, N., 2003. Identificacion of an active fault on the Japanese Alps from DEM-based hill shading. Comput. Geosci. 29, 885–891. https://doi.org/10.1016/S0098-3004(03)00083-9 Ojeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408 Oncken, O., Chong, G., Franz, G., Giese, P., Gotze, H.-J., Ramos, V.A., Strecker, M.R., Wigger, P., 2006. The Andes: Active Subduction Orogeny, Frontiers in Earth Sciences. Springer-Verlag Berlin Heidelberg Ordoñez, O., Pimentel, M.M., Armstrong, R.A., Goia, S.M.C.L., Junges, S., 2001. U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith, in: III South American Symposium on Isotope Geology. Pucon, Chile Osorio-Granada, E., Restrepo-Moreno, S.A., Muñoz-Valencia, J.A., Trejos-Tamayo, R.A., Pardo-Trujillo, A., Barbosa-Espitia, A.A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geol. Acta 15, 201–215. https://doi.org/10.1344/GeologicaActa2017.15.3.4 Pacheco, J.F., Sykes, L.R., Scholz, C.H., 1993. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. Solid Earth 98, 14133–14159. https://doi.org/10.1029/93JB00349 Pardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J.A., Echeverri, J.S., Barbosa-Espitia, A.A., Slattery, J., Salazar, A.F., Botello, G.E., Celis, S., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020a. Sedimentary record of the Cretaceous-Paleogene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627 Pardo-Trujillo, A., Echeverri, S., Borrero, C., Arenas, A., Vallejo, F., Trejos, R., Plata, A., Flores, J.A., Cardona, A., Restrepo, S., Barbosa, A., Murcia, H., Giraldo, C., Celis, S., Osorio, J.A., López, S.A., 2020b. Cenozoic geologic evolution of the southern Tumaco forearc basin (SW Colombian Pacific), in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 215–247. https://doi.org/10.32685/pub.esp.37.2019.08 Pardo-Trujillo, A., Moreno-Sánchez, M., Gomez-Cruz, A.D.J., 2002. Estratigrafía de algunos depósitos del Cretáceo Superior en las Cordilleras Central y Occidental de Colombia: Implicaciones Regionales. Geo. Eco. Trop. 26, 113 Paris, G., Machette, M.N., Dart, R.L., Haller, K.M., 2000. Map and databse of Quaternary faults and folds in Colombia and its offshore regions. U. S. Geological Survey Open-File Report 00-0284 Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., Strecker, M.R., 2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res. 22, 874–903 Parra, M., Mora, A., López, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust-belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1 Parra, M., Mora, A., Sobel, E.R., Strecker, M.R., González, R., 2009. Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28, TC4004. https://doi.org/10.1029/2008TC002423 Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. https://doi.org/10.1093/petrology/25.4.956 Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343 Pennington, W.D., 1981. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 86, 10753–10770. https://doi.org/10.1029/JB086iB11p10753 Pérez-Escobar, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez-Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328. https://doi.org/10.3389/fpls.2019.01328 Perez, N.D., Levine, K.G., 2020. Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth Planet. Sci. Lett. 541, 116263. https://doi.org/10.1016/j.epsl.2020.116263 Phillips, J.D., 2005. Weathering instability and landscape evolution. Geomorphology 67, 255–272. https://doi.org/10.1016/j.geomorph.2004.06.012 Pindell, J., Maresch, W. V., Martens, U., Stanek, K., 2012. The Greater Antillan Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int. Geol. Rev. 54, 131–143. https://doi.org/10.1080/00206814.2010.510008 Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. Geol. Soc. London, Spec. Publ. 328, 1–55. https://doi.org/10.1144/SP328.1 Plint, A.G., 2010. Wave- and storm-dominated shoreline and shallow-marine systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 167–200. Poveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688 Poveda, E., Monsalve, G., Vargas, C.A., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. J. Geophys. Res. Solid Earth 120, 2408–2425. https://doi.org/10.1002/2014JB011304 Poveda, G., Mesa, O.J., 2000. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. https://doi.org/10.1029/1999GL006091 Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Henriquez-Gonzales, S.M., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5, 17786. https://doi.org/10.1038/srep17786 R Development Core Team, 2017. R: A language and environment for statistical computing. Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Richardson, K., Rosing, M.T., Whittaker, R.J., Fjeldså, J., 2019. Building mountain biodiversity: Geological and evolutionary processes. Science (80-. ). 365, 1114–1119. https://doi.org/10.1126/science.aax0151 Ramírez, D.A., Foster, D.A., Min, K., Montes, C., Cardona, A., Sadove, G., 2016. Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American seaway. Geochemistry, Geophys. Geosystems 17, 1758–1777. https://doi.org/10.1002/2016GC006289 Ramos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle, in: Backbone of the Americas: Shallow Subduction, Plateau Uplift and Ridge and Terrane Collision. Geological Society of America Memoir 204. pp. 31–65. https://doi.org/10.1130/2009.1204(02) Ranero, C.R., von Huene, R., 2000. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752. https://doi.org/10.1038/35008046 Reiners, P.W., Brandon, M.T., 2006. Using Thermochronology To Understand Orogenic Erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202 Reyes-Harker, A., Ruiz-Valdivieso, C.F., Mora, A., Ramirez-Arias, J.C., Rodriguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D., Blanco, V., 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. Am. Assoc. Pet. Geol. Bull. 99, 1407–1453. https://doi.org/10.1306/06181411110 Ridgway, K.D., Trop, J.M., Finzel, E.S., 2011. Modification of continental forearc basins by flat-slab subduction processes: a case study from southern Alaska, in: Busby, C., Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd, pp. 327–346. https://doi.org/10.1002/9781444347166.ch16 Riley, S.J., DeGloria, S.D., Elliot, R., 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27. Rodríguez-Olarte, D., Mojica-Corzo, J.I., Taphonr-Baechle, D.C., 2011. Northern South America - Magdalena and Maracaibo Basins, in: Albert, J.S., Reis, R.E. (Eds.), Historical Biogeography of Neotropical Freshwaters Fishes. University of California Press, pp. 243–257. https://doi.org/10.1525/california/9780520268685.003.0015 Rodríguez, G., Arango, M.I., Zapata, G., Bermúdez-Cordero, J.G., 2016. Estratigrafía, petrografía y análisis multi-método de procedencia de la Formación Guineales, norte de la Cordillera Occidental de Colombia. Boletín Geol. 38, 101–124 Rodríguez, G., Sierra, M.I., 2010. Las Sedimentitas de Tripogadí y las Brechas de Triganá : Un registro de Eoceno en el noroccidente de Sur América. Geol. Colomb. 35, 74–86 Rodríguez, G., Zapata, G., 2012. Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente Colombiano. Bol. Ciencias la Tierra 31, 5–22. Rodríguez, G., Zapata, G., Gómez, J.F., 2013. Geología de la plancha 114 - Dabeiba. Escala 1:100.000. Rooney, T.O., Franceschi, P., Hall, C.M., 2011. Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib. to Mineral. Petrol. 161, 373–388. https://doi.org/10.1007/s00410-010-0537-8 Rosenbaum, G., Mo, W., 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res. 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007 Rutledge, S., Mahatsente, R., 2017. Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling. J. Geodyn. 104, 27–35. https://doi.org/10.1016/j.jog.2016.12.003 Salvini, F., Billi, A., Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 21, 1731–1749. https://doi.org/10.1016/S0191-8141(99)00120-0 Sarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 673–747. https://doi.org/10.1007/978-3-319-76132-9_10 Saylor, J.E., Horton, B.K., 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. https://doi.org/10.1016/j.epsl.2013.11.015 Scheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., Łapińska-Viola, R., 2015. Manual extraction of bedrock lineaments from high-resolution LiDAR data: methodological bias and human perception. GFF 137, 362–372. https://doi.org/10.1080/11035897.2015.1085434 Sdrolias, M., Müller, R.D., 2006. Controls on back-arc basin formation. Geochemistry, Geophys. Geosystems 7, Q04016. https://doi.org/10.1029/2005GC001090 Serrano, L., Ferrari, L., López-Martínez, M., Petrone, C.M., Jaramillo, C., 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province. Earth Planet. Sci. Lett. 309, 324–336. https://doi.org/10.1016/j.epsl.2011.07.011 Siravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002 Soesoo, A., Bons, P.D., Gray, D.R., Foster, D.A., 1997. Divergent double subduction : Tectonic and petrologic consequences. Geology 25, 755–758. https://doi.org/10.1130/0091-7613(1997)025<0755 Spikings, R.A., Simpson, G., 2014. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics 33, 1–21. https://doi.org/10.1002/2013TC003425 Stern, C.R., 2011. Subduction erosion: Rates, mechanisms and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308. https://doi.org/10.1016/j.gr.2011.03.006 Stern, R.J., 2002. Subduction zones. Rev. Geophys. 40, 3-1-3–38. https://doi.org/10.1029/2001RG000108 Stern, R.J., Gerya, T., 2018. Subduction initiation in nature and models: A review. Tectonophysics 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014 Stow, D., Smillie, Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10, 68. https://doi.org/10.3390/geosciences10020068 Stow, D.A. V., Reading, H.G., Collinson, J.D., 1996. Deep seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 395–453. Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050 Tassara, A., 2010. Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495, 34–47. https://doi.org/10.1016/j.tecto.2010.06.004 Tetreault, J.L., Buiter, S.J.H., 2012. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. Solid Earth 117, B08403. https://doi.org/10.1029/2012JB009316 Thompson, P.M.E., Kempton, P.D., White, R. V., Saunders, A.D., Kerr, A.C., Tarney, J., Pringle, M.S., 2004. Elemental, Hf-Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles. Lithos 74, 91–116. https://doi.org/10.1016/j.lithos.2004.01.004 Timm, C., Davy, B., Haase, K., Hoernle, K., Graham, I.J., de Ronde, C.E.J., Woodhead, J., Basset, D., Hauff, F., Mortimer, N., Seebeck, H.C., Wysoczanski, R.J., Caratori-Tontini, F., Gamble, J.A., 2014. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat. Commun. 5, 4923. https://doi.org/10.1038/ncomms5923 Tistl, M., Burgath, K.P., Höhndorf, A., Kreuzer, H., Muñoz, R., Salinas, R., 1994. Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth Planet. Sci. Lett. 126, 41–59. https://doi.org/10.1016/0012-821X(94)90241-0 Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R., Wessel, P., 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Sp. Sci. 6, 1847–1864. https://doi.org/10.1029/2019EA000658 Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97, 70–87. https://doi.org/10.1016/j.gca.2012.08.032 Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 15, 157–171 Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H., Cebula, G.T., 1974. Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284. https://doi.org/10.1130/0016-7606(1974)85<273 Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company Uyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res. 84, 1049–1060 Vallejo, C., Spikings, R.A., Horton, B.K., Luzieux, L., Romero, C., Winkler, W., Thomsen, T.B., 2019. Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment, in: Horton, B.K., Folguera, A. (Eds.), Andean Tectonics. Elsevier, pp. 209–236. https://doi.org/10.1016/B978-0-12-816009-1.00010-1 Vallejo, C., Spikings, R.A., Luzieux, L., Winkler, W., Chew, D.M., Page, L., 2006. The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nov. 18, 264–269. https://doi.org/10.1111/j.1365-3121.2006.00688.x Vargas, C.A., Gutiérrez, G.A., Sarmiento, G.A., 2020. Subduction of an extinct rift and its role in the formation of submarine landslides in NW South America, in: Georgiopoulou, A., Amy, L.A., Benetti, S., Chaytor, J.D., Clare, M.A., Gamboa, D., Haughton, P.D.W., Moernaut, J., Mountjoy, J.J. (Eds.), Subaqueous Mass Movements in the Context of Observations of Contemporary Failure, Geological Society, London, Special Publications, 500. pp. 311–322. https://doi.org/10.1144/SP500-2019-189 Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328 Vermeesch, P., 2021. Maximum depositional age estimation revisited. Geosci. Front. 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008 Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001 Villagómez, D., Spikings, R.A., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008 Villagómez, D., Spikings, R.A., Magna, T., Kammer, A., Winkler, W., Beltrán, A., 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125, 875–896. https://doi.org/10.1016/j.lithos.2011.05.003 Viveen, W., Schlunegger, F., 2018. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic. Tectonophysics 730, 48–62. https://doi.org/10.1016/j.tecto.2018.02.018 Vogt, K., Gerya, T. V., 2014. From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Res. 25, 494–508. https://doi.org/10.1016/j.gr.2012.11.002 von Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Rev. 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001 von Huene, R., Ranero, C.R., Vannucchi, P., 2004. Generic model of subduction erosion. Geology 32, 913–916. https://doi.org/10.1130/G20563.1 von Huene, R., Scholl, D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316. https://doi.org/10.1029/91RG00969 Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL073981 Wagreich, M., 1995. Subduction erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics 242, 63–78. https://doi.org/10.1016/0040-1951(94)00151-X Wang, J.-G., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Liu, Z.-C., Li, J., Wu, F.-Y., 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Geol. Soc. Am. Bull. 132, 2432–2454. https://doi.org/10.1130/B35314.1 Wang, K., He, J., 1999. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res. Solid Earth 104, 15191–15205. https://doi.org/10.1029/1999JB900103 Weber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., Wilson, R., 2009. The Cabo de la Vela Mafic-Ultramafic Complex, Northwestern Colombian Caribbean region: a record of multistage evolution of a Late Cretaceous intra-oceanic arc, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328. pp. 549–568. https://doi.org/10.1144/SP328.22 Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., Valencia, V., 2015. Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. J. South Am. Earth Sci. 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002 Wegner, W., Wörner, G., Harmon, R.S., Jicha, B.R., 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. Bull. 123, 703–724. https://doi.org/10.1130/B30109.1 Whattam, S.A., Montes, C., Mcfadden, R.R., Cardona, A., Ramirez, D., Valencia, V., 2012. Age and origin of earliest adakitic-like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos 142–143, 226–244. https://doi.org/10.1016/j.lithos.2012.02.017 Whattam, S.A., Montes, C., Stern, R.J., 2020. Early central American forearc follows the subduction initiation rule. Gondwana Res. 79, 283–300. https://doi.org/10.1016/j.gr.2019.10.002 Whattam, S.A., Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63. https://doi.org/10.1016/j.gr.2014.07.011 Wise, D.U., Funicello, R., Parotto, M., Salvini, F., 1985. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 96, 952–967. https://doi.org/10.1130/0016-7606(1985)96<952:TLSCTT>2.0.CO;2 Wright, J.E., Wyld, S.J., 2011. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?). Geosphere 7, 468–493. https://doi.org/10.1130/GES00577.1 Xie, X., Heller, P.L., 2009. Plate tectonics and basin subsidence history. Bull. Geol. Soc. Am. 121, 55–64. https://doi.org/10.1130/B26398.1 Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006 Zagorevski, A., Lissenberg, C.J., van Staal, C.R., 2009. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics 479, 150–164. https://doi.org/10.1016/j.tecto.2008.12.002 Zagorevski, A., van Staal, C.R., 2011. The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus, in: Brown, D., Ryan, P.D. (Eds.), Arc-Continent Collision. Springer-Verlag Berlin Heidelberg, pp. 341–371. https://doi.org/10.1007/978-3-540-88558-0_12 Zapata-Villada, J.P., Cardona, A., Serna, S., Rodríguez, G., 2021. Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. J. South Am. Earth Sci. 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557 Zapata, G., 2000. Geología de las planchas 163 Nuquí, 164 Quibdó, 183 Coquí y 184 Lloró, Departamento del Chocó. Escala 1:100.000. Memoria Explicativa. Zapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castañeda, J.P., 2019. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Res. 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008 Zapata, S., Patiño, A., Cardona, A., Parra, M., Valencia, V., Reiners, P., Oboh-Ikuenobe, F., Genezini, F., 2020. Bedrock and detrital zircon thermochronology to unravel exhumation histories of accreted tectonic blocks: An example from the Western Colombian Andes. J. South Am. Earth Sci. 103, 102715. https://doi.org/10.1016/j.jsames.2020.102715 Zhu, D.-C., Wang, Q., Cawood, P.A., Zhao, Z.-D., Mo, X.-X., 2017. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 122, 214–223. https://doi.org/10.1002/2016JB013508 Zindler, A., Hart, S., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 170 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales |
dc.publisher.department.spa.fl_str_mv |
Departamento de Materiales y Minerales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81688/1/1152439167.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81688/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81688/5/1152439167.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
671beb29ce1ebd5e544fd5f6e2f738c5 8153f7789df02f0a4c9e079953658ab2 ae51f04f79fd9477b973691bff897063 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089526671310848 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Monsalve Mejía, Gaspar24932fa3561948cfb9d8ea2e55e6c7a8600León Vasco, Santiago6b6ddf33766e54bc8bdccece7ce650a22022-07-07T15:20:19Z2022-07-07T15:20:19Z2022https://repositorio.unal.edu.co/handle/unal/81688Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasThe growth of accretionary orogens, such as the northern Andes, involves both subduction-related tectonics and the collision of exotic terranes, including oceanic plateaus and island arcs. These contrasting tectonic regimes control the spatiotemporal evolution of deformational patterns and topography, whose signal is preserved in the tectonostratigraphic record of marginal basins, which is particularly true for forearc systems. This work presents a detailed geochronological and compositional characterization of Cretaceous magmatic rocks and Neogene strata of the northern Colombian forearc basin (Atrato Basin), which record the long-term evolution of the northwesternmost Andean region, since the early interactions with the Caribbean plate to the most recent shallow subduction of the Nazca plate. New petrochronological data from the Cupica and Tribugá gulfs allowed the recognition of a previously undocumented Upper-Cretaceous arc-related magmatic unit, which likely represents the earliest activity of the intra-oceanic Central American arc and the coeval island arc nowadays exposed along the north-Andean Western Cordillera. The collision of the latter and its plateau-like basement caused a major topographic uplift of the Colombian Central Cordillera during the Late Cretaceous-Paleocene, as suggested by new paleoelevation estimations presented in this work. Such collisional episode marked the early constitution of the northwestern Colombian forearc, whose evolution was subsequently controlled by the Neogene transition from the collision of the Central American arc and the subduction of the Nazca plate. A comprehensive tectonostratigraphic analysis of the Neogene infill of the Atrato Basin allowed identifying three main tectonic phases, which drove changes in the configuration of source areas and the depositional settings. First, the collision of the Central American arc against northwestern South America was recorded by the accumulation in a tectonically active back-arc basin of Oligocene-middle Miocene deep-marine strata sourced by both colliding domains. The advance of the collision triggered basin inversion and shallowing of accumulation depths during the middle Miocene, as well as accelerated erosional exhumation of the continental paleomargin and increased siliciclastic input to suture-related and the colliding back-arc basin. Second, the transition from collision to the subduction of the Nazca plate during the middle-late Miocene caused the formation of a post-collisional arc in northwestern Colombia, as well as the initial topographic uplift of the newly established forearc basin (former allochthonous back-arc) nearby the suture zone. This was accompanied by a major shallowing of accumulation depths and a dramatic change in the detrital signal of forearc deposits, which were isolated from continental source areas (i.e. Western Cordillera) by newly uplifted ranges. Finally, the late Miocene flattening of the subducting Nazca slab beneath northern Colombia caused widespread deformation that drove the uplift of the outer forearc high, represented by the coastal Baudó Range, and the establishment of the modern physiographic configuration. This episode led to the fragmentation of the forearc basin into an outer (coastal) and inner (inland) segments and strong reworking of older strata, as suggested by the provenance of late Miocene to Pliocene rocks accumulated in high-energy fluvial environments. The pulsated nature of Miocene mountain building along the northwesternmost Andean forearc, as a consequence of interspersed collisional and subduction-related tectonics, seemingly played a major role in the biogeographic evolution of the region and the constitution of the modern extremely humid tropical rainforest that hosts a biodiversity hotspot. This work allowed proving how valuable the tectonostratigraphic record of forearc basins and the surrounding mountain ranges is to disentangle the effects of a changing subduction system on the upper-plate landscape evolution, which, as demonstrated in this work, could be successfully studied through a combination of petrochronological, stratigraphic and structural analysesEl crecimiento de orógenos acrecionarios como los Andes del norte, involucra procesos tectónicos relacionados con subducción, así como la colisión de terrenos exóticos, incluyendo plateaux oceánicos y arcos de islas. Estos regímenes tectónicos contrastantes controlan la evolución espaciotemporal de los patrones de deformación y la topografía, cuya señal es preservada en el registro tectonoestratigráfico de las cuencas marginales, lo cual es particularmente cierto para sistemas de antearco. Este trabajo presenta una caracterización geocronológica y composicional detallada de las rocas magmáticas Cretácicas y sedimentos Neógenos del antearco norte de Colombia (Cuenca Atrato), las cuales registran la evolución de largo plazo de la región más noroccidental de los Andes, desde las interacciones tempranas con la placa Caribe hasta la más reciente subducción plana de la placa de Nazca. Nuevos datos petrocronológicos de sedimentos modernos de los golfos de Cupica y Tribugá permitieron reconocer una unidad magmática del Cretácico Tardío afín con un arco de islas que no había sido previamente documentada, la cual podría representar la actividad más temprana del arco Centro Americano y el arco de islas ahora expuesto a lo largo de la Cordillera Occidental de los Andes del norte. La colisión de este último, en conjunto con su basamento de tipo plateau, durante el Cretácico Tardío-Paleoceno, causó un importante levantamiento topográfico de la Cordillera Central Colombiana, como lo sugieren nuevas estimaciones de paleoelevación presentadas en este trabajo. Este episodio colisional marcó la conformación temprana del antearco noroccidental Colombiano, cuya evolución fue subsecuentemente controlada por la transición Neógena de colisión del arco Centro Americano y la subducción de la placa de Nazca. Un análisis tectonoestratigráfico integral del relleno Neógeno de la Cuenca Atrato permitió identificar tres fases tectónicas principales, las cuales detonaron cambios en la configuración de las áreas fuente y de los ambientes deposicionales. Primero, la colisión del arco Centro Americano con el noroccidente de Suramérica fue registrado por la acumulación, en una cuenca tras-arco tectónicamente activa, de rocas marinas profundas del Oligoceno-Mioceno medio con procedencia de ambos dominios en colisión. El avance del evento colisional detonó la inversión de la cuenca y la somerización de las profundidades de acumulación durante el Mioceno Medio, así como la exhumación por erosión acelerada de la paleomargen continental y el incremento del flujo siliciclástico hacia la cuenca de sutura y la cuenca de tras-arco en colisión. Segundo, la transición de colisión a subducción de la placa de Nazca durante el Mioceno medio-tardío causó la formación de un arco poscolisional en el noroccidente de Colombia, y también el levantamiento topográfico inicial de la recientemente establecida cuenca de antearco (antes tras-arco alóctono) en cercanías a la zona de sutura. Esto fue acompañado por una somerización importante de los ambientes de acumulación y un cambio dramático en la señal detrítica de los depósitos de antearco, los cuales fueron aislados de fuentes continentales (i.e. Cordillera Occidental) por montañas recientemente levantadas. Finalmente, el aplanamiento de la losa subducente de la placa de Nazca por debajo del norte de Colombia causó deformación ampliamente distribuida y condujo al levantamiento del alto externo del antearco, representado por la Serranía de Baudó, y al establecimiento de las condiciones fisiográficas modernas. Este episodio llevó a la fragmentación de la cuenca de antearco en un segmento externo (costero) y uno interno (continental), así como al fuerte retrabajamiento de rocas más antiguas, como lo sugiere la procedencia de rocas del Mioceno tardío al Plioceno acumuladas en ambientes fluviales de alta energía. La naturaleza episódica de la construcción de montañas durante el Mioceno a lo largo del antearco más noroccidental de los Andes, como consecuencia de tectónica colisional y de subducción, jugó, aparentemente, un papel importante en la evolución biogeográfica de la región y en la constitución del bosque tropical extremadamente húmedo de la actualidad, el cual hospeda un punto caliente de biodiversidad. Este trabajo permitió probar lo valioso que es el registro tectonoestratigráfico de las cuencas de antearco y las cadenas de montaña adyacentes para revelar los efectos de un sistema de subducción cambiante en la evolución del paisaje de la placa superior. Esto, como pudo demostrarse en este trabajo, puede ser exitosamente estudiado a través de la integración de análisis petrocronológicos, estratigráficos y estructurales. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaGeodinámicaÁrea Curricular de Materiales y Nanotecnologíaxviii, 170 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesDepartamento de Materiales y MineralesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCuencas hidrográficasWatershedsRocas - AnálisisForearc basinsNorthern AndesArc-continent collisionAtrato BasinSedimentary provenanceTectonostratigraphyCuencas antearcoAndes del NorteColisión arco-continenteCuenca AtratoProcedencia sedimentariaTectonoestratigrafíaForearc basin evolution in response to a changing subduction system: Neogene to Recent geological record of the northwestern Colombian AndesEvolución de cuencas de antearco en respuesta a un régimen de subducción cambiante: Registro geológico Neógeno al Reciente del noroccidente de los Andes ColombianosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAizprua, C., Witt, C., Johansen, S.E., Barba, D., 2019. Cenozoic stages of forearc evolution following the accretion of a sliver from the Late Cretaceous-Caribbean Large Igneous Province: SW Ecuador-NW Peru. Tectonics 38, 1441–1465. https://doi.org/10.1029/2018TC005235Allen, P.A., Allen, J.R., 2013. Basin analysis: Principles and application to petroleum play assessment, 3rd ed. Wiley-BlackwellAlmeida, J.J., Villamizar, F., 2012. Petrografía y geoquímica del Batolito Antioqueño en un sector del municipio de Santa Rosa de Osos, Antioquia (Bachelor thesis). Universidad Industrial de Santander, BucaramangaÁlvarez-Gómez, J.A., 2019. FMC -arthquake focal mechanis Ems data management, cluster and classification. Softw. X 9, 299–307. https://doi.org/10.1016/j.softx.2019.03.008Arnott, R.W.C., 2010. Deep-marine sediments and sedimentary systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 295–322Avellaneda-Jiménez, D.S., Cardona, A., Valencia, V., Barbosa, J.S., Jaramillo, J.S., Monsalve, G., Ramírez-Hoyos, L.F., 2020. Erosion and regional exhumation of an Early Cretaceous subduction/accretion complex in the Northern Andes. Int. Geol. Rev. 62, 186–209. https://doi.org/10.1080/00206814.2019.1596042Baes, M., Sobolev, S., Gerya, T., Brune, S., 2020. Plume-induced subduction initiation: Single-slab or multi-slab subduction? Geochemistry, Geophys. Geosystems 21, e2019GC008663. https://doi.org/10.1029/2019GC008663Baes, M., Stern, R.J., Whattam, S., Gerya, T. V., Sobolev, S. V., 2021. Plume-induced subduction initiation: Revisiting models and observations. Front. Earth Sci. 9, 1032. https://doi.org/10.3389/feart.2021.766604Baillard, C., Crawford, W.C., Ballu, V., Regnier, M., Pelletier, B., Garaebiti, E., 2015. Seismicity and shallow slab geometry in the central Vanuatu subduction zone. J. Geophys. Res. Solid Earth 120, 5606–5623. https://doi.org/10.1002/2014JB011853Baker, P.A., Fritz, S.C., Dick, C.W., Eckert, A.J., Horton, B.K., Manzoni, S., Ribas, C.C., Garzione, C.N., Battisti, S., 2014. The emerging field of geogenomics: Constraining geological problems with genetic data. Earth-Science Rev. 135, 38–47. https://doi.org/10.1016/j.earscirev.2014.04.001Barbosa-Espitia, A.A., Kamenov, G.D., Foster, D.A., Restrepo-Moreno, S.A., Pardo-Trujillo, A., 2019. Contemporaneous Paleogene arc-magmatism within continental and accreted oceanic arc complexes in the northwestern Andes and Panama. Lithos 348–349, 105185. https://doi.org/10.1016/j.lithos.2019.105185Bayona, G., 2018. El inicio de la emergencia de los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 1–15. https://doi.org/10.18257/raccefyn.632Bayona, G., Baquero, M., Ramírez, C., Tabares, M., Salazar, A.M., Nova, G., Duarte, E., Pardo, A., Plata, A., Jaramillo, C., Rodríguez, G., Caballero, V., Cardona, A., Montes, C., Gómez-Marulanda, S., Cárdenas-Rozo, A.L., 2020. Unraveling the widening of the earliest Andean northern orogen: Maastrichtian to early Eocene intra-basinal deformation in the northern Eastern Cordillera of Colombia. Basin Res. https://doi.org/10.1111/bre.12496Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., Ayala, C., Montenegro, O., Ibañez-Mejia, M., 2012. Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth Planet. Sci. Lett. 331–332, 97–111. https://doi.org/10.1016/j.epsl.2012.03.015Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J.J., Reyes-Harker, A., 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 120, 1171–1197. https://doi.org/10.1130/B26187.1Becker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A.R., Miller, M.S., 2014. Static and dynamic support of western United States topography. Earth Planet. Sci. Lett. 402, 234–246. https://doi.org/10.1016/j.epsl.2013.10.012Belousova, E., Griffin, W., O’Reilly, S.Y., Fisher, N., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. to Mineral. Petrol. 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7Blanco, J.F., Vargas, C.A., Monsalve, G., 2017. Lithospheric thickness estimation beneath Northwestern South America from an S-wave receiver function analysis. Geochemistry, Geophys. Geosystems 18, 1376–1387. https://doi.org/10.1002/2016GC006785Blisniuk, P.M., Stern, L.A., Chamberlain, P., Zeitler, P.K., Ramos, V.A., Sobel, E.R., Haschke, M., Strecker, M. R., Warkus, F., 2006. Links between mountain uplift, climate, and surface processes in the Southern Patagonian Andes, in: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-. J., Ramos, V.A., Strecker, Manfred R., Wigger, P. (Eds.), The Andes, Active Subduction Orogeny. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, pp. 429–440. https://doi.org/10.1007/978-3-540-48684-8_20Blow, W.A., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy, in: Bronnimann, P., Renz, H.H. (Eds.), First International Conference on Planktonic Microfossils. Geneva, pp. 199–421Borrero, C., Pardo, A., Jaramillo, C.M., Osorio, J.A., Cardona, A., Flores, A., Echeverri, S., Rosero, S., García, J., Castillo, H., 2012. Tectonostratigraphy of the Cenozoic Tumaco forearc basin (Colombian Pacific) and its relationship with the northern Andes orogenic build up. J. South Am. Earth Sci. 39, 75–92. https://doi.org/10.1016/j.jsames.2012.04.004Boschman, L.M., van der Wiel, E., Flores, K.E., Langereis, C.G., van Hinsbergen, D.J.J., 2019. The Caribbean and Farallon plates connected: Constraints from stratigraphy and paleomagnestism of the Nicoya Peninsula, Costa Rica. J. Geophys. Res. Solid Earth 124, 6243–6266. https://doi.org/10.1029/2018JB016369Bostock, M.G., Hyndman, R.D., Rondenay, S., Peacock, S.M., 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538. https://doi.org/10.1038/417536aBoutelier, D., Chemenda, A., Burg, J.P., 2003. Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth Planet. Sci. Lett. 212, 31–45. https://doi.org/10.1016/S0012-821X(03)00239-5Brown, D., Alvarez-Marrón, J., Pérez-Estaún, A., Puchkov, V., Gorozhanina, Y., Ayarza, P., 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continent collision in the southern Urals. Tectonics 20, 364–375. https://doi.org/10.1029/2001TC900002Buchs, D.M., Arculus, R.J., Baumgartner, P.O., Baumgartner-Mora, C., Ulianov, A., 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: Insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochemistry, Geophys. Geosystems 11, 1–35. https://doi.org/10.1029/2009GC002901Buchs, D.M., Coombs, H., Irving, D., Wang, J., Koppers, A., Miranda, R., Coronado, M., Tapia, A., Pitchford, S., 2019a. Volcanic shutdown of the Panama Canal area following breakup of the Farallon plate. Lithos 334–335, 190–204. https://doi.org/10.1016/j.lithos.2019.02.016Buchs, D.M., Irving, D., Coombs, H., Miranda, R., Wang, J., Coronado, M., Arrocha, R., Lacerda, M., Goff, C., Almengor, E., Portugal, E., Franceschi, P., Chichaco, E., Redwood, S.D., 2019b. Volcanic contribution to the emergence of Central Panama in the Early Miocene. Sci. Rep. 9, 1417. https://doi.org/10.1038/s41598-018-37790-2Buchs, D.M., Kerr, A.C., Brims, J.C., Zapata-Villada, J.P., Correa-Restrepo, T., Rodríguez, G., 2018. Evidence for subaerial development of the Caribbean oceanic plateau in the Late Cretaceous and palaeo-environmental implications. Earth Planet. Sci. Lett. 499, 62–73. https://doi.org/10.1016/j.epsl.2018.07.020Bustamante, C., Cardona, A., Archanjo, C.J., Bayona, G., Lara, M., Valencia, V., 2017. Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025Calvo, C., 2003. Provenance of plutonic detritus in cover sandstones of Nicoya Complex, Costa Rica: Cretaceous unroofing history of a Mesozoic ophiolite sequence. Geol. Soc. Am. Bull. 115, 832–844. https://doi.org/10.1130/0016-7606(2003)115<0832:POPDIC>2.0.CO;2Cardona, A., León, S., Jaramillo, J.S., Montes, C., Valencia, V., Vanegas, J., Bustamante, C., Echeverri, S., 2018. The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics 749, 88–103. https://doi.org/10.1016/j.tecto.2018.10.032Cardona, A., León, S., Jaramillo, J.S., Valencia, V., Zapata, S., Pardo-Trujillo, A., Schmitt, A.K., Mejía, D., Arenas, J.C., 2020. Cretaceous record from a Mariana to an Andean-type margin in the Central Cordillera of the Colombian Andes, in: Gómez, J., Pinilla-Pachón, A.O. (Eds.), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 36, Bogotá, p. 39. https://doi.org/10.32685/pub.esp.36.2019.10Cardona, A., Valencia, V., Bayona, G., Duque, J., Ducea, M.N., Gehrels, G.E., Jaramillo, C., Montes, C., Ojeda, G., Ruiz, J., 2011. Early-subduction-related orogen in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nov. 23, 26–34. https://doi.org/10.1111/j.1365-3121.2010.00979.xCardona, A., Weber, M., Valencia, V., Bustamante, C., Montes, C., Cordani, U.G., Muñoz, C.M., 2014. Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin. J. South Am. Earth Sci. 50, 75–92. https://doi.org/10.1016/j.jsames.2013.12.006Case, J.E., Duran, L.G., López, A., Moore, W.R., 1971. Tectonic investigations in western Colombia and eastern Panama. Geol. Soc. Am. Bull. 82, 2685–2712.Cassel, E.J., Smith, M.E., Jicha, B.R., 2018. The impact of slab rollback on Earth’s surface: Uplift and extension in the hinterland of the North American Cordillera. Geophys. Res. Lett. 45, 10996–11004. https://doi.org/10.1029/2018GL079887Cawood, P.A., Kröner, Alfred, Collins, W.J., Kusky, T.M., Mooney, W.D., Windley, B.F., 2009. Accretionary orogens through Earth history, in: Cawood, P.A., Kröner, A. (Eds.), Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318, 1-36Cediel, F., Restrepo, I., Marín-Cerón, M.I., Duque-Caro, H., Cuartas, C., Mora, C., Montenegro, G., García, E., Tovar, D., Muñoz, G., 2009. Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia. Fondo Editorial EAFIT, MedellínCelestino, M.A.L., Miranda, T.S., Mariano, G., Lima, M.A., Carvalho, B.R.B.M., Falcão, T.C., Topan, J.G., Barbosa, J.A., Gomes, I.F., 2020. Fault damage zones width: Implications for the tectonic evolution of the northern border of the Araripe basin, Brazil, NE, Brazil. J. Struct. Geol. 104116. https://doi.org/10.1016/j.jsg.2020.104116Champagnac, J.-. D., Molnar, P., Sue, C., Herman, F., 2012. Tectonics, climate, and mountain topography. J. Geophys. Res. Solid Earth 117, B02403. https://doi.org/10.1029/2011JB008348Chang, Z., Vervoort, J.D., McClelland, W.C., Knaack, C., 2006. U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophys. Geosystems 7, 1–14. https://doi.org/10.1029 /2005GC001100Chapman, J.B., Ducea, M.N., DeCelles, P.G., Profeta, L., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 43, 919–922. https://doi.org/10.1130/G36996.1Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2016. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophys. Geosystems 17, 16–27. https://doi.org/10.1002/2015GC006048Clift, P.D., Hartley, A.J., 2007. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru. Geology 35, 503–506. https://doi.org/10.1130/G23584A.1Clift, P.D., MacLeod, C.J., 1999. Slow rates of subbduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology 27, 411–414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2Clift, P.D., Pecher, I., Kukowski, N., Hampel, A., 2003. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision. Tectonics 22, 1023. https://doi.org/10.1029/2002TC001386Clift, P.D., Vannucchi, P., 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001. https://doi.org/10.1029/2003RG000127Cloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737. https://doi.org/10.1130/0016-7606(1993)105<0715Coates, A.G., Collins, L.S., Aubry, M.-P., Berggren, W.A., 2004. The Geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geol. Soc. Am. Bull. 116, 1327. https://doi.org/10.1130/B25275.1Collot, J.-Y., Ratzov, G., Silva, P., Proust, J.-N., Migeon, S., Hernández, M.J., Michaud, F., Pazmino, A., Barba Castillo, D., Alvarado, A., Khurama, S., 2019. The Esmeraldas Canyon: A helpful marker of the Pliocene-Pleistocene tectonic deformation of the North Ecuador-Southwest Colombia convergent margin. Tectonics 38, 3140–3166. https://doi.org/10.1029/2019TC005501Copete, J.C., Sánchez, M., Cámara-Leret, R., Balslev, H., 2019. Diversidad de comunidades de palmas en el Chocó biogeográfico y su relación con la precipitación. Caldasia 41, 358–369. https://doi.org/10.15446/caldasia.v41n2.66576Correa, I., Morton, R., 2010. Pacific coast of Colombia, in: Bird, E.C.F. (Ed.), Encyclopedia of the World’s Coastal Landforms. Springer, Dordrecht, pp. 193–197. https://doi.org/10.1007/978-1-4020-8639-7Cortés, M., Angelier, J., 2005. Current state of stress inthe northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403, 29–58. https://doi.org/10.1016/j.tecto.2005.03.020Crameri, F., Magni, V., Domeier, M., Shepard, G.E., Chotalia, K., Cooper, G., Eakin, C.M., Grima, A.G., Gürer, D., Király, A., Mulyukova, E., Peters, K., Robert, B., Thielmann, M., 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat. Commun. 11, 3750. https://doi.org/10.1038/s41467-020-17522-9Dalrymple, R.W., 2010. Tidal depositional systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 201–232.Davies, J.H., von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 129, 85–102. https://doi.org/10.1016/0012-821X(94)00237-SDelph, J.R., Thomas, A.M., Levander, A., 2021. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett. 556, 116724. https://doi.org/10.1016/j.epsl.2020.116724DePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao, Z., Zhu, D.-C., Zhang, H., Mo, X., 2019. Geochemical evidence for thin syn-collision crust and major crustal thickening between 45 ans 32 Ma at the southern margin of Tibet. Gondwana Res. 73, 123–135. https://doi.org/10.1016/j.gr.2019.03.011Dickinson, W.R., 1995. Forearc basins, in: Busby, C.J., Ingersoll, R. V. (Eds.), Tectonics of Sedimentary Basins. Blackwell Science, Oxford, UK, pp. 221–261.Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of Sandstones, in: Zuffa, G.G. (Ed.), Provenance of Arenites. pp. 333–361.Dickinson, W.R., 1973. Widths of modern arc-trench gaps proportional to past duration of igneous activity in associated magmatic arcs. J. Geophys. Res. 78, 3376–3389. https://doi.org/10.1029/JB078i017p03376Dielforder, A., Hetzel, R., Oncken, O., 2020. Megathrust shear force controls mountain heigth at convergent plate margins. Nature 582, 225–229. https://doi.org/10.1038/s41586-020-2340-7Duarte, E., Cardona, A., Lopera, S., Valencia, V., Estupiñan, H., 2018. Provenance and diagenesis from two stratigraphic sections of the Lower Cretaceous Caballos Formation in the Upper Magdalena Valley: Geological and reservoir quality implications. Ciencia, Tecnol. y Futur. 8, 5–29. https://doi.org/10.29047/01225383.88Duque-Caro, H., 1990a. The Choco Block in the northwestern corner of South America : Structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci. 3, 71–84. https://doi.org/10.1016/0895-9811(90)90019-WDuque-Caro, H., 1990b. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and evolution of the Panama Seaway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 203–234. https://doi.org/10.1016/0031-0182(90)90178-ADuque-Caro, H., 1990c. Estratigrafía, paleoceanografía y paleobiogeografía de la Cuenca del Atrato y la evolución del Istmo de Panamá. Boletín Geológico 31, 4–45.Duque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, A., Toro-Villegas, G., Hoyos, S., 2019. Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geol. 46, 82–101. https://doi.org/10.5027/andgeoV46n1-3120Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.-. A., van den Bogaard, P., Werner, R., 2019. Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean Large Igneous Province. Lithos 328–329, 69–87. https://doi.org/10.1016/j.lithos.2018.12.021Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 86, 2825–2852. https://doi.org/10.1029/JB086iB04p02825Echeverri, S., Cardona, A., Pardo-Trujillo, A., Borrero, C., Rosero, S., López, S., 2015a. Correlación y geocronología Ar-Ar del basamento Cretácico y el relleno sedimentario Eoceno Superior - Mioceno (Aquitaniano inferior) de la cuenca de ante-arco de Tumaco, SW de Colombia. Rev. Mex. Ciencias Geológicas 32, 179–189.Echeverri, S., Cardona, A., Pardo-Trujillo, A., Monsalve, G., Valencia, V.A., Borrero, C., Rosero, S., López, S., 2015b. Regional provenance from southwestern Colombia fore-arc and intra-arc basins: implications for Middle to Late Miocene orogeny in the northern Andes. Terra Nov. 27, 356–363. https://doi.org/10.1111/ter.12167Echeverri, S., Pardo-Trujillo, A., Borrero, C., Cardona, A., Rosero, S., Celis, S.A., López, S.A., 2016. Estratigrafía del Neógeno Superior al sur de la Cuenca Tumaco (Pacífico Colombiano): La Formación Cascajal, propuesta de redefinición litoestratigráfica. Boletín Geol. 38, 43–60. https://doi.org/10.18273/revbol.v38n4-2016003Ekström, G., Nettles, M., Dziewonski, A.M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002Encinas, A., Sagripanti, L., Rodríguez, M.P., Orts, D., Anavalón, A., Giroux, P., Otero, J., Echaurren, A., Zambrano, P., Valencia, V., 2021. Tectonosedimentary evolution of the Coastal Cordillera and Central Depression of south-Central Chila (36°30’-42°S). Earth-Science Rev. 213, 103465. https://doi.org/10.1016/j.earscirev.2020.103465England, P., Molnar, P., 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–1177. https://doi.org/10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V., Faccenna, C., Brusset, S., 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics 27, TC3011. https://doi.org/10.1029/2007TC002175Faccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C.-, Billi, A., 2011. Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics 30, TC1003. https://doi.org/10.1029/2010TC002694Faccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201.Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086Finzel, E.S., Enkelmann, E., 2017. Miocene-Recent sediment flux in the south-central Alaskan forearc basin governed by flat-slab subduction. Geochemistry, Geophys. Geosystems 18, 1739–1760. https://doi.org/10.1002/2016GC006783Finzel, E.S., Enkelmann, E., Falkowski, S., Hedeen, T., 2016. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska. Tectonics 35, 1735–1759. https://doi.org/10.1002/2016TC004171Finzel, E.S., Trop, J.M., Ridgway, K.D., Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth Planet. Sci. Lett. 303, 348–360. https://doi.org/10.1016/j.epsl.2011.01.014Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas.Frohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Phys. Earth Planet. Inter. 75, 193–198. https://doi.org/10.1016/0031-9201(92)90130-NGalvis, J., 1980. Un arco de islas terciarion en el occidente Colombiano. Geol. Colomb. 11, 7–43.Gao, X., Wang, K., 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science (80-. ). 345, 1038–1041. https://doi.org/10.1126/science.1255487Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., 2008. Rise of the Andes. Science (80-. ). 320, 1304–1307. https://doi.org/10.1126/science.1148615Geldmacher, J., Hanan, B.B., Blichert-Toft, J., Harpp, K., Hoernle, K., Hauff, F., Werner, R., Kerr, A.C., 2003. Hafnium isotopic variations in volcanic rocks from the Caribbean Large Igneous Province and Galápagos hot spot tracks. Geochemistry, Geophys. Geosystems 4, 1062. https://doi.org/10.1029/2002GC000477Genge, M.C., Witt, C., Chanier, F., Reynaud, J.-. Y., Calderon, Y., 2020. Outer forearc high control in an erosional subduction regime: The case of the central Peruvian forearc (6-10°S). Tectonophysics 228546. Gentry, A., 1986. Species richness and floristic composition of Chocó region plant communities. Caldasia 15, 71–91.George, S.W.M., Horton, B.K., Vallejo, C., Jackson, L.J., Gutiérrez, E.G., 2021. Did accretion of the Caribbean oceanic plateau drive rapid crustal thickening in the northern Andes? Geology.Gianni, G.M., Navarrete, C., Echaurren, A., Díaz, M., Butler, K.L., Horton, B.K., Encinas, A., Folguera, A., 2020. Northward propagation of Andean genesis: Insights from Early Cretaceous synorogenic deposits in the Aysén-Río Mayo basin. Gondwana Res. 77, 238–259. https://doi.org/10.1016/j.gr.2019.07.014Gómez-Tapias, J., Montes-Ramírez, N.E., Almanza-Meléndez, M.F., Alcárcel-Gutiérrez, F.A., Madrid-Montoya, C.A., Diederix, H., 2017. Geological map of Colombia. Episodes 40, 201–212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023Gómez-Tapias, J., Nivia, A., Montes, N.E., Almanza, M.F., Alcárcel, F.A., Madrid, C.A., 2015. Notas explicativas: Mapa Geológico de Colombia, in: Gómez-Tapias, J., Almanza, M.F. (Eds.), Compilando La Geología de Colombia: Una Visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 33, Bogotá, pp. 9–33Gómez, E., Jordan, T.E., Allmendinger, R.W., Cardozo, N., 2005. Development of the Colombian foreland-basin system as consequence of diachronous exhumation of the northern Andes. Geol. Soc. Am. Bull. 117, 1272–1292. https://doi.org/10.1130/B25456.1Gómez, E., Jordan, T.E., Allmendinger, R.W., Hegarty, K., Kelley, S., Heizler, M., 2003. Controls on architecture of the Late Cretaceous to Cenozoic southern Middle Magdalena Valley Basin, Colombia. Geol. Soc. Am. Bull. 115, 131–147. https://doi.org/10.1130/0016-7606(2003)115<0131:COAOTL>2.0.CO;2González, J.L., Shen, Z., Mauz, B., 2014. New constraints on Holocene uplift rates for the Baudo Mountain Range, northwestern Colombia. J. South Am. Earth Sci. 52, 194–202.Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hangøj, K., Schwarts, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 35, 643–646. https://doi.org/10.1130/G23603A.1Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. to Mineral. Petrol. 170, 46. https://doi.org/10.1007/s00410-015-1199-3Groome, W.G., Thorkelson, D.J., 2009. The three-dimensional thermo-mechanical signature of ridge subduction and slab window migration. Tectonophysics 464, 70–83. https://doi.org/10.1016/j.tecto.2008.07.003Gutscher, M.-A., 2002. Andean subduction styles and their effect on thermal structure and interplate coupling. J. South Am. Earth Sci. 15, 3–10. https://doi.org/10.1016/S0895-9811(02)00002-0Gutscher, M.-A., Malavieille, J., Lallemand, S., Collot, J.-Y., 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 168, 255–270. https://doi.org/10.1016/S0012-821X(99)00060-6Gvirtzman, Z., Faccenna, C., Becker, T.W., 2016. Isostasy, flexure, and dynamic topography. Tectonophysics 683, 255–271. https://doi.org/10.1016/j.tecto.2016.05.041Haffer, J., 1967. On the geology of the Urabá and northern Chocó regions, northwestern Colombia.Hastie, A.R., Kerr, A.C., 2010. Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth-Science Rev. 98, 283–293. https://doi.org/10.1016/j.earscirev.2009.11.001Hawkins Jr., J.W., 1995. The geology of the Lau Basin, in: Taylor, B. (Ed.), Backarc Basins. Springer, Boston, pp. 63–138. https://doi.org/10.1007/978-1-4615-1843-3_3Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science (80-. ). 362, 58–61. https://doi.org/10.1126/science.aat4723Hayward, B.W., Carter, R., Grenfell, H.R., Hayward, J., 2001. Depth distribution of Recent deep-sea benthic foraminifera east of New Zealand, and their potential for improving paleobathymetric assessments of Neogene microfaunas. New Zeal. J. Geol. Geophys. 44, 555–587. https://doi.org/10.1080/00288306.2001.9514955Hernández, M.J., Michaud, F., Collot, J.-Y., Proust, J.-N., d’Acremont, E., 2020. Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics 781, 228374. https://doi.org/10.1016/j.tecto.2020.228374Heuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter. 149, 31–51. https://doi.org/10.1016/j.pepi.2004.08.022Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., Faccenna, C., 2011. Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophys. Geosystems 12, Q01004. https://doi.org/10.1029/2010GC003230Hijmans, R., 2017. raster: Geographic data analysis and modeling. R package version 2.6-7 [WWW Document]. URL http://cran.r-project.org/package=rasterHincapié-Gómez, S., Cardona, A., Jiménez, G., Monsalve, G., Hoyos-Ramírez, L., Bayona, G., 2018. Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: Paleogeographic connections with the Caribbean Plate. Stud. Geophys. Geod. 62, 485–511. https://doi.org/10.1007/s11200-016-0678-yHolbourn, A., Henderson, A.S., MacLeod, N., 2013. Atlas of benthic foraminifera. John Wiley & Sons, Ltd.Horton, B.K., 2018a. Sedimentary record of Andean mountain building. Earth-Science Rev. 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025Horton, B.K., 2018b. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37, 402–429. https://doi.org/10.1002/2017TC004624Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochemistry 53, 27–62. https://doi.org/10.2113/0530027Hu, F., Wu, F., Chapman, J.B., Ducea, M.N., Ji, W., Liu, S., 2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202. https://doi.org/10.1029/2020GL089202Hurtado, C., Roddaz, M., Santos, R. V., Baby, P., Antoine, P.-O., Dantas, E.L., 2018. Cretaceous early-Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin). Gondwana Res. 63, 152–168. https://doi.org/10.1016/j.gr.2018.05.012Jaramillo, C., 2018. Evolution of the Isthmus of Panama: Biological, paleoceanographic and paleoclimatological implications, in: Hoorn, C., Perrigo, A., Antonelli, A. (Eds.), Mountains, Climate and Biodiversity. John Wiley & Sons, Ltd, pp. 323–338Jaramillo, J.S., Cardona, A., León, S., Valencia, V., Vinasco, C., 2017. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35’N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc-growth and collision. J. South Am. Earth Sci. 76, 460–481. https://doi.org/10.1016/j.jsames.2017.04.012Jaramillo, J.S., Cardona, A., Monsalve, G., Valencia, V., León, S., 2019. Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos 330–331, 194–210. https://doi.org/10.1016/j.lithos.2019.02.017Jicha, B.R., Kay, S.M., 2018. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99. https://doi.org/10.1016/j.jvolgeores.2018.06.016Johnson, H.D., Baldwin, C.T., 1996. Shallow clastic seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 232–280Jones, R.W., 1994. The challenger foraminifera. Oxford University PressKasaras, I., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Papadimitriou, P., Voulgaris, N., Makropoulos, K. Popandopoulos, G., Moshou, A., 2014. The April-June 2007 Trichonis Lake earthquake swarm (W. Greece); New implications toward causative fault zone. J. Geodyn. 73, 60–80. https://doi.org/10.1016/j.jog.2013.09.004Kerr, A.C., Marriner, G.F., Tarney, J., Nivia, A., Saunders, A.D., Thirlwall, M.F., Sinton, C.W., 1997. Cretaceous Basaltic Terranes in Western Colombia : Elemental, Chronological and Sr – Nd Isotopic Constraints on Petrogenesis. J. Petrol. 38, 677–702. https://doi.org/10.1093/petrology/38.6.677Kerr, A.C., Pearson, D.G., Nowell, G.M., 2009. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165 Site 1001 basalts, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate. Geological Society, London, Special Publications, 328., pp. 809–827. https://doi.org/10.1144/SP328.31Kerr, A.C., White, R. V., Thompson, P.M.E., Tarney, J., Saunders, A.D., 2003. No oceanic plateau - No Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution, in: Bartolini, C., Buffler, R.T., Blickwede, J.F. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics: AAPG Memoir 79. pp. 126–168. https://doi.org/10.1306/M79877C6Lamb, S., 2006. Shear stresses on megathrust: Implications for mountain building behind subduction zones. J. Geophys. Res. Solid Earth 111, B07401. https://doi.org/10.1029/2005JB003916Lamb, S., Davis, P., 2003. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797. https://doi.org/10.1038/nature02049Lara, M., Salazar-Franco, A.M., Silva-Tamayo, J.C., 2018. Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America. Sediment. Geol. 373, 147–162. https://doi.org/10.1016/j.sedgeo.2018.06.003Laske, G., Masters, G., Ma, Z., Pasyanos, M., 2013. Update on CRUST1.0 - A 1-degree global model of Earth’s crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658Leal-Mejía, H., Shaw, R.P., Melgarejo, J.C., 2019. Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 253–410. https://doi.org/10.1007/978-3-319-76132-9_5Lee, C.-T.A., Thurner, S., Patterson, S., Cao, W., 2015. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 425, 105–119. https://doi.org/10.1016/j.epsl.2015.05.045Lefeldt, M., Grevemeyer, I., 2008. Centroid depth and mechanism of trench-outer rise earthquakes. Geophys. J. Int. 172, 240–251. https://doi.org/10.1111/j.1365-246X.2007.03616.xLeón, S., Avellaneda-Jiménez, D.S., Monsalve, G., Bustamante, C., Valencia, V., In review. Evidence for magmatic activity of the Central American arc at ~100-84 Ma supports its spontaneous origin by plume-lithosphere interaction. Geol. Soc. Am. BullLeón, S., Cardona, A., Mejía, D., Botello, G.E., Villa, V., Collo, G., Valencia, V., Zapata, S., Avellaneda-Jiménez, D.S., 2019. Source area evolution and thermal record of an Early Cretaceous back-arc basin along the northwesternmost Colombian Andes. J. South Am. Earth Sci. 94, 102229. https://doi.org/10.1016/j.jsames.2019.102229León, S., Cardona, A., Parra, M., Sobel, E.R., Jaramillo, J.S., Glodny, J., Valencia, V., Chew, D., Montes, C., Posada, G., Monsalve, G., Pardo-Trujillo, A., 2018. Transition from collisional to subduction-related regimes: an example from Neogene Panama-Nazca-South-America interactions. Tectonics 37, 119–139. https://doi.org/10.1002/2017TC004785León, S., Monsalve, G., Bustamante, C., 2021a. How Much Did the Colombian Andes Rise by the Collision of the Caribbean Oceanic Plateau? Geophys. Res. Lett. 48, e2021GL093362. https://doi.org/10.1029/2021GL093362León, S., Monsalve, G., Jaramillo, C., Posada, G., Miranda, T.S., Echeverri, S., Valencia, V., 2021b. Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics 820, 229132. https://doi.org/10.1016/j.tecto.2021.229132Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinites of paleo-volcanic series. Earth Planet. Sci. Lett. 59, 139–154. https://doi.org/10.1016/0012-821X(82)90122-4Loader, M.A., Wilkinson, J.J., Armstrong, R.N., 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth Planet. Sci. Lett. 472, 107–119. https://doi.org/10.1016/j.epsl.2017.05.010Lonsdale, P., 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404, 237–264. https://doi.org/10.1016/j.tecto.2005.05.011Macía, C., 1985. Características petrográficas y geoquímicas de rocas basálticas de la península de Cabo Corrientes (Serranía de Baudó), Colombia. Geol. Colomb. 14, 25–37Malkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L., Graham, S.A., 2019. Dilution and propagation of provenance trends in sand and mud: Geochemistry and detrital zircon geochronology of modern sediment from central California (U.S.A.). Am. J. Sci. 319, 846–902. https://doi.org/10.2475/10.2019.02Mamani, M., Wörner, G., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and space. Geol. Soc. Am. Bull. 122, 162–182. https://doi.org/10.1130/B26538.1Mann, H.B., Whitney, D.R., 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60.Marcaillou, B., Collot, J.-Y., 2008. Chronostratigraphy and tectonic deformation of the North Ecuadorian-South Colombian offshore Manglares forearc basin. Mar. Geol. 255, 30–44. https://doi.org/10.1016/j.margeo.2008.07.003Martinez, F., Parra, M., Gonzalez, R., López, C., Patiño, A., Muñoz, B., Robledo, F., Sobel, E.R., Glodny, J., 2022. Deciphering the Late Paleozoic-Cenozoic tectonic history of the inner Central Andes forearc: An update from the Salar de Punta Negra Basin of northern Chile. Front. Earth Sci. 9, 790526. https://doi.org/10.3389/feart.2021.790526Martinez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from “Pampean” subduction segment. Basin Res. 33, 2706–2724. https://doi.org/10.1111/bre.12580Martinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart, S., Carretier, S., 2016. How do subduction processes contribute to forearc Andean uplift? J. Geodyn. 96, 6–18. https://doi.org/10.1016/j.jog.2015.04.001Mason, C.C., Romans, B.W., Stockli, D.F., Mapes, R.W., Fildani, A., 2019. Detrital zircon reveal sea-level and hydroclimate controls on Amazon River to deep-sea fan sediment transfer. Geology 47, 563–567. https://doi.org/10.1130/G45852.1McClay, K.R., 1987. The mapping of geological structures. Geological Society of London handbook. Open University Press.McDonough, W.F., Sun, S. -s., 1995. The composition of the Earth. Chem. Geol. 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4McGirr, R., Seton, M., Williams, S., 2020. Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Geol. Soc. Am. Bull. 133, 867–884. https://doi.org/10.1130/B35595.1McKay, M.P., Jackson Jr., W.T., Hessler, A.M., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Res. 57, 1–9. https://doi.org/10.1016/j.gr.2018.01.004Mibe, K., Kawamoto, T., Matsukage, K.N., Fei, Y., Ono, S., 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl. Acad. Sci. U. S. A. 108, 8177–8182. https://doi.org/10.1073/pnas.1010968108Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 31, 357–396. https://doi.org/10.1029/93RG02030Monsalve, G., Jaramillo, J.S., Cardona, A., Schulte-Pelkum, V., Posada, G., Valencia, V., Poveda, E., 2019. Deep crustal faults, shear zones, and magmatism in the Eastern Cordillera of Colombia: Growth of a plateau from teleseismic receiver function and geochemical Mio-Pliocene volcanism constraints. J. Geophys. Res. Solid Earth 124. https://doi.org/10.1029/2019JB017835Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J.C., Valencia, V., Ayala, C., Pérez-Angel, L.C., Rodríguez-Parra, L.A., Ramírez, V., Niño, H., 2015. Middle Miocene closure of the Central American Seaway. Science (80-. ). 348, 226–229. https://doi.org/10.1126/science.aaa2815Montes, C., Cardona, A., McFadden, R., Moron, S.E., Silva, C.A., Restrepo-Moreno, S.A., Ramirez, D.A., Hoyos, N., Wilson, J., Farris, D.W., Bayona, G., Jaramillo, C., Valencia, V., Bryan, J., Flores, J.A., 2012. Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Geol. Soc. Am. Bull. 124, 780–799. https://doi.org/10.1130/B30528.1Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V.A., Jaramillo, C., 2010. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Rancheria basins. J. South Am. Earth Sci. 29, 832–848. https://doi.org/10.1016/j.jsames.2009.07.010Montes, C., Rodríguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., Cardona, A., 2019. Continental margin response to the multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Rev. 198, 102903. https://doi.org/10.1016/j.earscirev.2019.102903Mora-Bohórquez, J.A., Ibañez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L., 2017. Structure and age of the Lower Magdalena Valley Basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. J. South Am. Earth Sci. 74, 1–26. https://doi.org/10.1016/j.jsames.2017.01.001Mora-Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J.R., Díaz-Mila, F., Bohórquez-Orosco, O., Giraldo-Londoño, L., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes - A new GPS velocity field. J. South Am. Earth Sci. 89, 76–91. https://doi.org/10.1016/j.jsames.2018.11.002Mora-Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J.R., Corchuelo-Cuervo, Y., 2016. GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett. 43, 8407–8416. https://doi.org/10.1002/2016GL069795Mora, A., Villagómez, D., Parra, M., Caballero, V.M., Spikings, R., Horton, B.K., Mora-Bohórquez, J.A., Ketcham, R.A., Arias-Martínez, J.P., 2020. Late Cretaceous to Cenozoic uplift of the Northern Andes: Paleogeographic implications, in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene - Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 89–121. https://doi.org/10.32685/pub.esp.37.2019.04Mora, J.A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., de Freitas, M., 2018. Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Mar. Pet. Geol. 97, 288–310. https://doi.org/10.1016/j.marpetgeo.2018.06.032Mountney, N.P., Westbrook, G.K., 1997. Quantitative analysis of Miocene to recent forearc basin evolution along the Colombian convergent margin. Basin Res. 9, 177–196. https://doi.org/10.1046/j.1365-2117.1997.00040.xMoxon, I.W., Graham, S.A., 1987. History and controls of subsidence in the Late Cretaceous-Tertiary Great Vally forearc basin, California. Geology 15, 626–629. https://doi.org/10.1130/0091-7613(1987)15<626:HACOSI>2.0.CO;2Mukasa, S.B., 1986. Zircon U-Pb ages of super-units in the Coastal batholith, Peru: Implications for magmatic and tectonic processes. Geol. Soc. Am. Bull. 97, 241–254. https://doi.org/10.1130/0016-7606(1986)97<241:ZUAOSI>2.0.CO;2Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophys. Geosystems 9, Q04006. https://doi.org/0.1029/2007GC001743Myers, N., Mitteimer, R.A., Mitteimer, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858Nakakuki, T., Mura, E., 2013. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett. 361, 287–297. https://doi.org/10.1016/j.epsl.2012.10.031National Hydrocarbons Agency of Colombia, 2010. Total Bouguer Anomalies Map of Colombia. 1:2.500.000.Noda, A., 2016. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–895. https://doi.org/10.1130/B31345.1O’ Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M.-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J., Jackson, J.B.C., 2016. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883. https://doi.org/10.1126/sciadv.1600883Odin, G.S., Matter, A., 1981. De glauconiarum origine. Sedimentology 28, 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.xOguchi, T., Aoki, T., Matsuta, N., 2003. Identificacion of an active fault on the Japanese Alps from DEM-based hill shading. Comput. Geosci. 29, 885–891. https://doi.org/10.1016/S0098-3004(03)00083-9Ojeda, A., Havskov, J., 2001. Crustal structure and local seismicity in Colombia. J. Seismol. 5, 575–593. https://doi.org/10.1023/A:1012053206408Oncken, O., Chong, G., Franz, G., Giese, P., Gotze, H.-J., Ramos, V.A., Strecker, M.R., Wigger, P., 2006. The Andes: Active Subduction Orogeny, Frontiers in Earth Sciences. Springer-Verlag Berlin HeidelbergOrdoñez, O., Pimentel, M.M., Armstrong, R.A., Goia, S.M.C.L., Junges, S., 2001. U-Pb SHRIMP and Rb-Sr ages of the Sonsón Batholith, in: III South American Symposium on Isotope Geology. Pucon, ChileOsorio-Granada, E., Restrepo-Moreno, S.A., Muñoz-Valencia, J.A., Trejos-Tamayo, R.A., Pardo-Trujillo, A., Barbosa-Espitia, A.A., 2017. Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juanchaco sedimentary sequence, Equatorial Pacific (Colombia): New constraints on provenance and paleogeography in northwestern South America. Geol. Acta 15, 201–215. https://doi.org/10.1344/GeologicaActa2017.15.3.4Pacheco, J.F., Sykes, L.R., Scholz, C.H., 1993. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res. Solid Earth 98, 14133–14159. https://doi.org/10.1029/93JB00349Pardo-Trujillo, A., Cardona, A., Giraldo, A.S., León, S., Vallejo, D.F., Trejos-Tamayo, R., Plata, A., Ceballos, J.A., Echeverri, J.S., Barbosa-Espitia, A.A., Slattery, J., Salazar, A.F., Botello, G.E., Celis, S., Osorio-Granada, E., Giraldo-Villegas, C.A., 2020a. Sedimentary record of the Cretaceous-Paleogene arc-continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sediment. Geol. 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627Pardo-Trujillo, A., Echeverri, S., Borrero, C., Arenas, A., Vallejo, F., Trejos, R., Plata, A., Flores, J.A., Cardona, A., Restrepo, S., Barbosa, A., Murcia, H., Giraldo, C., Celis, S., Osorio, J.A., López, S.A., 2020b. Cenozoic geologic evolution of the southern Tumaco forearc basin (SW Colombian Pacific), in: Gómez, J., Mateus-Zabala, D. (Eds.), The Geology of Colombia, Volume 3 Paleogene-Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, 37, Bogotá, pp. 215–247. https://doi.org/10.32685/pub.esp.37.2019.08Pardo-Trujillo, A., Moreno-Sánchez, M., Gomez-Cruz, A.D.J., 2002. Estratigrafía de algunos depósitos del Cretáceo Superior en las Cordilleras Central y Occidental de Colombia: Implicaciones Regionales. Geo. Eco. Trop. 26, 113Paris, G., Machette, M.N., Dart, R.L., Haller, K.M., 2000. Map and databse of Quaternary faults and folds in Colombia and its offshore regions. U. S. Geological Survey Open-File Report 00-0284Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., Strecker, M.R., 2010. Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Res. 22, 874–903Parra, M., Mora, A., López, C., Rojas, L.E., Horton, B.K., 2012. Detecting earliest shortening and deformation advance in thrust-belt hinterlands: Example from the Colombian Andes. Geology 40, 175–178. https://doi.org/10.1130/G32519.1Parra, M., Mora, A., Sobel, E.R., Strecker, M.R., González, R., 2009. Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28, TC4004. https://doi.org/10.1029/2008TC002423Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983. https://doi.org/10.1093/petrology/25.4.956Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343Pennington, W.D., 1981. Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J. Geophys. Res. Solid Earth 86, 10753–10770. https://doi.org/10.1029/JB086iB11p10753Pérez-Escobar, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez-Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó biogeographic region. Front. Plant Sci. 10, 1328. https://doi.org/10.3389/fpls.2019.01328Perez, N.D., Levine, K.G., 2020. Diagnosing an ancient shallow-angle subduction event from Cenozoic depositional and deformational records in the central Andes of southern Peru. Earth Planet. Sci. Lett. 541, 116263. https://doi.org/10.1016/j.epsl.2020.116263Phillips, J.D., 2005. Weathering instability and landscape evolution. Geomorphology 67, 255–272. https://doi.org/10.1016/j.geomorph.2004.06.012Pindell, J., Maresch, W. V., Martens, U., Stanek, K., 2012. The Greater Antillan Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution. Int. Geol. Rev. 54, 131–143. https://doi.org/10.1080/00206814.2010.510008Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame : an update. Geol. Soc. London, Spec. Publ. 328, 1–55. https://doi.org/10.1144/SP328.1Plint, A.G., 2010. Wave- and storm-dominated shoreline and shallow-marine systems, in: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, pp. 167–200.Poveda, E., Julià, J., Schimmel, M., Perez-Garcia, N., 2018. Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: Investigating subduction-related magmatism in the overriding plate. J. Geophys. Res. Solid Earth 123, 1459–1485. https://doi.org/10.1002/2017JB014688Poveda, E., Monsalve, G., Vargas, C.A., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. J. Geophys. Res. Solid Earth 120, 2408–2425. https://doi.org/10.1002/2014JB011304Poveda, G., Mesa, O.J., 2000. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. https://doi.org/10.1029/1999GL006091Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Henriquez-Gonzales, S.M., Kirsch, M., Petrescu, L., DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5, 17786. https://doi.org/10.1038/srep17786R Development Core Team, 2017. R: A language and environment for statistical computing.Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M.O., Richardson, K., Rosing, M.T., Whittaker, R.J., Fjeldså, J., 2019. Building mountain biodiversity: Geological and evolutionary processes. Science (80-. ). 365, 1114–1119. https://doi.org/10.1126/science.aax0151Ramírez, D.A., Foster, D.A., Min, K., Montes, C., Cardona, A., Sadove, G., 2016. Exhumation of the Panama basement complex and basins: Implications for the closure of the Central American seaway. Geochemistry, Geophys. Geosystems 17, 1758–1777. https://doi.org/10.1002/2016GC006289Ramos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle, in: Backbone of the Americas: Shallow Subduction, Plateau Uplift and Ridge and Terrane Collision. Geological Society of America Memoir 204. pp. 31–65. https://doi.org/10.1130/2009.1204(02)Ranero, C.R., von Huene, R., 2000. Subduction erosion along the Middle America convergent margin. Nature 404, 748–752. https://doi.org/10.1038/35008046Reiners, P.W., Brandon, M.T., 2006. Using Thermochronology To Understand Orogenic Erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202Reyes-Harker, A., Ruiz-Valdivieso, C.F., Mora, A., Ramirez-Arias, J.C., Rodriguez, G., de la Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B.K., Saylor, J.E., Silva, A., Valencia, V., Stockli, D., Blanco, V., 2015. Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. Am. Assoc. Pet. Geol. Bull. 99, 1407–1453. https://doi.org/10.1306/06181411110Ridgway, K.D., Trop, J.M., Finzel, E.S., 2011. Modification of continental forearc basins by flat-slab subduction processes: a case study from southern Alaska, in: Busby, C., Azor, A. (Eds.), Tectonics of Sedimentary Basins: Recent Advances. Blackwell Publishing Ltd, pp. 327–346. https://doi.org/10.1002/9781444347166.ch16Riley, S.J., DeGloria, S.D., Elliot, R., 1999. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27.Rodríguez-Olarte, D., Mojica-Corzo, J.I., Taphonr-Baechle, D.C., 2011. Northern South America - Magdalena and Maracaibo Basins, in: Albert, J.S., Reis, R.E. (Eds.), Historical Biogeography of Neotropical Freshwaters Fishes. University of California Press, pp. 243–257. https://doi.org/10.1525/california/9780520268685.003.0015Rodríguez, G., Arango, M.I., Zapata, G., Bermúdez-Cordero, J.G., 2016. Estratigrafía, petrografía y análisis multi-método de procedencia de la Formación Guineales, norte de la Cordillera Occidental de Colombia. Boletín Geol. 38, 101–124Rodríguez, G., Sierra, M.I., 2010. Las Sedimentitas de Tripogadí y las Brechas de Triganá : Un registro de Eoceno en el noroccidente de Sur América. Geol. Colomb. 35, 74–86Rodríguez, G., Zapata, G., 2012. Características del plutonismo Mioceno Superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente Colombiano. Bol. Ciencias la Tierra 31, 5–22.Rodríguez, G., Zapata, G., Gómez, J.F., 2013. Geología de la plancha 114 - Dabeiba. Escala 1:100.000.Rooney, T.O., Franceschi, P., Hall, C.M., 2011. Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib. to Mineral. Petrol. 161, 373–388. https://doi.org/10.1007/s00410-010-0537-8Rosenbaum, G., Mo, W., 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res. 19, 571–582. https://doi.org/10.1016/j.gr.2010.10.007Rutledge, S., Mahatsente, R., 2017. Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling. J. Geodyn. 104, 27–35. https://doi.org/10.1016/j.jog.2016.12.003Salvini, F., Billi, A., Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 21, 1731–1749. https://doi.org/10.1016/S0191-8141(99)00120-0Sarmiento-Rojas, L.F., 2019. Cretaceous stratigraphy and paleo-facies maps of northwestern South America, in: Cediel, F., Shaw, R.P. (Eds.), Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham, pp. 673–747. https://doi.org/10.1007/978-3-319-76132-9_10Saylor, J.E., Horton, B.K., 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. https://doi.org/10.1016/j.epsl.2013.11.015Scheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., Łapińska-Viola, R., 2015. Manual extraction of bedrock lineaments from high-resolution LiDAR data: methodological bias and human perception. GFF 137, 362–372. https://doi.org/10.1080/11035897.2015.1085434Sdrolias, M., Müller, R.D., 2006. Controls on back-arc basin formation. Geochemistry, Geophys. Geosystems 7, Q04016. https://doi.org/10.1029/2005GC001090Serrano, L., Ferrari, L., López-Martínez, M., Petrone, C.M., Jaramillo, C., 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province. Earth Planet. Sci. Lett. 309, 324–336. https://doi.org/10.1016/j.epsl.2011.07.011Siravo, G., Faccenna, C., Gérault, M., Becker, T.W., Fellin, M.G., Herman, F., Molin, P., 2019. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett. 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002Soesoo, A., Bons, P.D., Gray, D.R., Foster, D.A., 1997. Divergent double subduction : Tectonic and petrologic consequences. Geology 25, 755–758. https://doi.org/10.1130/0091-7613(1997)025<0755Spikings, R.A., Simpson, G., 2014. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust. Tectonics 33, 1–21. https://doi.org/10.1002/2013TC003425Stern, C.R., 2011. Subduction erosion: Rates, mechanisms and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308. https://doi.org/10.1016/j.gr.2011.03.006Stern, R.J., 2002. Subduction zones. Rev. Geophys. 40, 3-1-3–38. https://doi.org/10.1029/2001RG000108Stern, R.J., Gerya, T., 2018. Subduction initiation in nature and models: A review. Tectonophysics 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014Stow, D., Smillie, Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10, 68. https://doi.org/10.3390/geosciences10020068Stow, D.A. V., Reading, H.G., Collinson, J.D., 1996. Deep seas, in: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Publishing Ltd, pp. 395–453.Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet. Sci. Lett. 444, 139–149. https://doi.org/10.1016/j.epsl.2016.03.050Tassara, A., 2010. Control of forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495, 34–47. https://doi.org/10.1016/j.tecto.2010.06.004Tetreault, J.L., Buiter, S.J.H., 2012. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. Solid Earth 117, B08403. https://doi.org/10.1029/2012JB009316Thompson, P.M.E., Kempton, P.D., White, R. V., Saunders, A.D., Kerr, A.C., Tarney, J., Pringle, M.S., 2004. Elemental, Hf-Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles. Lithos 74, 91–116. https://doi.org/10.1016/j.lithos.2004.01.004Timm, C., Davy, B., Haase, K., Hoernle, K., Graham, I.J., de Ronde, C.E.J., Woodhead, J., Basset, D., Hauff, F., Mortimer, N., Seebeck, H.C., Wysoczanski, R.J., Caratori-Tontini, F., Gamble, J.A., 2014. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc. Nat. Commun. 5, 4923. https://doi.org/10.1038/ncomms5923Tistl, M., Burgath, K.P., Höhndorf, A., Kreuzer, H., Muñoz, R., Salinas, R., 1994. Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and K-Ar, Sm-Nd and Rb-Sr isotopes. Earth Planet. Sci. Lett. 126, 41–59. https://doi.org/10.1016/0012-821X(94)90241-0Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R., Wessel, P., 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Sp. Sci. 6, 1847–1864. https://doi.org/10.1029/2019EA000658Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim. Cosmochim. Acta 97, 70–87. https://doi.org/10.1016/j.gca.2012.08.032Trenkamp, R., Kellogg, J.N., Freymueller, J.T., Mora, H., 2002. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Am. Earth Sci. 15, 157–171Tschanz, C.M., Marvin, R.F., Cruz, J., Mehnert, H.H., Cebula, G.T., 1974. Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol. Soc. Am. Bull. 85, 273–284. https://doi.org/10.1130/0016-7606(1974)85<273Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley Publishing CompanyUyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophys. Res. 84, 1049–1060Vallejo, C., Spikings, R.A., Horton, B.K., Luzieux, L., Romero, C., Winkler, W., Thomsen, T.B., 2019. Late Cretaceous to Miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment, in: Horton, B.K., Folguera, A. (Eds.), Andean Tectonics. Elsevier, pp. 209–236. https://doi.org/10.1016/B978-0-12-816009-1.00010-1Vallejo, C., Spikings, R.A., Luzieux, L., Winkler, W., Chew, D.M., Page, L., 2006. The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nov. 18, 264–269. https://doi.org/10.1111/j.1365-3121.2006.00688.xVargas, C.A., Gutiérrez, G.A., Sarmiento, G.A., 2020. Subduction of an extinct rift and its role in the formation of submarine landslides in NW South America, in: Georgiopoulou, A., Amy, L.A., Benetti, S., Chaytor, J.D., Clare, M.A., Gamboa, D., Haughton, P.D.W., Moernaut, J., Mountjoy, J.J. (Eds.), Subaqueous Mass Movements in the Context of Observations of Contemporary Failure, Geological Society, London, Special Publications, 500. pp. 311–322. https://doi.org/10.1144/SP500-2019-189Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc-indenter with Northwestern South America. Bull. Seismol. Soc. Am. 103, 2025–2046. https://doi.org/10.1785/0120120328Vermeesch, P., 2021. Maximum depositional age estimation revisited. Geosci. Front. 12, 843–850. https://doi.org/10.1016/j.gsf.2020.08.008Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001Villagómez, D., Spikings, R.A., 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes. Lithos 160–161, 228–249. https://doi.org/10.1016/j.lithos.2012.12.008Villagómez, D., Spikings, R.A., Magna, T., Kammer, A., Winkler, W., Beltrán, A., 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125, 875–896. https://doi.org/10.1016/j.lithos.2011.05.003Viveen, W., Schlunegger, F., 2018. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic. Tectonophysics 730, 48–62. https://doi.org/10.1016/j.tecto.2018.02.018Vogt, K., Gerya, T. V., 2014. From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Res. 25, 494–508. https://doi.org/10.1016/j.gr.2012.11.002von Eynatten, H., Dunkl, I., 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Rev. 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001von Huene, R., Ranero, C.R., Vannucchi, P., 2004. Generic model of subduction erosion. Geology 32, 913–916. https://doi.org/10.1130/G20563.1von Huene, R., Scholl, D.W., 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316. https://doi.org/10.1029/91RG00969Wagner, L.S., Jaramillo, J.S., Ramírez-Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL073981Wagreich, M., 1995. Subduction erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics 242, 63–78. https://doi.org/10.1016/0040-1951(94)00151-XWang, J.-G., Hu, X., Garzanti, E., BouDagher-Fadel, M.K., Liu, Z.-C., Li, J., Wu, F.-Y., 2020. From extension to tectonic inversion: Mid-Cretaceous onset of Andean-type orogeny in the Lhasa block and early topographic growth of Tibet. Geol. Soc. Am. Bull. 132, 2432–2454. https://doi.org/10.1130/B35314.1Wang, K., He, J., 1999. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res. Solid Earth 104, 15191–15205. https://doi.org/10.1029/1999JB900103Weber, M., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., Wilson, R., 2009. The Cabo de la Vela Mafic-Ultramafic Complex, Northwestern Colombian Caribbean region: a record of multistage evolution of a Late Cretaceous intra-oceanic arc, in: James, K.H., Lorente, M.A., Pindell, J.L. (Eds.), The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications, 328. pp. 549–568. https://doi.org/10.1144/SP328.22Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo-Trujillo, A., Valencia, V., 2015. Geochemistry of the Santa Fé Batholith and Buriticá Tonalite in NW Colombia - Evidence of subduction initiation beneath the Colombian Caribbean Plateau. J. South Am. Earth Sci. 62, 257–274. https://doi.org/10.1016/j.jsames.2015.04.002Wegner, W., Wörner, G., Harmon, R.S., Jicha, B.R., 2011. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Geol. Soc. Am. Bull. 123, 703–724. https://doi.org/10.1130/B30109.1Whattam, S.A., Montes, C., Mcfadden, R.R., Cardona, A., Ramirez, D., Valencia, V., 2012. Age and origin of earliest adakitic-like magmatism in Panama: Implications for the tectonic evolution of the Panamanian magmatic arc system. Lithos 142–143, 226–244. https://doi.org/10.1016/j.lithos.2012.02.017Whattam, S.A., Montes, C., Stern, R.J., 2020. Early central American forearc follows the subduction initiation rule. Gondwana Res. 79, 283–300. https://doi.org/10.1016/j.gr.2019.10.002Whattam, S.A., Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63. https://doi.org/10.1016/j.gr.2014.07.011Wise, D.U., Funicello, R., Parotto, M., Salvini, F., 1985. Topographic lineament swarms: Clues to their origin from domain analysis of Italy. Geol. Soc. Am. Bull. 96, 952–967. https://doi.org/10.1130/0016-7606(1985)96<952:TLSCTT>2.0.CO;2Wright, J.E., Wyld, S.J., 2011. Late Cretaceous subduction initiation on the eastern margin of the Caribbean-Colombian Oceanic Plateau: One Great Arc of the Caribbean (?). Geosphere 7, 468–493. https://doi.org/10.1130/GES00577.1Xie, X., Heller, P.L., 2009. Plate tectonics and basin subsidence history. Bull. Geol. Soc. Am. 121, 55–64. https://doi.org/10.1130/B26398.1Yarce, J., Monsalve, G., Becker, T.W., Cardona, A., Poveda, E., Alvira, D., Ordoñez-Carmona, O., 2014. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637, 57–67. https://doi.org/10.1016/j.tecto.2014.09.006Zagorevski, A., Lissenberg, C.J., van Staal, C.R., 2009. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics 479, 150–164. https://doi.org/10.1016/j.tecto.2008.12.002Zagorevski, A., van Staal, C.R., 2011. The record of Ordovician arc-arc and arc-continent collisions in the Canadian Appalachians during the closure of Iapetus, in: Brown, D., Ryan, P.D. (Eds.), Arc-Continent Collision. Springer-Verlag Berlin Heidelberg, pp. 341–371. https://doi.org/10.1007/978-3-540-88558-0_12Zapata-Villada, J.P., Cardona, A., Serna, S., Rodríguez, G., 2021. Late Cretaceous to Paleocene magmatic record of the transition between collision and subduction in the Western and Central Cordillera of northern Colombia. J. South Am. Earth Sci. 112, 103557. https://doi.org/10.1016/j.jsames.2021.103557Zapata, G., 2000. Geología de las planchas 163 Nuquí, 164 Quibdó, 183 Coquí y 184 Lloró, Departamento del Chocó. Escala 1:100.000. Memoria Explicativa.Zapata, S., Cardona, A., Jaramillo, J.S., Patiño, A., Valencia, V., León, S., Mejía, D., Pardo-Trujillo, A., Castañeda, J.P., 2019. Cretaceous extensional and compressional tectonics in the Northwestern Andes, prior to the collision with the Caribbean oceanic plateau. Gondwana Res. 66, 207–226. https://doi.org/10.1016/j.gr.2018.10.008Zapata, S., Patiño, A., Cardona, A., Parra, M., Valencia, V., Reiners, P., Oboh-Ikuenobe, F., Genezini, F., 2020. Bedrock and detrital zircon thermochronology to unravel exhumation histories of accreted tectonic blocks: An example from the Western Colombian Andes. J. South Am. Earth Sci. 103, 102715. https://doi.org/10.1016/j.jsames.2020.102715Zhu, D.-C., Wang, Q., Cawood, P.A., Zhao, Z.-D., Mo, X.-X., 2017. Raising the Gangdese Mountains in southern Tibet. J. Geophys. Res. Solid Earth 122, 214–223. https://doi.org/10.1002/2016JB013508Zindler, A., Hart, S., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425Smithsonian Tropical Research InstituteFundación para la Promoción de la Investigación y la Tecnología - Banco de la República de ColombiaAsociación de Geólogos y Geofísicos del Petróleo y Corporación Geológica AresBibliotecariosEstudiantesInvestigadoresMaestrosORIGINAL1152439167.2022.pdf1152439167.2022.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf8263320https://repositorio.unal.edu.co/bitstream/unal/81688/1/1152439167.2022.pdf671beb29ce1ebd5e544fd5f6e2f738c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81688/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1152439167.2022.pdf.jpg1152439167.2022.pdf.jpgGenerated Thumbnailimage/jpeg5016https://repositorio.unal.edu.co/bitstream/unal/81688/5/1152439167.2022.pdf.jpgae51f04f79fd9477b973691bff897063MD55unal/81688oai:repositorio.unal.edu.co:unal/816882023-10-20 21:01:06.475Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |