Field of moduli and generalized fermat curves
A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplat...
- Autores:
-
Hidalgo, Ruben A.
Reyes-Carocca, Sebastián
Valdés, María Elisa
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49344
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49344
http://bdigital.unal.edu.co/42801/
- Palabra clave:
- Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_882c785d13f84ec4cd0f0a5f25a6029f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/49344 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hidalgo, Ruben A.a7719743-fcff-4c6a-9355-99003f8c51a5300Reyes-Carocca, Sebastiáne2d389be-5bea-4ae1-9f92-9f0c88b1673b300Valdés, María Elisa301247e7-06db-454d-9515-338953c7f0163002019-06-29T08:36:46Z2019-06-29T08:36:46Z2013https://repositorio.unal.edu.co/handle/unal/49344http://bdigital.unal.edu.co/42801/A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) nis odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S.Una curva de Fermat generalizada de tipo (p,n) es una superficie de Riemann cerrada S la cual admite un grupo H \cong Zpn de automorfismos conformales de manera que S/H sea de género cero y tenga exactamente n+1 puntos cónicos, cada uno de orden p. Si (p-1)(n-1) ≥ 3, entonces se sabe que S no es hiperelíptica y genéricamente no es casiplatónica. Denotemos porAutH(S) el normalizador de H en Aut(S). Si p es primo y tenemos que (i) n=4 o bien (ii) n es par y AutH(S)/H no es un grupo cíclico no trivial o bien (iii) n es impar y AutH(S)/H no es un grupo cíclico, entonces verificamos que S se puede definir sobre su cuerpo de moduli. Más aún, si n ε{3,4}, entonces determinamos tal cuerpo de moduli.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/45188Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426Hidalgo, Ruben A. and Reyes-Carocca, Sebastián and Valdés, María Elisa (2013) Field of moduli and generalized fermat curves. Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426 .Field of moduli and generalized fermat curvesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTCurvas algebraicassuperficies de Riemanncuerpo de modulicuerpo de definición14H3714H1014H4530F10Algebraic curvesRiemann surfacesField of moduliField of definitionORIGINAL45188-216935-2-PB.htmltext/html8970https://repositorio.unal.edu.co/bitstream/unal/49344/1/45188-216935-2-PB.html04c4c639bf7dc6097e373396b57b884cMD5145188-216934-1-SM.pdfapplication/pdf523827https://repositorio.unal.edu.co/bitstream/unal/49344/2/45188-216934-1-SM.pdf14a7a6a0dbd3918885661ef1508a23fbMD52THUMBNAIL45188-216934-1-SM.pdf.jpg45188-216934-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5537https://repositorio.unal.edu.co/bitstream/unal/49344/3/45188-216934-1-SM.pdf.jpga0b14ac42449251b3ae1336eaf2b1de1MD53unal/49344oai:repositorio.unal.edu.co:unal/493442023-12-09 23:05:59.14Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Field of moduli and generalized fermat curves |
title |
Field of moduli and generalized fermat curves |
spellingShingle |
Field of moduli and generalized fermat curves Curvas algebraicas superficies de Riemann cuerpo de moduli cuerpo de definición 14H37 14H10 14H45 30F10 Algebraic curves Riemann surfaces Field of moduli Field of definition |
title_short |
Field of moduli and generalized fermat curves |
title_full |
Field of moduli and generalized fermat curves |
title_fullStr |
Field of moduli and generalized fermat curves |
title_full_unstemmed |
Field of moduli and generalized fermat curves |
title_sort |
Field of moduli and generalized fermat curves |
dc.creator.fl_str_mv |
Hidalgo, Ruben A. Reyes-Carocca, Sebastián Valdés, María Elisa |
dc.contributor.author.spa.fl_str_mv |
Hidalgo, Ruben A. Reyes-Carocca, Sebastián Valdés, María Elisa |
dc.subject.proposal.spa.fl_str_mv |
Curvas algebraicas superficies de Riemann cuerpo de moduli cuerpo de definición 14H37 14H10 14H45 30F10 Algebraic curves Riemann surfaces Field of moduli Field of definition |
topic |
Curvas algebraicas superficies de Riemann cuerpo de moduli cuerpo de definición 14H37 14H10 14H45 30F10 Algebraic curves Riemann surfaces Field of moduli Field of definition |
description |
A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) nis odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T08:36:46Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T08:36:46Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/49344 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/42801/ |
url |
https://repositorio.unal.edu.co/handle/unal/49344 http://bdigital.unal.edu.co/42801/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/45188 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Hidalgo, Ruben A. and Reyes-Carocca, Sebastián and Valdés, María Elisa (2013) Field of moduli and generalized fermat curves. Revista Colombiana de Matemáticas; Vol. 47, núm. 2 (2013); 205-221 2357-4100 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/49344/1/45188-216935-2-PB.html https://repositorio.unal.edu.co/bitstream/unal/49344/2/45188-216934-1-SM.pdf https://repositorio.unal.edu.co/bitstream/unal/49344/3/45188-216934-1-SM.pdf.jpg |
bitstream.checksum.fl_str_mv |
04c4c639bf7dc6097e373396b57b884c 14a7a6a0dbd3918885661ef1508a23fb a0b14ac42449251b3ae1336eaf2b1de1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090233657950208 |