Field of moduli and generalized fermat curves

A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplat...

Full description

Autores:
Hidalgo, Ruben A.
Reyes-Carocca, Sebastián
Valdés, María Elisa
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49344
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49344
http://bdigital.unal.edu.co/42801/
Palabra clave:
Curvas algebraicas
superficies de Riemann
cuerpo de moduli
cuerpo de definición
14H37
14H10
14H45
30F10
Algebraic curves
Riemann surfaces
Field of moduli
Field of definition
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:A generalized Fermat curve of type (p,n) is a closed Riemann surface S admitting a group H \cong Zpn of conformal automorphisms with S/H being the Riemann sphere with exactly n+1cone points, each one of order p. If (p-1)(n-1) ≥ 3, then S is known to be non-hyperelliptic and generically not quasiplatonic. Let us denote by AutH(S) the normalizer of H in Aut(S). If p is a prime, and either (i) n=4 or (ii) n is even and AutH(S)/H is not a non-trivial cyclic group or (iii) nis odd and AutH(S)/H is not a cyclic group, then we prove that S can be defined over its field of moduli. Moreover, if n ε {3,4}, then we also compute the field of moduli of S.