Field of moduli and generalized fermat curves

A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplat...

Full description

Autores:
Hidalgo, Ruben A.
Reyes-Carocca, Sebastián
Valdés, María Elisa
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49344
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49344
http://bdigital.unal.edu.co/42801/
Palabra clave:
Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_882c785d13f84ec4cd0f0a5f25a6029f
oai_identifier_str oai:repositorio.unal.edu.co:unal/49344
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hidalgo, Ruben A.a7719743-fcff-4c6a-9355-99003f8c51a5300Reyes-Carocca, Sebastiáne2d389be-5bea-4ae1-9f92-9f0c88b1673b300Valdés, María Elisa301247e7-06db-454d-9515-338953c7f0163002019-06-29T08:36:46Z2019-06-29T08:36:46Z2013https://repositorio.unal.edu.co/handle/unal/49344http://bdigital.unal.edu.co/42801/A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) nis odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S.Una curva de Fermat generalizada de tipo (p,n) es una superficie de Riemann cerrada S la cual admite un grupo H \cong Zpn de automorfismos conformales de manera que S/H sea de género cero y tenga exactamente n+1 puntos cónicos, cada uno de orden p. Si (p-1)(n-1) ≥ 3, entonces se sabe que S no es hiperelíptica y genéricamente no es casiplatónica. Denotemos porAutH(S) el normalizador de H en Aut(S). Si p es primo y tenemos que (i) n=4 o bien (ii) n es par y AutH(S)/H no es un grupo cíclico no trivial o bien (iii) n es impar y AutH(S)/H no es un grupo cíclico, entonces verificamos que S se puede definir sobre su cuerpo de moduli. Más aún, si n ε{3,4}, entonces determinamos tal cuerpo de moduli.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/45188Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426Hidalgo, Ruben A. and Reyes-Carocca, Sebastián and Valdés, María Elisa (2013) Field of moduli and generalized fermat curves. Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426 .Field of moduli and generalized fermat curvesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTCurvas algebraicassuperficies de Riemanncuerpo de modulicuerpo de definición14H3714H1014H4530F10Algebraic curvesRiemann surfacesField of moduliField of definitionORIGINAL45188-216935-2-PB.htmltext/html8970https://repositorio.unal.edu.co/bitstream/unal/49344/1/45188-216935-2-PB.html04c4c639bf7dc6097e373396b57b884cMD5145188-216934-1-SM.pdfapplication/pdf523827https://repositorio.unal.edu.co/bitstream/unal/49344/2/45188-216934-1-SM.pdf14a7a6a0dbd3918885661ef1508a23fbMD52THUMBNAIL45188-216934-1-SM.pdf.jpg45188-216934-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5537https://repositorio.unal.edu.co/bitstream/unal/49344/3/45188-216934-1-SM.pdf.jpga0b14ac42449251b3ae1336eaf2b1de1MD53unal/49344oai:repositorio.unal.edu.co:unal/493442023-12-09 23:05:59.14Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Field of moduli and generalized fermat curves
title Field of moduli and generalized fermat curves
spellingShingle Field of moduli and generalized fermat curves
Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
title_short Field of moduli and generalized fermat curves
title_full Field of moduli and generalized fermat curves
title_fullStr Field of moduli and generalized fermat curves
title_full_unstemmed Field of moduli and generalized fermat curves
title_sort Field of moduli and generalized fermat curves
dc.creator.fl_str_mv Hidalgo, Ruben A.
Reyes-Carocca, Sebastián
Valdés, María Elisa
dc.contributor.author.spa.fl_str_mv Hidalgo, Ruben A.
Reyes-Carocca, Sebastián
Valdés, María Elisa
dc.subject.proposal.spa.fl_str_mv Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
topic Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
description A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) nis odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-29T08:36:46Z
dc.date.available.spa.fl_str_mv 2019-06-29T08:36:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/49344
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/42801/
url https://repositorio.unal.edu.co/handle/unal/49344
http://bdigital.unal.edu.co/42801/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/45188
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426
dc.relation.references.spa.fl_str_mv Hidalgo, Ruben A. and Reyes-Carocca, Sebastián and Valdés, María Elisa (2013) Field of moduli and generalized fermat curves. Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/49344/1/45188-216935-2-PB.html
https://repositorio.unal.edu.co/bitstream/unal/49344/2/45188-216934-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/49344/3/45188-216934-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv 04c4c639bf7dc6097e373396b57b884c
14a7a6a0dbd3918885661ef1508a23fb
a0b14ac42449251b3ae1336eaf2b1de1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090233657950208