Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional

ilustraciones a color, diagramas, fotografías, mapas

Autores:
Ardila Ardila, Andrés Venancio
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85326
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85326
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Indicadores ambientales
Circulación atmosférica-Métodos de simulación
Análisis del impacto ambiental
Meteorología dinámica
Environmental indicators
Atmospheric circulation-Simulation methods
Environmental impact analysis
Dynamic meteorology
Calidad del aire
Air quality
Modelación meteorológica
Valle Interandino Tropical
Transporte regional de contaminantes
Topografía compleja
Vientos catabáticos
Meteorological modeling
Tropical Inter-Andean Valley
Regional transport of pollutants
Complex topography
katabatic winds
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_886edd0b9c47ace23111124c29c30e0d
oai_identifier_str oai:repositorio.unal.edu.co:unal/85326
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
dc.title.translated.eng.fl_str_mv Atmospheric circulation patterns in the geographic valley of the Cauca River and its impact on regional air quality
title Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
spellingShingle Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Indicadores ambientales
Circulación atmosférica-Métodos de simulación
Análisis del impacto ambiental
Meteorología dinámica
Environmental indicators
Atmospheric circulation-Simulation methods
Environmental impact analysis
Dynamic meteorology
Calidad del aire
Air quality
Modelación meteorológica
Valle Interandino Tropical
Transporte regional de contaminantes
Topografía compleja
Vientos catabáticos
Meteorological modeling
Tropical Inter-Andean Valley
Regional transport of pollutants
Complex topography
katabatic winds
title_short Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
title_full Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
title_fullStr Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
title_full_unstemmed Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
title_sort Patrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
dc.creator.fl_str_mv Ardila Ardila, Andrés Venancio
dc.contributor.advisor.spa.fl_str_mv Jiménez Pizarro, Rodrigo
González Duque, Carlos Mario
dc.contributor.author.spa.fl_str_mv Ardila Ardila, Andrés Venancio
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
dc.contributor.orcid.spa.fl_str_mv Andres V. Ardila [0000-0002-4865-675X]
dc.contributor.researchgate.spa.fl_str_mv Andres Ardila [https://www.researchgate.net/profile/Andres-Ardila-8]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
topic 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Indicadores ambientales
Circulación atmosférica-Métodos de simulación
Análisis del impacto ambiental
Meteorología dinámica
Environmental indicators
Atmospheric circulation-Simulation methods
Environmental impact analysis
Dynamic meteorology
Calidad del aire
Air quality
Modelación meteorológica
Valle Interandino Tropical
Transporte regional de contaminantes
Topografía compleja
Vientos catabáticos
Meteorological modeling
Tropical Inter-Andean Valley
Regional transport of pollutants
Complex topography
katabatic winds
dc.subject.lcc.spa.fl_str_mv Indicadores ambientales
Circulación atmosférica-Métodos de simulación
Análisis del impacto ambiental
Meteorología dinámica
dc.subject.lcc.eng.fl_str_mv Environmental indicators
Atmospheric circulation-Simulation methods
Environmental impact analysis
Dynamic meteorology
dc.subject.lemb.spa.fl_str_mv Calidad del aire
dc.subject.lemb.eng.fl_str_mv Air quality
dc.subject.proposal.spa.fl_str_mv Modelación meteorológica
Valle Interandino Tropical
Transporte regional de contaminantes
Topografía compleja
Vientos catabáticos
dc.subject.proposal.eng.fl_str_mv Meteorological modeling
Tropical Inter-Andean Valley
Regional transport of pollutants
Complex topography
katabatic winds
description ilustraciones a color, diagramas, fotografías, mapas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-16T15:11:27Z
dc.date.available.none.fl_str_mv 2024-01-16T15:11:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85326
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85326
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aldana, C. R. B., Guevara, D. C. D., Vitery, F. C., de Paula Gutiérrez Bonilla, F., Camargo, G. V., Ochoa, J. R., Bedout, J. B., & Castañeda, R. G. (2019). Modelado y simulación de sistemas naturales. In Modelado y simulación de sistemas naturales. https://doi.org/10.2307/j.ctvc2rnxf
Allwine, K. J., & Whiteman, C. D. (1994). Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmospheric Environment, 28(4), 713–721. https://doi.org/10.1016/1352-2310(94)90048-5
Amador, J. (1998). A climatic feature of the Tropical Americas: The Trade Wind Easterly Jet. Topicos Meteorologicos y Oceanograficos, 5(2), 91–102. https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/76623/1998_2.pdf?sequence=1
Ambrizzi, T., de Souza, E. B., & Pulwarty, R. S. (2004). The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. 203–235. https://doi.org/10.1007/978-1-4020-2944-8_8
AMS (American Meteorological Society). (2023). Tracer - Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Tracer
Arregocés, H. A., Rojano, R., & Restrepo, G. (2021). Sensitivity analysis of planetary boundary layer schemes using the WRF model in Northern Colombia during 2016 dry season. Dynamics of Atmospheres and Oceans, 96(August). https://doi.org/10.1016/j.dynatmoce.2021.101261
Asocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de La Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdf
Ballesteros-González, K., Espitia-Cano, S. O., Rincón-Caro, M. A., Rincón-Riveros, J. M., Perez-Peña, M. P., Sullivan, A., & Morales Betancourt, R. (2022). Understanding organic aerosols in Bogotá, Colombia: In-situ observations and regional-scale modeling. Atmospheric Environment, 284(June 2021). https://doi.org/10.1016/j.atmosenv.2022.119161
Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755
Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004). Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. Journal of Applied Meteorology, 43(10), 1348–1365
Bell, M. L., Davis, D. L., Gouveia, N., Borja-Aburto, V. H., & Cifuentes, L. A. (2006). The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environmental Research, 100(3), 431–440. https://doi.org/10.1016/j.envres.2005.08.002
Brock, F. V., & Richardson, S. J. (2001). Meteorological Measurement Systems. In Oxford University Press. https://doi.org/10.1093/oso/9780195134513.001.0001
Cazorla, M., Gallardo, L., & Jimenez, R. (2022). The complex Andes region needs improved efforts to face climate extremes. Elementa, 10(1), 1–9. https://doi.org/10.1525/elementa.2022.00092
Céspedes, J. (2019). Implementación de un sistema LiDAR elástico para la observación de la dinámica de aerosoles sobre el área urbana de Cali.
CIAT-International Center for Tropical Agriculture., & CVC-Valle del Cauca province regional environmental authority. (2018). Valle del Cauca Province (In Spanish). https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/plan_integral_de_cambio_climetico_para_el_valle_del_cauca.pdf
Cifuentes, F., González, C. M., & Aristizábal, B. H. (2021). Insights to WRF-Chem sensitivity in a zone of complex terrain in the tropical Andes: Effect of boundary conditions, chemical mechanisms, nesting, and domain configuration. Atmospheric Pollution Research, December 2020, 101093. https://doi.org/10.1016/j.apr.2021.101093
Cortés, E., Chica, H., & Peña, A. (2019). Climatic zones of the Cauca River Valley (In Spanish). Carta Informativa Cenicaña, 7, 10–11. https://www.cenicana.org/zonas-climaticas-del-valle-del-rio-cauca/
CPC-Climate Prediction Center. (2023). ONI-Cold & Warm Episodes by Season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
CVC-Corporación Autónoma Regional del Valle del Cauca. (2020, September 17). A PARTIR DE HOY SE REDUCEN LAS QUEMAS DE CAÑA EN EL VALLE DEL CAUCA | Portal CVC. https://www.cvc.gov.co/2020255
CVC-Corporación Autónoma Regional del Valle del Cauca, & Universidad Nacional de Colombia sede Palmira. (2022). Modelación de material particulado indentificando la contribución de las fuentes - Vigenncia 2022 Convenio interadministrativo No . 036 DE 2021 CVC-UNAL. https://calidadaire.cvc.gov.co/
DAGMA-Departamento Administrativo de Gestión del Medio Ambiente de Santiago de Cali, & Universidad Nacional de Colombia sede Palmira. (2022). Simulación meteorológica y simulación preliminar de calidad del aire en Santiago de Cali-Convenio interadministrativo 4133.010.27.1.041-2022 DAGMA-UNAL.
DANE-National Administrative Department of Statistics. (2022). Population projections at the municipal level. Period 2018-2035 (In Spanish). https://cutt.ly/04q49Kn
Darby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/JAM2367.1
DATA NOVIA. (2020). K-Means Clustering in R: Algorithm and Practical Examples - Datanovia. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
Departamento Nacional de Planeación -DNP-. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradación-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspx
Diaz, L. R., Rolim, S. B. A., Santos, D. C., Käfer, P. S., Da Rocha, N. S., & Alves, R. D. C. M. (2020). Using the wrf model to refine ncep cfsv2 reanalysis atmospheric profile: A Southern Brazil test case. Revista Brasileira de Geofisica, 38(2), 5–31. https://doi.org/10.22564/rbgf.v38i2.2043
Diaz, L. R., Santos, D. C., Käfer, P. S., Iglesias, M. L., da Rocha, N. S., da Costa, S. T. L., Kaiser, E. A., & Rolim, S. B. A. (2021). Reanalysis profile downscaling with WRF model and sensitivity to PBL parameterization schemes over a subtropical station. Journal of Atmospheric and Solar-Terrestrial Physics, 222(July). https://doi.org/10.1016/j.jastp.2021.105724
Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2(February), 1–10. https://doi.org/10.3389/frsen.2021.619818
Eguis Cuentas, M. C., & Jiménez, J. F. (2023). Dispersión atmosférica de material particulado en ciudades de montaña y tropicales. https://repositorio.unal.edu.co/handle/unal/83891
Emery, C., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two texas ozone episodes
Fernandez, R. P., Allende, D. G., Castro, F., Cremades, P., & Puliafito, E. (2010). Modelado regional de la calidad de aire utilizando el modelo WRF/Chem: Implementación de datos globales y locales para Mendoza. Avances En Energías Renovables y Medio Ambiente, 14, 43–50.
Franco, J. ., & Montejo, A. (2023). Calidad de aire, cambio climático y salud pública (H. Consulting (ed.)).ISBN 9786289570205
Galanti, E., Raiter, D., Kaspi, Y., Tziperman, E., & Jgr-atmosphere, S. (2021). Spatial patterns of the local Hadley circulation : drivers and consequences. 2.
Gao, S., Huang, D., Du, N., Ren, C., & Yu, H. (2022). WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 271(December 2021), 106116. https://doi.org/10.1016/j.atmosres.2022.106116
Giovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Castelli, S. T., & Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 1–32. https://doi.org/10.3390/atmos11060646
Gómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009
González, C. M. (2017). Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte química on-line. Caso de estudio: Manizales, Colombia. 238
González, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM 10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003
Gouveia, N., Kephart, J. L., Dronova, I., McClure, L., Granados, J. T., Betancourt, R. M., O’Ryan, A. C., Texcalac-Sangrador, J. L., Martinez-Folgar, K., Rodriguez, D., & Diez-Roux, A. V. (2021). Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Science of the Total Environment, 772, 145035. https://doi.org/10.1016/j.scitotenv.2021.145035
Henao, J. J., Mejía, J. F., Rendón, A. M., & Salazar, J. F. (2020). Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric Pollution Research, 11(5), 928–945. https://doi.org/10.1016/j.apr.2020.02.005
Hernandez-Deckers, D. (2022). Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 148(742), 338–350. https://doi.org/10.1002/qj.4208
Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
Hernández, J. D. R., & Mesa, Ó. J. (2020). A simple conceptual model for the heat induced circulation over Northern South America and MESO-America. Atmosphere, 11(11), 1–14. https://doi.org/10.3390/atmos11111235
Hernández, Jauregui, Souto, Casares, Saavedra, Guzmán, & Torres. (2015). Estado actual de los modelos de dispersión atmosférica y sus aplicaciones. UCE Ciencia. Revista de Postgrado, 3(2), 1–17.
Holzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2
Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., & Hasekamp, O. (2018). Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 45(8), 3682–3689. https://doi.org/10.1002/2018GL077259
IDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. http://www.ideam.gov.co/documents/11769/72085840/Documento+metodologico+variables+meteorologicas.pdf/8a71a9b4-7dd7-4af4-b98e-9b1eda3b8744
IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales). (2022). Informe del estado de la calidad del aire en Colombia 2021.
Jiménez-Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934
Jimenez, R., Ardila, A. V, Vargas-burbano, A. C., Hernandez, A. J., & Leon-velasquez, E. (2022). Biomass burning-agriculture coupling in the Orinoco savannas — Particulate matter emission scenarios. November, 1–16. https://doi.org/10.3389/fenvs.2022.689844
Jury, M. R. (2019). Northward excursion of the ITCZ across the inter-Americas during boreal summer. Meteorology and Atmospheric Physics, 131(5), 1357–1366. https://doi.org/10.1007/s00703-018-0642-1
Jury, M. R. (2020). Meteorology of air pollution in Los Angeles. Atmospheric Pollution Research, 11(7), 1226–1237. https://doi.org/10.1016/j.apr.2020.04.016
Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem model to simulate PM10 concentration over Bogota. Aerosol and Air Quality Research, 16(5), 1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318
Lamare, M., Dumont, M., Picard, G., Larue, F., Tuzet, F., Delcourt, C., & Arnaud, L. (2020). Simulating optical top-of-Atmosphere radiance satellite images over snow-covered rugged terrain. Cryosphere, 14(11), 3995–4020. https://doi.org/10.5194/tc-14-3995-2020
Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233. https://doi.org/10.1175/BAMS-86-2-225
Lee, S. M., Princevac, M., Mitsutomi, S., & Cassmassi, J. (2009). MM5 simulations for air quality modeling: An application to a coastal area with complex terrain. Atmospheric Environment, 43(2), 447–457. https://doi.org/10.1016/j.atmosenv.2008.07.067
Li Ramírez, J. A., Zambrano Nájera, J. del C., & Aristizábal Zuluaga, B. H. (2020). BVOC Emissions Along the Eastern and Western Slopes of the Andes Central Range with Strong Altitudinal Gradient over a Wide Range of Andean Ecosystems: Model Estimation/Disaggregation with BIGA. Environmental Modeling and Assessment, 25(6), 761–773. https://doi.org/10.1007/s10666-020-09698-7
Li, Y., & Chao, J. (2018). Theoretical urban heat island circulation in the temperature inversion profile. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030098
Lim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612. https://doi.org/10.1175/2009MWR2968.1
Lin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C. K., Chien, Y. Y., & Chen, W. M. (2021). Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21(22), 16893–16910. https://doi.org/10.5194/acp-21-16893-2021
Lopez-noreña, A. I. (2016). Simulation of the dispersion of particulate matter PM2.5 in the Aburrá Valley, Colombia, using WRF-Chem (In Spanish). December 2016. https://doi.org/10.13140/RG.2.2.34078.69441/2
López, M., & Howell, W. (1967). Katabatic Winds in the Equatorial Andes. Journal of the Atmospheric Sciences, 68–70. https://doi.org/10.1175/1520-0469(1967)024%3C0029:KWITEA%3E2.0.CO;2
Madala, S., Satyanarayana, A. N. V., Srinivas, C. V., & Kumar, M. (2015). Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF. Atmospheric Environment, 107, 315–328. https://doi.org/10.1016/j.atmosenv.2015.02.059
Mapes, B. E., Warner, T. T., & Negri, A. (2003). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2
Mateus-Fontecha, Lady, Vargas-Burbano, A., Jimenez, R., Rojas, N. Y., Rueda-Saa, G., Van Pinxteren, D., Van Pinxteren, M., Fomba, K. W., & Herrmann, H. (2022). Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmospheric Chemistry and Physics, 22(13), 8473–8495. https://doi.org/10.5194/acp-22-8473-2022
McNally. (2009). 12kmMM5 performance goals prepared for: ad-hoc met. group.
Mesa-Sánchez, O. J., & Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899
Mesa, Ó. J., & Rojo, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/RACCEFYN.899
Molina, L. T., Gallardo, L., Andrade, M., Baumgardner, D., Borbor-Cõrdova, M., Bõrquez, R., Casassa, G., Cereceda-Balic, F., Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J. L., Mc Phee, J., Mena-Carrasco, M., Raga, G. B., Schmitt, C., & Schwarz, J. P. (2015). Pollution and its Impacts on the South American Cryosphere. Earth’s Future, 3(12), 345–369. https://doi.org/10.1002/2015EF000311
Muñoz, L. E., Campozano, L. V., Guevara, D. C., Parra, R., Tonato, D., Suntaxi, A., Maisincho, L., Páez, C., Villacís, M., Córdova, J., & Valencia, N. (2023). Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere, 14(2). https://doi.org/10.3390/atmos14020264
Nansai, K., Tohno, S., Chatani, S., Kanemoto, K., Kagawa, S., Kondo, Y., Takayanagi, W., & Lenzen, M. (2021). Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 12(1), 1–6. https://doi.org/10.1038/s41467-021-26348-y
Nedbor-Gross, R., Henderson, B. H., Davis, J. R., Pachón, J. E., Rincón, A., Guerrero, O. J., & Grajales, F. (2017). Comparing standard to feature-based meteorological model evaluation techniques in Bogotá, Colombia. Journal of Applied Meteorology and Climatology, 56(2), 391–413. https://doi.org/10.1175/JAMC-D-16-0058.1
NOAA. (2014, August 1). The Walker Circulation: ENSO’s atmospheric buddy | NOAA Climate.gov. https://www.climate.gov/news-features/blogs/enso/walker-circulation-ensos-atmospheric-buddy
NOAA - National Oceanic and Atmospheric Administration-. (2023). El Niño & La Niña (El Niño-Southern Oscillation) | NOAA Climate.gov. https://www.climate.gov/enso
NOAA (National and Oceanic Atmospheric and Administration). (2023). Inter-Tropical Convergence Zone | National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/tropical/convergence-zone
Ortiz, E. Y., Jimenez, R., Fochesatto, G. J., & Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Response to comment on “Surface urban heat island across 419 global big cities.” Environmental Science and Technology, 46(12), 6889–6890. https://doi.org/10.1021/es301811b
Pérez, I. A., García, M. Á., Sánchez, M. L., Pardo, N., & Fernández-Duque, B. (2020). Key points in air pollution meteorology. International Journal of Environmental Research and Public Health, 17(22), 1–14. https://doi.org/10.3390/ijerph17228349
Pfister, G., Pétron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J., Attie, J., Granier, C., Novelli, P. C., & Emmons, K. (2004). Evaluation of CO simulations and the analysis of the CO budget for Europe. J. Geophys. Res, 109, 19304. https://doi.org/10.1029/2004JD004691
Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5–6), 3609–3629. https://doi.org/10.1007/s00382-018-4403-0
Poveda., Álvarez., & Rueda. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11–12), 2233–2249. https://doi.org/10.1007/s00382-010-0931-y
Poveda., & Mesa. (1999). The westerly low-level Chocó jet and two other atmospheric jets over Colombia: Climatology and variability during ENSO phases (in Spanish). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(January), 517–528.
Poveda., Waylen., & Pulwarty. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031
Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675–1678. https://doi.org/10.1029/1999GL006091
Preciado, M., Chica, H., Solarte, E., Carbonell, J., & Peña, A. (2020). Regional wind pattern, a basis for defining the appropriate lapse of time for sugarcane burning in the Cauca Valley (Colombia). Environment, Development and Sustainability, 23(6), 9477–9492. https://doi.org/10.1007/s10668-020-00992-8
Ranjha, R., Svensson, G., TjernströM, M., & Semedo, A. (2013). Global distribution and seasonal variability of coastal low-level jets derived from ERA-interim reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 65. https://doi.org/10.3402/tellusa.v65i0.20412
Rau, B., & Gómez, L. (2018). Colombia Sugar Annual Colombian Sugar Production Bounces Back after Three Years of Difficult Weather Conditions. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar Annual_Bogota_Colombia_4-13-2018.pdf
Ren, H. L., Lu, B., Wan, J., Tian, B., & Zhang, P. (2018). Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. Journal of Meteorological Research, 32(6), 923–936. https://doi.org/10.1007/s13351-018-8078-6
Russo, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1
Sakamoto, M. S., Ambrizzi, T., & Poveda, G. (2011). Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011, 1–11. https://doi.org/10.1155/2011/890759
Seidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. (2001). Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research Atmospheres, 106(D8), 7857–7878. https://doi.org/10.1029/2000JD900837
Sierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. (2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56(7–8), 2667–2692. https://doi.org/10.1007/s00382-020-05611-w
Souza, N., Nascimento, E., & Moreira, D. (2021). Performance evaluation of the WRF model in a tropical region: wind speed analysis at diferent sites. Atmósfera, August 2020, 0–27. https://doi.org/https://doi.org/10.20937/ATM.52968
Steenburgh, W. J., Schultz, D. M., Snyder, B. J., & Meyers, M. P. (2013). Mountain Weather Research and Forecasting. 693–716. https://doi.org/10.1007/978-94-007-4098-3
Sun, D.-Z., & Oort, A. H. (1995). Humidity-Temperature relationship in the tropical troposphere. Journal of Climate, 8, 1974–1987. https://journals.ametsoc.org/view/journals/clim/8/8/1520-0442_1995_008_1974_hrittt_2_0_co_2.xml
Talgo, K., Bowden, J., Adelman, Z., & Morris, R. (2015). Western Air Quality Study ( WAQS ) Weather Research Forecast ( WRF ) Meteorological Model Final Modeling Protocol 2014 Modeling Year.
Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235(October 2019), 104785. https://doi.org/10.1016/j.atmosres.2019.104785
UCAR (University Corporation for Atmospheric Research). (2023). Weather Research & Forecasting Model (WRF) | Mesoscale & Microscale Meteorology Laboratory. https://www.mmm.ucar.edu/models/wrf
Uribe, H. (2017). EL VALLE GEOGRÁFICO DEL RÍO CAUCA: UN ESPACIO TRANSFORMADO POR EL CAPITAL AGROINDUSTRIAL. Libros Universidad Nacional Abierta y a Distancia, 298–314. https://hemeroteca.unad.edu.co/index.php/book/article/view/2435
Wang, X. C., Klemeš, J. J., Dong, X., Fan, W., Xu, Z., Wang, Y., & Varbanov, P. S. (2019). Air pollution terrain nexus: A review considering energy generation and consumption. Renewable and Sustainable Energy Reviews, 105(January), 71–85. https://doi.org/10.1016/j.rser.2019.01.049
Wang, X., Chen, F., Wu, Z., Zhang, M., Tewari, M., Guenther, A., & Wiedinmyer, C. (2009). Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 26(5), 962–972. https://doi.org/10.1007/s00376-009-8001-2
Warner, T. T., Mapes, B. E., & Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2
Whiteman, D. (2001). Mountain Meteorology: Fundamentals and Applications. In Mountain Research and Development (Vol. 21, Issue 2). https://doi.org/10.1659/0276-4741(2001)021[0200:mmfaa]2.0.co;2
WHO. (2021). WHO’s global air-quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In Lancet (Vol. 368, Issue 9544).
Windrow, B., Kollár, I., & Liu, M.-C. (1996). Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurment, 45(2), 353–361. https://people.isy.liu.se/rt/fredrik/spcourse/quant.pdf
Yáñez, G., Gironás, J., Caneo, M., Delgado, R., & Garreaud, R. (2018). Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere, 9(8). https://doi.org/10.3390/atmos9080304
Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1
Žabkar, R., Koračin, D., & Rakovec, J. (2013). A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area. Atmospheric Environment, 77, 990–1004. https://doi.org/10.1016/j.atmosenv.2013.05.065
Zhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., & Li, S. (2023). Impacts of urbanization on air quality and the related health risks in a city with complex terrain. Atmospheric Chemistry and Physics, 23(1), 771–788. https://doi.org/10.5194/acp-23-771-2023
Zhang, S., Wang, M., Wang, L., Liang, X. Z., Sun, C., & Li, Q. (2023). Sensitivity of the simulation of extreme precipitation events in China to different cumulus parameterization schemes and the underlying mechanisms. Atmospheric Research, 285(September 2022), 106636. https://doi.org/10.1016/j.atmosres.2023.106636
Zhao, W., & Li, A. (2015). A Review on Land Surface Processes Modelling over Complex Terrain. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/607181
Zhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W., Qiu, Y., Lei, L., Fu, P., Wang, Z., Worsnop, D. R., Zhang, Q., & Sun, Y. (2019). Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution (Barking, Essex : 1987), 255(Pt 2). https://doi.org/10.1016/J.ENVPOL.2019.113345
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 123 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.temporal.spa.fl_str_mv Río Cauca, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85326/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85326/2/1024496500.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e342dad2f023a560f6e8fe839a50dc94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886652415574016
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jiménez Pizarro, Rodrigo1f1ebc67eeca2fadf0fe2b132faaee4cGonzález Duque, Carlos Mariobccba88c124abe8712aa58d81f97dab3Ardila Ardila, Andrés Venancio0cb23a03565f38527c9c0f2b441dc39dCalidad del AireAndres V. Ardila [0000-0002-4865-675X]Andres Ardila [https://www.researchgate.net/profile/Andres-Ardila-8]Río Cauca, Colombia2024-01-16T15:11:27Z2024-01-16T15:11:27Z2023https://repositorio.unal.edu.co/handle/unal/85326Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografías, mapasLa calidad del aire regional se relaciona directamente con el flujo de emisiones de contaminantes atmosféricos y fenómenos como la dispersión atmosférica, sin embargo, la variabilidad anual, interanual y diaria de los fenómenos meteorológicos y su interacción con la topografía hacen que la dispersión atmosférica sea un fenómeno complejo, más aún en regiones consideradas con topografías complejas como el noroeste de Suramérica. El Valle Geográfico del Río Cauca (VGRC) se ubica al noroeste de Suramérica, entre las ramas Central y Occidental de la Cordillera de los Andes a una distancia aproximada de 80 km del Océano Pacífico, en el cual en los últimos años han presentado un deterioro en la calidad del aire relacionado principalmente con el material particulado. A través del análisis de información de las estaciones y simulaciones meteorológicas y de trazadores atmosféricos realizados con el modelo WRF en dos periodos del 2018 (febrero-abril y julio-septiembre), se han identificado los principales patrones de circulación atmosféricos al interior del VGRC. El fenómeno conocido localmente como la “marea” ventila al VGRC de Oeste a Este entre las 14 y 21 HL con intensidades entre los 6-8 m s-1, no obstante, esta intensidad está condicionada por los pasos de menor altitud de la Cordillera Occidental y el periodo analizado; el resto del día predominan los vientos de baja intensidad. La interacción entre la Cordillera Central y los vientos alisios del Este genera un efecto cizalla limitando el transporte vertical hasta los ~2 km al interior del VGRC. Esta diferencia entre los patrones de circulación durante el día genera regiones donde predominan condiciones de ventilación (centro del VGRC) y estancamiento (sur del VGRC) impactando directamente la dispersión y el transporte de contaminantes atmosféricos. (Texto tomado de la fuente)Regional air quality is directly related to the flux of air pollutant emissions and phenomena such as atmospheric dispersion; however, the annual, interannual, and daily variability of meteorological phenomena and their interaction with topography make atmospheric dispersion a complex phenomenon, even more so in regions considered to have complex topographies such as northwestern South America. The geographic valley of the Cauca River (VGRC in Spanish) is in the northwest of South America, between the Central and Western branches of the Andes Mountains at an approximate distance of 80 km from the Pacific Ocean, in which in recent years there has been a deterioration in air quality related mainly to particulate matter. Through the analysis of information from the stations and meteorological and atmospheric tracer simulations carried out with the WRF model in two periods of 2018 (February-April and July-September), the main atmospheric circulation patterns within the VGRC have been identified. The phenomenon known locally as the "tide" ventilates the VGRC from West to East between 14 and 21 LT with intensities between 6-8 m s-1; however, this intensity is conditioned by the lower altitude passes of the Cordillera Western and the period analyzed, the rest of the day low-intensity winds predominate, in addition, the interaction between the Central Cordillera and the trade winds from the East generates a shear effect limiting vertical transport up to ~2 km inside the VGRC. This difference between circulation patterns during the day generates regions where ventilation conditions (VGRC center) and stagnation (VGRC south) predominate, directly impacting the dispersion and transport of atmospheric pollutantsMaestríaMagíster en Ingeniería - Ingeniería AmbientalCalidad del Airexvii, 123 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaIndicadores ambientalesCirculación atmosférica-Métodos de simulaciónAnálisis del impacto ambientalMeteorología dinámicaEnvironmental indicatorsAtmospheric circulation-Simulation methodsEnvironmental impact analysisDynamic meteorologyCalidad del aireAir qualityModelación meteorológicaValle Interandino TropicalTransporte regional de contaminantesTopografía complejaVientos catabáticosMeteorological modelingTropical Inter-Andean ValleyRegional transport of pollutantsComplex topographykatabatic windsPatrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regionalAtmospheric circulation patterns in the geographic valley of the Cauca River and its impact on regional air qualityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAldana, C. R. B., Guevara, D. C. D., Vitery, F. C., de Paula Gutiérrez Bonilla, F., Camargo, G. V., Ochoa, J. R., Bedout, J. B., & Castañeda, R. G. (2019). Modelado y simulación de sistemas naturales. In Modelado y simulación de sistemas naturales. https://doi.org/10.2307/j.ctvc2rnxfAllwine, K. J., & Whiteman, C. D. (1994). Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmospheric Environment, 28(4), 713–721. https://doi.org/10.1016/1352-2310(94)90048-5Amador, J. (1998). A climatic feature of the Tropical Americas: The Trade Wind Easterly Jet. Topicos Meteorologicos y Oceanograficos, 5(2), 91–102. https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/76623/1998_2.pdf?sequence=1Ambrizzi, T., de Souza, E. B., & Pulwarty, R. S. (2004). The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. 203–235. https://doi.org/10.1007/978-1-4020-2944-8_8AMS (American Meteorological Society). (2023). Tracer - Glossary of Meteorology. https://glossary.ametsoc.org/wiki/TracerArregocés, H. A., Rojano, R., & Restrepo, G. (2021). Sensitivity analysis of planetary boundary layer schemes using the WRF model in Northern Colombia during 2016 dry season. Dynamics of Atmospheres and Oceans, 96(August). https://doi.org/10.1016/j.dynatmoce.2021.101261Asocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de La Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdfBallesteros-González, K., Espitia-Cano, S. O., Rincón-Caro, M. A., Rincón-Riveros, J. M., Perez-Peña, M. P., Sullivan, A., & Morales Betancourt, R. (2022). Understanding organic aerosols in Bogotá, Colombia: In-situ observations and regional-scale modeling. Atmospheric Environment, 284(June 2021). https://doi.org/10.1016/j.atmosenv.2022.119161Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755Banta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004). Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. Journal of Applied Meteorology, 43(10), 1348–1365Bell, M. L., Davis, D. L., Gouveia, N., Borja-Aburto, V. H., & Cifuentes, L. A. (2006). The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environmental Research, 100(3), 431–440. https://doi.org/10.1016/j.envres.2005.08.002Brock, F. V., & Richardson, S. J. (2001). Meteorological Measurement Systems. In Oxford University Press. https://doi.org/10.1093/oso/9780195134513.001.0001Cazorla, M., Gallardo, L., & Jimenez, R. (2022). The complex Andes region needs improved efforts to face climate extremes. Elementa, 10(1), 1–9. https://doi.org/10.1525/elementa.2022.00092Céspedes, J. (2019). Implementación de un sistema LiDAR elástico para la observación de la dinámica de aerosoles sobre el área urbana de Cali.CIAT-International Center for Tropical Agriculture., & CVC-Valle del Cauca province regional environmental authority. (2018). Valle del Cauca Province (In Spanish). https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/plan_integral_de_cambio_climetico_para_el_valle_del_cauca.pdfCifuentes, F., González, C. M., & Aristizábal, B. H. (2021). Insights to WRF-Chem sensitivity in a zone of complex terrain in the tropical Andes: Effect of boundary conditions, chemical mechanisms, nesting, and domain configuration. Atmospheric Pollution Research, December 2020, 101093. https://doi.org/10.1016/j.apr.2021.101093Cortés, E., Chica, H., & Peña, A. (2019). Climatic zones of the Cauca River Valley (In Spanish). Carta Informativa Cenicaña, 7, 10–11. https://www.cenicana.org/zonas-climaticas-del-valle-del-rio-cauca/CPC-Climate Prediction Center. (2023). ONI-Cold & Warm Episodes by Season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpCVC-Corporación Autónoma Regional del Valle del Cauca. (2020, September 17). A PARTIR DE HOY SE REDUCEN LAS QUEMAS DE CAÑA EN EL VALLE DEL CAUCA | Portal CVC. https://www.cvc.gov.co/2020255CVC-Corporación Autónoma Regional del Valle del Cauca, & Universidad Nacional de Colombia sede Palmira. (2022). Modelación de material particulado indentificando la contribución de las fuentes - Vigenncia 2022 Convenio interadministrativo No . 036 DE 2021 CVC-UNAL. https://calidadaire.cvc.gov.co/DAGMA-Departamento Administrativo de Gestión del Medio Ambiente de Santiago de Cali, & Universidad Nacional de Colombia sede Palmira. (2022). Simulación meteorológica y simulación preliminar de calidad del aire en Santiago de Cali-Convenio interadministrativo 4133.010.27.1.041-2022 DAGMA-UNAL.DANE-National Administrative Department of Statistics. (2022). Population projections at the municipal level. Period 2018-2035 (In Spanish). https://cutt.ly/04q49KnDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/JAM2367.1DATA NOVIA. (2020). K-Means Clustering in R: Algorithm and Practical Examples - Datanovia. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/Departamento Nacional de Planeación -DNP-. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradación-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspxDiaz, L. R., Rolim, S. B. A., Santos, D. C., Käfer, P. S., Da Rocha, N. S., & Alves, R. D. C. M. (2020). Using the wrf model to refine ncep cfsv2 reanalysis atmospheric profile: A Southern Brazil test case. Revista Brasileira de Geofisica, 38(2), 5–31. https://doi.org/10.22564/rbgf.v38i2.2043Diaz, L. R., Santos, D. C., Käfer, P. S., Iglesias, M. L., da Rocha, N. S., da Costa, S. T. L., Kaiser, E. A., & Rolim, S. B. A. (2021). Reanalysis profile downscaling with WRF model and sensitivity to PBL parameterization schemes over a subtropical station. Journal of Atmospheric and Solar-Terrestrial Physics, 222(July). https://doi.org/10.1016/j.jastp.2021.105724Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2(February), 1–10. https://doi.org/10.3389/frsen.2021.619818Eguis Cuentas, M. C., & Jiménez, J. F. (2023). Dispersión atmosférica de material particulado en ciudades de montaña y tropicales. https://repositorio.unal.edu.co/handle/unal/83891Emery, C., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two texas ozone episodesFernandez, R. P., Allende, D. G., Castro, F., Cremades, P., & Puliafito, E. (2010). Modelado regional de la calidad de aire utilizando el modelo WRF/Chem: Implementación de datos globales y locales para Mendoza. Avances En Energías Renovables y Medio Ambiente, 14, 43–50.Franco, J. ., & Montejo, A. (2023). Calidad de aire, cambio climático y salud pública (H. Consulting (ed.)).ISBN 9786289570205Galanti, E., Raiter, D., Kaspi, Y., Tziperman, E., & Jgr-atmosphere, S. (2021). Spatial patterns of the local Hadley circulation : drivers and consequences. 2.Gao, S., Huang, D., Du, N., Ren, C., & Yu, H. (2022). WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 271(December 2021), 106116. https://doi.org/10.1016/j.atmosres.2022.106116Giovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Castelli, S. T., & Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 1–32. https://doi.org/10.3390/atmos11060646Gómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009González, C. M. (2017). Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte química on-line. Caso de estudio: Manizales, Colombia. 238González, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM 10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003Gouveia, N., Kephart, J. L., Dronova, I., McClure, L., Granados, J. T., Betancourt, R. M., O’Ryan, A. C., Texcalac-Sangrador, J. L., Martinez-Folgar, K., Rodriguez, D., & Diez-Roux, A. V. (2021). Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Science of the Total Environment, 772, 145035. https://doi.org/10.1016/j.scitotenv.2021.145035Henao, J. J., Mejía, J. F., Rendón, A. M., & Salazar, J. F. (2020). Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric Pollution Research, 11(5), 928–945. https://doi.org/10.1016/j.apr.2020.02.005Hernandez-Deckers, D. (2022). Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 148(742), 338–350. https://doi.org/10.1002/qj.4208Hernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051Hernández, J. D. R., & Mesa, Ó. J. (2020). A simple conceptual model for the heat induced circulation over Northern South America and MESO-America. Atmosphere, 11(11), 1–14. https://doi.org/10.3390/atmos11111235Hernández, Jauregui, Souto, Casares, Saavedra, Guzmán, & Torres. (2015). Estado actual de los modelos de dispersión atmosférica y sus aplicaciones. UCE Ciencia. Revista de Postgrado, 3(2), 1–17.Holzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., & Hasekamp, O. (2018). Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 45(8), 3682–3689. https://doi.org/10.1002/2018GL077259IDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. http://www.ideam.gov.co/documents/11769/72085840/Documento+metodologico+variables+meteorologicas.pdf/8a71a9b4-7dd7-4af4-b98e-9b1eda3b8744IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales). (2022). Informe del estado de la calidad del aire en Colombia 2021.Jiménez-Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934Jimenez, R., Ardila, A. V, Vargas-burbano, A. C., Hernandez, A. J., & Leon-velasquez, E. (2022). Biomass burning-agriculture coupling in the Orinoco savannas — Particulate matter emission scenarios. November, 1–16. https://doi.org/10.3389/fenvs.2022.689844Jury, M. R. (2019). Northward excursion of the ITCZ across the inter-Americas during boreal summer. Meteorology and Atmospheric Physics, 131(5), 1357–1366. https://doi.org/10.1007/s00703-018-0642-1Jury, M. R. (2020). Meteorology of air pollution in Los Angeles. Atmospheric Pollution Research, 11(7), 1226–1237. https://doi.org/10.1016/j.apr.2020.04.016Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem model to simulate PM10 concentration over Bogota. Aerosol and Air Quality Research, 16(5), 1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318Lamare, M., Dumont, M., Picard, G., Larue, F., Tuzet, F., Delcourt, C., & Arnaud, L. (2020). Simulating optical top-of-Atmosphere radiance satellite images over snow-covered rugged terrain. Cryosphere, 14(11), 3995–4020. https://doi.org/10.5194/tc-14-3995-2020Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233. https://doi.org/10.1175/BAMS-86-2-225Lee, S. M., Princevac, M., Mitsutomi, S., & Cassmassi, J. (2009). MM5 simulations for air quality modeling: An application to a coastal area with complex terrain. Atmospheric Environment, 43(2), 447–457. https://doi.org/10.1016/j.atmosenv.2008.07.067Li Ramírez, J. A., Zambrano Nájera, J. del C., & Aristizábal Zuluaga, B. H. (2020). BVOC Emissions Along the Eastern and Western Slopes of the Andes Central Range with Strong Altitudinal Gradient over a Wide Range of Andean Ecosystems: Model Estimation/Disaggregation with BIGA. Environmental Modeling and Assessment, 25(6), 761–773. https://doi.org/10.1007/s10666-020-09698-7Li, Y., & Chao, J. (2018). Theoretical urban heat island circulation in the temperature inversion profile. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030098Lim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612. https://doi.org/10.1175/2009MWR2968.1Lin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C. K., Chien, Y. Y., & Chen, W. M. (2021). Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21(22), 16893–16910. https://doi.org/10.5194/acp-21-16893-2021Lopez-noreña, A. I. (2016). Simulation of the dispersion of particulate matter PM2.5 in the Aburrá Valley, Colombia, using WRF-Chem (In Spanish). December 2016. https://doi.org/10.13140/RG.2.2.34078.69441/2López, M., & Howell, W. (1967). Katabatic Winds in the Equatorial Andes. Journal of the Atmospheric Sciences, 68–70. https://doi.org/10.1175/1520-0469(1967)024%3C0029:KWITEA%3E2.0.CO;2Madala, S., Satyanarayana, A. N. V., Srinivas, C. V., & Kumar, M. (2015). Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF. Atmospheric Environment, 107, 315–328. https://doi.org/10.1016/j.atmosenv.2015.02.059Mapes, B. E., Warner, T. T., & Negri, A. (2003). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2Mateus-Fontecha, Lady, Vargas-Burbano, A., Jimenez, R., Rojas, N. Y., Rueda-Saa, G., Van Pinxteren, D., Van Pinxteren, M., Fomba, K. W., & Herrmann, H. (2022). Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmospheric Chemistry and Physics, 22(13), 8473–8495. https://doi.org/10.5194/acp-22-8473-2022McNally. (2009). 12kmMM5 performance goals prepared for: ad-hoc met. group.Mesa-Sánchez, O. J., & Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899Mesa, Ó. J., & Rojo, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/RACCEFYN.899Molina, L. T., Gallardo, L., Andrade, M., Baumgardner, D., Borbor-Cõrdova, M., Bõrquez, R., Casassa, G., Cereceda-Balic, F., Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J. L., Mc Phee, J., Mena-Carrasco, M., Raga, G. B., Schmitt, C., & Schwarz, J. P. (2015). Pollution and its Impacts on the South American Cryosphere. Earth’s Future, 3(12), 345–369. https://doi.org/10.1002/2015EF000311Muñoz, L. E., Campozano, L. V., Guevara, D. C., Parra, R., Tonato, D., Suntaxi, A., Maisincho, L., Páez, C., Villacís, M., Córdova, J., & Valencia, N. (2023). Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere, 14(2). https://doi.org/10.3390/atmos14020264Nansai, K., Tohno, S., Chatani, S., Kanemoto, K., Kagawa, S., Kondo, Y., Takayanagi, W., & Lenzen, M. (2021). Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 12(1), 1–6. https://doi.org/10.1038/s41467-021-26348-yNedbor-Gross, R., Henderson, B. H., Davis, J. R., Pachón, J. E., Rincón, A., Guerrero, O. J., & Grajales, F. (2017). Comparing standard to feature-based meteorological model evaluation techniques in Bogotá, Colombia. Journal of Applied Meteorology and Climatology, 56(2), 391–413. https://doi.org/10.1175/JAMC-D-16-0058.1NOAA. (2014, August 1). The Walker Circulation: ENSO’s atmospheric buddy | NOAA Climate.gov. https://www.climate.gov/news-features/blogs/enso/walker-circulation-ensos-atmospheric-buddyNOAA - National Oceanic and Atmospheric Administration-. (2023). El Niño & La Niña (El Niño-Southern Oscillation) | NOAA Climate.gov. https://www.climate.gov/ensoNOAA (National and Oceanic Atmospheric and Administration). (2023). Inter-Tropical Convergence Zone | National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/tropical/convergence-zoneOrtiz, E. Y., Jimenez, R., Fochesatto, G. J., & Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Response to comment on “Surface urban heat island across 419 global big cities.” Environmental Science and Technology, 46(12), 6889–6890. https://doi.org/10.1021/es301811bPérez, I. A., García, M. Á., Sánchez, M. L., Pardo, N., & Fernández-Duque, B. (2020). Key points in air pollution meteorology. International Journal of Environmental Research and Public Health, 17(22), 1–14. https://doi.org/10.3390/ijerph17228349Pfister, G., Pétron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J., Attie, J., Granier, C., Novelli, P. C., & Emmons, K. (2004). Evaluation of CO simulations and the analysis of the CO budget for Europe. J. Geophys. Res, 109, 19304. https://doi.org/10.1029/2004JD004691Posada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5–6), 3609–3629. https://doi.org/10.1007/s00382-018-4403-0Poveda., Álvarez., & Rueda. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11–12), 2233–2249. https://doi.org/10.1007/s00382-010-0931-yPoveda., & Mesa. (1999). The westerly low-level Chocó jet and two other atmospheric jets over Colombia: Climatology and variability during ENSO phases (in Spanish). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(January), 517–528.Poveda., Waylen., & Pulwarty. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675–1678. https://doi.org/10.1029/1999GL006091Preciado, M., Chica, H., Solarte, E., Carbonell, J., & Peña, A. (2020). Regional wind pattern, a basis for defining the appropriate lapse of time for sugarcane burning in the Cauca Valley (Colombia). Environment, Development and Sustainability, 23(6), 9477–9492. https://doi.org/10.1007/s10668-020-00992-8Ranjha, R., Svensson, G., TjernströM, M., & Semedo, A. (2013). Global distribution and seasonal variability of coastal low-level jets derived from ERA-interim reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 65. https://doi.org/10.3402/tellusa.v65i0.20412Rau, B., & Gómez, L. (2018). Colombia Sugar Annual Colombian Sugar Production Bounces Back after Three Years of Difficult Weather Conditions. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar Annual_Bogota_Colombia_4-13-2018.pdfRen, H. L., Lu, B., Wan, J., Tian, B., & Zhang, P. (2018). Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. Journal of Meteorological Research, 32(6), 923–936. https://doi.org/10.1007/s13351-018-8078-6Russo, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1Sakamoto, M. S., Ambrizzi, T., & Poveda, G. (2011). Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011, 1–11. https://doi.org/10.1155/2011/890759Seidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. (2001). Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research Atmospheres, 106(D8), 7857–7878. https://doi.org/10.1029/2000JD900837Sierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. (2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56(7–8), 2667–2692. https://doi.org/10.1007/s00382-020-05611-wSouza, N., Nascimento, E., & Moreira, D. (2021). Performance evaluation of the WRF model in a tropical region: wind speed analysis at diferent sites. Atmósfera, August 2020, 0–27. https://doi.org/https://doi.org/10.20937/ATM.52968Steenburgh, W. J., Schultz, D. M., Snyder, B. J., & Meyers, M. P. (2013). Mountain Weather Research and Forecasting. 693–716. https://doi.org/10.1007/978-94-007-4098-3Sun, D.-Z., & Oort, A. H. (1995). Humidity-Temperature relationship in the tropical troposphere. Journal of Climate, 8, 1974–1987. https://journals.ametsoc.org/view/journals/clim/8/8/1520-0442_1995_008_1974_hrittt_2_0_co_2.xmlTalgo, K., Bowden, J., Adelman, Z., & Morris, R. (2015). Western Air Quality Study ( WAQS ) Weather Research Forecast ( WRF ) Meteorological Model Final Modeling Protocol 2014 Modeling Year.Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235(October 2019), 104785. https://doi.org/10.1016/j.atmosres.2019.104785UCAR (University Corporation for Atmospheric Research). (2023). Weather Research & Forecasting Model (WRF) | Mesoscale & Microscale Meteorology Laboratory. https://www.mmm.ucar.edu/models/wrfUribe, H. (2017). EL VALLE GEOGRÁFICO DEL RÍO CAUCA: UN ESPACIO TRANSFORMADO POR EL CAPITAL AGROINDUSTRIAL. Libros Universidad Nacional Abierta y a Distancia, 298–314. https://hemeroteca.unad.edu.co/index.php/book/article/view/2435Wang, X. C., Klemeš, J. J., Dong, X., Fan, W., Xu, Z., Wang, Y., & Varbanov, P. S. (2019). Air pollution terrain nexus: A review considering energy generation and consumption. Renewable and Sustainable Energy Reviews, 105(January), 71–85. https://doi.org/10.1016/j.rser.2019.01.049Wang, X., Chen, F., Wu, Z., Zhang, M., Tewari, M., Guenther, A., & Wiedinmyer, C. (2009). Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 26(5), 962–972. https://doi.org/10.1007/s00376-009-8001-2Warner, T. T., Mapes, B. E., & Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2Whiteman, D. (2001). Mountain Meteorology: Fundamentals and Applications. In Mountain Research and Development (Vol. 21, Issue 2). https://doi.org/10.1659/0276-4741(2001)021[0200:mmfaa]2.0.co;2WHO. (2021). WHO’s global air-quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In Lancet (Vol. 368, Issue 9544).Windrow, B., Kollár, I., & Liu, M.-C. (1996). Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurment, 45(2), 353–361. https://people.isy.liu.se/rt/fredrik/spcourse/quant.pdfYáñez, G., Gironás, J., Caneo, M., Delgado, R., & Garreaud, R. (2018). Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere, 9(8). https://doi.org/10.3390/atmos9080304Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1Žabkar, R., Koračin, D., & Rakovec, J. (2013). A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area. Atmospheric Environment, 77, 990–1004. https://doi.org/10.1016/j.atmosenv.2013.05.065Zhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., & Li, S. (2023). Impacts of urbanization on air quality and the related health risks in a city with complex terrain. Atmospheric Chemistry and Physics, 23(1), 771–788. https://doi.org/10.5194/acp-23-771-2023Zhang, S., Wang, M., Wang, L., Liang, X. Z., Sun, C., & Li, Q. (2023). Sensitivity of the simulation of extreme precipitation events in China to different cumulus parameterization schemes and the underlying mechanisms. Atmospheric Research, 285(September 2022), 106636. https://doi.org/10.1016/j.atmosres.2023.106636Zhao, W., & Li, A. (2015). A Review on Land Surface Processes Modelling over Complex Terrain. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/607181Zhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W., Qiu, Y., Lei, L., Fu, P., Wang, Z., Worsnop, D. R., Zhang, Q., & Sun, Y. (2019). Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution (Barking, Essex : 1987), 255(Pt 2). https://doi.org/10.1016/J.ENVPOL.2019.113345EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85326/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024496500.2023.pdf1024496500.2023.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf6835939https://repositorio.unal.edu.co/bitstream/unal/85326/2/1024496500.2023.pdfe342dad2f023a560f6e8fe839a50dc94MD52unal/85326oai:repositorio.unal.edu.co:unal/853262024-01-16 10:14:06.707Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=