Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor
fotografías a color, ilustraciones, tablas
- Autores:
-
Terán Ramírez, Cristian Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82126
- Palabra clave:
- 530 - Física::539 - Física moderna
530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
Películas delgadas
Thin films
Nanoestructuras
Nanostructures
Memorias no volátiles
Conmutación resistiva
Memristor
DC Magnetron Sputtering
Non-volatile memories
Resistive Switching
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_87f5e7cc97c993fcda83883190cc1d82 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82126 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
dc.title.translated.eng.fl_str_mv |
Characterization and study of devices based on ZnO:Co nanostructures for application in non-volatile memories using a transistor-type configuration |
title |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
spellingShingle |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor 530 - Física::539 - Física moderna 530 - Física::537 - Electricidad y electrónica 530 - Física::538 - Magnetismo Películas delgadas Thin films Nanoestructuras Nanostructures Memorias no volátiles Conmutación resistiva Memristor DC Magnetron Sputtering Non-volatile memories Resistive Switching |
title_short |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
title_full |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
title_fullStr |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
title_full_unstemmed |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
title_sort |
Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor |
dc.creator.fl_str_mv |
Terán Ramírez, Cristian Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Dussan Cuenca, Anderson |
dc.contributor.author.none.fl_str_mv |
Terán Ramírez, Cristian Leonardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Materiales Nanoestructurados y Sus Aplicaciones |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::539 - Física moderna 530 - Física::537 - Electricidad y electrónica 530 - Física::538 - Magnetismo |
topic |
530 - Física::539 - Física moderna 530 - Física::537 - Electricidad y electrónica 530 - Física::538 - Magnetismo Películas delgadas Thin films Nanoestructuras Nanostructures Memorias no volátiles Conmutación resistiva Memristor DC Magnetron Sputtering Non-volatile memories Resistive Switching |
dc.subject.lemb.none.fl_str_mv |
Películas delgadas Thin films Nanoestructuras Nanostructures |
dc.subject.proposal.spa.fl_str_mv |
Memorias no volátiles Conmutación resistiva Memristor |
dc.subject.proposal.eng.fl_str_mv |
DC Magnetron Sputtering Non-volatile memories Resistive Switching |
description |
fotografías a color, ilustraciones, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-25T22:23:09Z |
dc.date.available.none.fl_str_mv |
2022-08-25T22:23:09Z |
dc.date.issued.none.fl_str_mv |
2022-08 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82126 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82126 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
J. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1–33, 2014. T. M. Coughlin, Digital Storage in Consumer Electronics. Springer, second edi ed., 2018. A. C. Samli, International ConsumerBehavior in the 21st CenturyImpact on Marketing Strategy Development. Springer, 2013. S. Hong, O. Auciello, and D. Wouters, Emerging Non-Volatile Memories, vol. 9781489975. Springer, 2014. P. Lacaze, Non-volatile memories. London New York: ISTE Ltd John Wiley and Sons, Inc, 2014. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: Resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, 2012. A. Chen, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25–38, 2016. R. Tetzlaff, Memristors and memristive systems, vol. 9781461490. Springer, 2014. D. Ielmini, “Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling,” Semiconductor Science and Technology, vol. 31, no. 6, 2016. L. Chua, “Memristor - The missing circuit element,” IEEE Transactions on Circuit Theory, vol. C, no. 5, pp. 507–519, 1971. L. Chua, “Memristive devices and systems,” Proceedings of the IEEE, vol. 64, no. 2, 1976. T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19, no. 5, pp. 254–264, 2016. F. Pan, C. Chen, Z.-s. Wang, Y.-c. Yang, J. Yang, and F. Zeng, “Nonvolatile resistive switching memories-characteristics, mechanisms and challenges,” Progress in Natural Science: Materials International, vol. 20, pp. 1–15, 2010. B. Mohammad, M. A. Jaoude, V. Kumar, D. M. Al Homouz, H. A. Nahla, M. AlQutayri, and N. Christoforou, “State of the art of metal oxide memristor devices,” Nanotechnology Reviews, vol. 5, no. 3, pp. 311–329, 2016. H. P. Quiroz Gaitán, Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos. PhD thesis, Universidad Nacional de Colombia, 2014. H. P. Quiroz Gaitán, Estudio de las propiedades fı́sicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica. PhD thesis, Universidad Nacional de Colombia, 2019. S. B. Torres Avila, Preparación y Evaluación de Nanoestructuras de TiO 2 Para Aplicaciones Tecnológicas en Memorias No Volátiles (NVM). PhD thesis, Universidad Nacional de Colombia, Bogotá, 2019. F. Gul and H. Efeoglu, “Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor,” Superlattices and Microstructures, vol. 101, pp. 172–179, 2017. W. Shen, P. Huang, M. Fan, R. Han, Z. Zhou, B. Gao, H. Wu, H. Qian, L. Liu, X. Liu, X. Zhang, and J. Kang, “Stateful Logic Operations in One-Transistor-One-Resistor Resistive Random Access Memory Array,” IEEE Electron Device Letters, vol. 40, no. 9, pp. 1–1, 2019. F. Gul and H. Efeoglu, “ZnO and ZnO1-x based thin film memristors: The effects of oxygen deficiency and thickness in resistive switching behavior,” Ceramics International, vol. 43, no. 14, pp. 10770–10775, 2017. S. Paul, P. G. Harris, C. Pal, A. K. Sharma, and A. K. Ray, “Low cost zinc oxide for memristors with high On-Off ratios,” Materials Letters, vol. 130, pp. 40–42, 2014. B. J. La Meres, Introduction to logic circuits and logic design with VHDL. Springer, 2016. W.-c. Huang, P.-y. Wu, Y.-f. Tan, Y.-l. Xu, and Y.-c. Zhang, “Overcoming Limited Resistance in 1T1R RRAM Caused by Pinch-Off Voltage During Reset Process,” IEEE Transactions on Electron Devices, vol. PP, pp. 1–4, 2019. E. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and J. P. Strachan, “Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications,” Nanotechnology, vol. 27, no. 36, 2016. I. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit design approaches: A review,” IEEE Circuits and Systems Magazine, vol. 16, no. 3, pp. 15–30, 2016. S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-based material implication (IMPLY) logic: Design principles and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014. G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis, “Boolean logic operations and computing circuits based on memristors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972–976, 2014. Y. Zhang, Y. Shen, X. Wang, and L. Cao, “A novel design for memristor-based logic switch and crossbar circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1402–1411, 2015. P.-e. Gaillardon, L. Amar, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. D. Micheli, “The Programmable Logic-in-Memory ( PLiM ) Computer,” pp. 427–432, 2016. Z. R. Wang, Y. T. Su, Y. Li, Y. X. Zhou, T. J. Chu, K. C. Chang, T. C. Chang, T. M. Tsai, S. M. Sze, and X. S. Miao, “Functionally complete Boolean logic in 1T1R resistive random access memory,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 179–182, 2017. K. M. Kim and R. S. Williams, “A Family of Stateful Memristor Gates for Complete Cascading Logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. PP, pp. 1–8, 2019. E. G. Friedman, Grids in Very Large Scale Integration Systems. PhD thesis, University of Rochester, 2019. Y. Yu, F. Yang, S. Mao, S. Zhu, Y. Jia, L. Yuan, M. Salmen, and B. Sun, “Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device,” Chemical Physics Letters, vol. 706, pp. 477–482, 2018. W. K. Hsieh, K. T. Lam, and S. J. Chang, “Characteristics of tantalum-doped silicon oxide-based resistive random access memory,” Materials Science in Semiconductor Processing, vol. 27, no. 1, pp. 293–296, 2014. Y. Abbas, A. S. Sokolov, Y. R. Jeon, S. Kim, B. Ku, and C. Choi, “Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing,” Journal of Alloys and Compounds, vol. 759, pp. 44–51, 2018. H. L. Chee, T. N. Kumar, and H. A. Almurib, “Electrical model of multi-level bipolar Ta2O5/TaOx Bi-layered ReRAM,” Microelectronics Journal, vol. 93, no. March, p. 104616, 2019. H. Abunahla, B. Mohammad, M. A. Jaoude, M. Al-qutayri, A. Mathematics, A. Dhabi, and U. A. Emirates, “Novel Hafnium Oxide Memristor Device switching behaviour and size effect,” pp. 7–10, 2017. H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, and S. Sriram, “Nanoscale resistive switching in amorphous perovskite oxide ( a- SrTiO3) memristors,” Advanced Functional Materials, vol. 24, no. 43, pp. 6741–6750, 2014. I. Banerjee, P. Harris, A. Salimian, and A. K. Ray, “Graphene oxide thin films for resistive memory switches,” IET Circuits, Devices and Systems, vol. 9, no. 6, pp. 428–433, 2015. M. Lorenz, M. S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F. K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. Dasgupta, D. J. Rogers, F. H. Teherani, E. V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N. A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, and N. Pryds, “The 2016 oxide electronic materials and oxide interfaces roadmap,” Journal of Physics D: Applied Physics, vol. 49, no. 43, 2016. V. L. Patil, A. A. Patil, S. V. Patil, N. A. Khairnar, N. L. Tarwal, S. A. Vanalakar, R. N. Bulakhe, I. In, P. S. Patil, and T. D. Dongale, “Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film,” Materials Science in Semiconductor Processing, vol. 106, no. April 2019, p. 104769, 2020. K. J. Gan, P. T. Liu, S. J. Lin, D. B. Ruan, T. C. Chien, Y. C. Chiu, and S. M. Sze, “Bipolar resistive switching characteristics of tungsten-doped indium–zinc oxide conductive-bridging random access memory,” Vacuum, vol. 166, no. April, pp. 226–230, 2019. G. Hassan, J. Bae, M. U. Khan, and S. Ali, “Resistive switching device based on water and zinc oxide heterojunction for soft memory applications,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 246, no. April, pp. 1–6, 2019. S. Ren, W. Dong, H. Tang, L. Tang, Z. Li, Q. Sun, H. Yang, Z. Yang, and J. Zhao, “High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film,” Applied Surface Science, vol. 488, no. March, pp. 92–97, 2019. W. Wang, R. Dong, X. Yan, B. Yang, and X. An, “Memristive behavior of ZnO/Au film investigated by a TiN CAFM Tip and its model based on the experiments,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1135–1139, 2012. T. Movlarooy, “Transition metals doped and encapsulated ZnO nanotubes: Good materials for the spintronic applications,” Journal of Magnetism and Magnetic Materials, vol. 441, pp. 139–148, 2017. S. S. Ghosh, C. Choubey, and A. Sil, “Photocatalytic response of Fe, Co, Ni doped ZnO based diluted magnetic semiconductors for spintronics applications,” Superlattices and Microstructures, vol. 125, no. July 2018, pp. 271–280, 2019. R. Siddheswaran, R. Medlı́n, C. E. Jeyanthi, S. G. Raj, and R. V. Mangalaraja, “Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications,” Applied Physics A, vol. 125, no. 9, pp. 1–9, 2019. L. Chen, S. Li, Y. Cui, Z. Xiong, H. Luo, and Y. Gao, “Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations,” Applied Surface Science, vol. 479, no. February, pp. 440–448, 2019. S. U. Awan, Z. Mehmood, S. Hussain, S. A. Shah, N. Ahmad, M. Rafique, M. Aftab, and T. A. Abbas, “Correlation between structural, electrical, dielectric and magnetic properties of semiconducting Co doped and (Co, Li) co-doped ZnO nanoparticles for spintronics applications,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 103, no. April, pp. 110–121, 2018. Y. Babacan, A. Yesil, and F. Gul, “The Fabrication and MOSFET-Only Circuit Implementation of Semiconductor Memristor,” IEEE Transactions on Electron Devices, vol. 65, no. 4, pp. 1625–1632, 2018. D. Sharma and R. Jha, “Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals,” Ceramics International, vol. 43, no. 11, pp. 8488–8496, 2017. B. U. Haq, R. Ahmed, A. Shaari, A. Afaq, B. A. Tahir, and R. Khenata, “First-principles investigations of Mn doped zinc-blende ZnO based magnetic semiconductors: Materials for spintronic applications,” Materials Science in Semiconductor Processing, vol. 29, pp. 256–261, 2015. S. S. Nkosi, I. Kortidis, D. E. Motaung, G. F. Malgas, J. Keartland, E. Sideras-Haddad, A. Forbes, B. W. Mwakikunga, S. Sinha-Ray, and G. Kiriakidis, “Orientation-dependent low field magnetic anomalies and roomerature spintronic material - Mn doped ZnO films by aerosol spray pyrolysis,” Journal of Alloys and Compounds, vol. 579, pp. 484–494, 2013. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 1st editio ed., 2009. M. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Crystals, vol. 9, no. 10, p. 505, 2019. E. Flores-Garcı́a, P. González-Garcı́a, J. González-Hernández, and R. Ramı́rez-Bon, “Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering,” Journal of Electronic Materials, vol. 47, no. 9, pp. 5537–5547, 2018. B. Angadi, R. Kumar, D. H. Park, J. W. Choi, and W. K. Choi, “Photoluminescence studies on MBE grown Co-doped ZnO thin films fabricated through ion implantation and swift heavy ion irradiation,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 272, pp. 305–308, 2012. F. J. Liu, Z. F. Hu, J. Sun, Z. J. Li, H. Q. Huang, J. W. Zhao, X. Q. Zhang, and Y. S. Wang, “Ultraviolet photoresistors based on ZnO thin films grown by P-MBE,” Solid-State Electronics, vol. 68, pp. 90–92, 2012. X. Yang, J. Zhang, Z. Bi, Y. He, Q. Xu, W. Hongbo, W. Zhang, and X. Hou, “Glancing-incidence X-ray analysis of ZnO thin films and ZnO/ZnMgO heterostructures grown by laser-MBE,” Journal of Crystal Growth, vol. 284, no. 1-2, pp. 123–128, 2005. S. Mourad, J. El Ghoul, A. Khettou, B. Mari, N. Abdel All, G. Khouqeer, L. El Mir, and K. Khirouni, “Effect of oxygen annealing treatment on structural, optical and electrical properties of In doped ZnO thin films prepared by PLD technique,” Physica B: Condensed Matter, vol. 626, no. November 2021, p. 413577, 2022. E. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee, and H. C. Swart, “Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure,” Superlattices and Microstructures, vol. 139, no. October 2019, p. 106432, 2020. C. Triolo, E. Fazio, F. Neri, A. M. Mezzasalma, S. Trusso, and S. Patanè, “Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material,” Applied Surface Science, vol. 359, pp. 266–271, 2015. J. Mittra, G. J. Abraham, M. Kesaria, S. Bahl, A. Gupta, S. M. Shivaprasad, C. S. Viswanadham, U. D. Kulkarni, and G. K. Dey, “Role of substrate temperature in the pulsed laser deposition of zirconium oxide thin film,” Materials Science Forum, vol. 710, no. January, pp. 757–761, 2012. T. M. Onn, R. Küngas, P. Fornasiero, K. Huang, and R. J. Gorte, “Atomic layer deposition on porous materials: Problems with conventional approaches to catalyst and fuel cell electrode preparation,” Inorganics, vol. 6, no. 1, 2018. H. Zaka, B. Parditka, Z. Erdélyi, H. E. Atyia, P. Sharma, and S. S. Fouad, “Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD,” Optik, vol. 203, no. September 2019, p. 163933, 2020. S. I. Boyadjiev, V. Georgieva, R. Yordanov, Z. Raicheva, and I. M. Szilágyi, “Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors,” Applied Surface Science, vol. 387, pp. 1230–1235, 2016. M. E. Labzowskaya, I. K. Akopyan, B. V. Novikov, A. E. Serov, N. G. Filosofov, L. L. Basov, V. E. Drozd, and A. A. Lisachenko, Exciton photoluminescence of ZnO thin films grown by ALD-technique, vol. 76. Elsevier B.V., 2015. K. Seshan, Handbook of thin-film deposition processes and techniques. William Andrew Publiching, 2002. S. Bose, S. Mandal, A. K. Barua, and S. Mukhopadhyay, “Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells,” Journal of Materials Science and Technology, vol. 55, pp. 136–143, 2020. C. Abed, S. Fernández, and H. Elhouichet, “Studies of optical properties of ZnO:MgO thin films fabricated by sputtering from home-made stable oversize targets,” Optik, vol. 216, no. March, p. 164934, 2020. D. Mendil, F. Challali, T. Touam, A. Chelouche, A. H. Souici, S. Ouhenia, and D. Djouadi, “Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering,” Journal of Luminescence, vol. 215, no. May, p. 116631, 2019. S. Fareed, A. Jamil, N. Tiwari, and M. A. Rafiq, “Influence of Cr doping on Schottky barrier height and visible light detection of ZnO thin films deposited by magnetron sputtering,” Micro and Nano Engineering, vol. 2, pp. 48–52, 2019. Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. B. D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley, 1956. R. A. Young, The Rietveld Method. New York: Oxford University Press, 2002. C. C. Koch, I. A. OVID’KO, S. Seal, and S. Veprek, Structural Nanocrystalline Materials. Cambridge University Press, 2007. P. J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis. Taylor & Francis, third edit ed., 2001. N. Seña, Caracterizacion Electrica Y Estudio De Las Propiedades De Transporte Del Compuesto Cu2Znsnse4 Para Ser Usado Como Capa Absorbente En Celdas Solares. PhD thesis, 2013. J. M. Albella Martı́nn, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Cientı́ficas, 2003. OCLC: 1097843669. J. Tauc, Amorphous and Liquid Semiconductors. Springer Science & Business Media, Dec. 2012. Google-Books-ID: YKnfBwAAQBAJ. J. Tauc, R. Grigorovic, and A. Vanc, “Optical Properties and Electronic Structure of Amorphous Germanium,” Physica Status Solidi, vol. 15, pp. 627–637, 1966. S. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009. S. Sadewasser and T. Glatzel, Kelvin Probe Force Microscopy. Springer, 2012. R. Ghomri, M. N. Shaikh, M. I. Ahmed, M. Bououdina, and M. Ghers, “(Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue,” Applied Physics A: Materials Science and Processing, vol. 122, no. 10, pp. 1–9, 2016. G. A. Ali, M. Emam-Ismail, M. El-Hagary, E. R. Shaaban, S. H. Moustafa, M. I. Amer, and H. Shaban, “Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic applications,” Optical Materials, vol. 119, no. May, p. 111312, 2021. E. Gürbüz, R. Aydin, and B. Şahin, “A study of the influences of transition metal (Mn,Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 3, pp. 1823–1831, 2018. H. P. Quiroz, E. F. Galı́ndez, A. Dussan, A. Cardona-Rodriguez, and J. G. Ramirez, “Super-exchange interaction model in DMOs: Co doped TiO2 thin films,” Journal of Materials Science, vol. 56, no. 1, pp. 581–591, 2021. A. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO2 ) -Sı́lice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” p. 158, 2017. W. Yang, J. Liu, Z. Guan, Z. Liu, B. Chen, L. Zhao, Y. Li, X. Cao, X. He, C. Zhang, Q. Zeng, and Y. Fu, “Morphology, electrical and optical properties of magnetron sputtered porous ZnO thin films on Si(100) and Si(111) substrates,” Ceramics International, vol. 46, no. 5, pp. 6605–6611, 2020. E. Roduner, “Metal–Support Interaction for Metal Clusters in Oxides,” pp. 520–526, 2018. H. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” Journal of Alloys and Compounds, vol. 825, p. 154006, 2020. A. O. M. Alzahrani, M. S. Abdel-wahab, M. Alayash, and M. S. Aida, “Metals and ITO Contact Nature on ZnO and NiO Thin Films,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1159–1165, 2021. J. Zhao, J. Y. Dong, X. Zhao, and W. Chen, “Role of oxygen vacancy arrangement on the formation of a conductive filament in a Zno thin film,” Chinese Physics Letters, vol. 31, no. 5, 2014. P. Makula, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814–6817, 2018. I. Loyola Poul Raj, S. Valanarasu, R. S. Rimal Isaac, M. Ramudu, Y. Bitla, V. Ganesh, and I. S. Yahia, “The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of nio thin films for uv photosensor applications,” Optik, vol. 254, p. 168634, Mar 2022. A. Herklotz, S. F. Rus, and T. Z. Ward, “Continuously controlled optical band gap in oxide semiconductor thin films,” Nano Letters, vol. 16, no. 3, pp. 1782–1786, 2016. Cited By :33. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum., vol. 16, 1983. K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, “The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes,” CrystEngComm, vol. 18, pp. 779–786, Jan. 2016. F. Woote, Optical properties of solids. Academic Press Inc, 1972. E. Mammadov, N. Naghavi, Z. Jehl, G. Renou, T. Tiwald, N. Mamedov, D. Lincot, and J. F. Guillemoles, “Dielectric function of zinc oxide thin films in a broad spectral range,” Thin Solid Films, vol. 571, no. P3, pp. 593–596, 2014. E. Agocs, B. Fodor, B. Pollakowski, B. Beckhoff, A. Nutsch, M. Jank, and P. Petrik, “Approaches to calculate the dielectric function of ZnO around the band gap,” Thin Solid Films, vol. 571, no. P3, pp. 684–688, 2014. J. A. Calderón, H. P. Quiroz, and A. Dussan, “Optical and structural properties of GaSb-doped Mn based diluted magnetic semiconductor thin films grown via DC magnetron sputtering,” Advanced Materials Letters, vol. 8, pp. 650–655, May 2017. Y. E. Kesim, E. Battal, and A. K. Okyay, “Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers,” AIP Advances, vol. 4, no. 7, 2014. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Physical Review B, vol. 65, p. 075207, Jan. 2002. E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, “ALD grown zinc oxide with controllable electrical properties,” Semiconductor Science and Technology, vol. 27, p. 074011, July 2012. H. Ennaceri, A. Taleb, M. Boujnah, A. Khaldoun, J. Ebothé, A. Ennaoui, and A. Benyoussef, “Theoretical and experimental studies of Al-doped ZnO thin films: optical and structural properties,” Journal of Computational Electronics, vol. 20, no. 5, pp. 1948–1958, 2021. E. Abdeltwab and F. A. Taher, “Polar and nonpolar self-assembled Co-doped ZnO thin films: Structural and magnetic study,” Thin Solid Films, vol. 636, pp. 200–206, 2017. G. Sanon, R. Rup, and A. Mansingh, “Band-gap narrowing and band structure in degenerate tin oxide (sno2) films,” Physical Review B, vol. 44, no. 11, pp. 5672–5680, 1991. Cited By :203. K. . Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Physical Review B, vol. 24, no. 4, pp. 1971–1986, 1981. S. C. Jain, J. M. McGregor, and D. J. Roulston, “Band-gap narrowing in novel iii-v semiconductors,” Journal of Applied Physics, vol. 68, no. 7, pp. 3747–3749, 1990. J. A. Calderón Cómbita, “Estudio de las propiedades ópticas y eléctricas del compuesto ga1-xmnxsb usado para aplicaciones en espintrónica,” Sep 2016. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 82 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82126/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82126/2/1023892658.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82126/3/1023892658.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 9868591d74c3c5bf835b8ce67955279d ed3063e1f6f62869d4c01b63c21e9838 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089275072839680 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dussan Cuenca, Andersonb7a8fc3307ce61d8e85615627d0f33fbTerán Ramírez, Cristian Leonardo69fdbf7d433f541e6fc1f825ea4a4bd0Materiales Nanoestructurados y Sus Aplicaciones2022-08-25T22:23:09Z2022-08-25T22:23:09Z2022-08https://repositorio.unal.edu.co/handle/unal/82126Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/fotografías a color, ilustraciones, tablasEn este trabajo se prepararon muestras de pelı́culas delgadas de óxido de zinc dopadas con cobalto (ZnO:Co) por medio del método de pulverización catódica (DC magnetron co-sputtering), variando los parámetros de sı́ntesis como la temperatura del sustrato, tiempo de depósito y potencia de los blancos. Con el objetivo de identificar los efectos sobre las propiedades estructurales, la morfologı́a y las caracterı́sticas eléctricas, se realizaron medidas de difracción de rayos X (XRD), de microscopı́a electrónica de barrido (SEM), de microscopı́a de fuerza atómica (AFM) y medidas de tensión - corriente (curvas IV). Las muestras sintetizadas se sometieron a un proceso de recocido posterior a una temperatura de 473K durante un tiempo de 2 horas. Se encontró la presencia de la fase Wurtzita a partir de las medidas de XRD, observando una correlación entre el tamaño de los cristalitos, la potencia de los blancos y la temperatura de depósito. Adicionalmente, se identificó que la forma y el tamaño de los granos dependen de la potencia de los blancos, notando granos con forma de escamas en las muestras de ZnO y conglomeraciones de granos en las muestras con cobalto. Por otra parte, se observó la curva tipo alas de mariposa en las medidas eléctricas tomadas, evidenciando el comportamiento caracterı́stico de conmutación resistiva de los memristores. Finalmente, a partir de las mediciones magnéticas complementarias, se observa que las muestras tienen un comportamiento paramagnético a pesar de la inherente caracterı́stica magnéticas de los granos de cobalto.In this work, samples of cobalt-doped zinc oxide thin films (ZnO:Co) were prepared by means of DC magnetron co-sputtering method, varying the synthesis parameters such as substrate temperature, deposition time and target power. In order to identify the effects on the structural, morphology and electrical characteristics, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and current - voltage (IV) measurements were performed. The synthesized samples were subjected to a subsequent annealing process at a temperature of 473K for a 2 hours. The presence of the Wurtzite phase was found from the XRD measurements, observing a correlation between the size of the crystallites, the power of the targets and the deposition temperature. Additionally, it was identified that the shape and size of the grains depend on the target power, noting flake-shaped grains in the ZnO samples and grain conglomerations in the cobalt samples. On the other hand, the butterfly-wing type curve was observed in the electrical measurements taken, evidencing the characteristic behavior of resistive switching of memristors. Finally, from the complementary magnetic measurements, it was observed that the samples have a paramagnetic behavior despite the inherent magnetic characteristics of the cobalt grains.MaestríaMagíster en Ciencias - Físicaxvii, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física moderna530 - Física::537 - Electricidad y electrónica530 - Física::538 - MagnetismoPelículas delgadasThin filmsNanoestructurasNanostructuresMemorias no volátilesConmutación resistivaMemristorDC Magnetron SputteringNon-volatile memoriesResistive SwitchingCaracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistorCharacterization and study of devices based on ZnO:Co nanostructures for application in non-volatile memories using a transistor-type configurationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1–33, 2014.T. M. Coughlin, Digital Storage in Consumer Electronics. Springer, second edi ed., 2018.A. C. Samli, International ConsumerBehavior in the 21st CenturyImpact on Marketing Strategy Development. Springer, 2013.S. Hong, O. Auciello, and D. Wouters, Emerging Non-Volatile Memories, vol. 9781489975. Springer, 2014.P. Lacaze, Non-volatile memories. London New York: ISTE Ltd John Wiley and Sons, Inc, 2014.D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: Resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, 2012.A. Chen, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25–38, 2016.R. Tetzlaff, Memristors and memristive systems, vol. 9781461490. Springer, 2014.D. Ielmini, “Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling,” Semiconductor Science and Technology, vol. 31, no. 6, 2016.L. Chua, “Memristor - The missing circuit element,” IEEE Transactions on Circuit Theory, vol. C, no. 5, pp. 507–519, 1971.L. Chua, “Memristive devices and systems,” Proceedings of the IEEE, vol. 64, no. 2, 1976.T. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19, no. 5, pp. 254–264, 2016.F. Pan, C. Chen, Z.-s. Wang, Y.-c. Yang, J. Yang, and F. Zeng, “Nonvolatile resistive switching memories-characteristics, mechanisms and challenges,” Progress in Natural Science: Materials International, vol. 20, pp. 1–15, 2010.B. Mohammad, M. A. Jaoude, V. Kumar, D. M. Al Homouz, H. A. Nahla, M. AlQutayri, and N. Christoforou, “State of the art of metal oxide memristor devices,” Nanotechnology Reviews, vol. 5, no. 3, pp. 311–329, 2016.H. P. Quiroz Gaitán, Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos. PhD thesis, Universidad Nacional de Colombia, 2014.H. P. Quiroz Gaitán, Estudio de las propiedades fı́sicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica. PhD thesis, Universidad Nacional de Colombia, 2019.S. B. Torres Avila, Preparación y Evaluación de Nanoestructuras de TiO 2 Para Aplicaciones Tecnológicas en Memorias No Volátiles (NVM). PhD thesis, Universidad Nacional de Colombia, Bogotá, 2019.F. Gul and H. Efeoglu, “Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor,” Superlattices and Microstructures, vol. 101, pp. 172–179, 2017.W. Shen, P. Huang, M. Fan, R. Han, Z. Zhou, B. Gao, H. Wu, H. Qian, L. Liu, X. Liu, X. Zhang, and J. Kang, “Stateful Logic Operations in One-Transistor-One-Resistor Resistive Random Access Memory Array,” IEEE Electron Device Letters, vol. 40, no. 9, pp. 1–1, 2019.F. Gul and H. Efeoglu, “ZnO and ZnO1-x based thin film memristors: The effects of oxygen deficiency and thickness in resistive switching behavior,” Ceramics International, vol. 43, no. 14, pp. 10770–10775, 2017.S. Paul, P. G. Harris, C. Pal, A. K. Sharma, and A. K. Ray, “Low cost zinc oxide for memristors with high On-Off ratios,” Materials Letters, vol. 130, pp. 40–42, 2014.B. J. La Meres, Introduction to logic circuits and logic design with VHDL. Springer, 2016.W.-c. Huang, P.-y. Wu, Y.-f. Tan, Y.-l. Xu, and Y.-c. Zhang, “Overcoming Limited Resistance in 1T1R RRAM Caused by Pinch-Off Voltage During Reset Process,” IEEE Transactions on Electron Devices, vol. PP, pp. 1–4, 2019.E. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and J. P. Strachan, “Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications,” Nanotechnology, vol. 27, no. 36, 2016.I. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit design approaches: A review,” IEEE Circuits and Systems Magazine, vol. 16, no. 3, pp. 15–30, 2016.S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-based material implication (IMPLY) logic: Design principles and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis, “Boolean logic operations and computing circuits based on memristors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972–976, 2014.Y. Zhang, Y. Shen, X. Wang, and L. Cao, “A novel design for memristor-based logic switch and crossbar circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1402–1411, 2015.P.-e. Gaillardon, L. Amar, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. D. Micheli, “The Programmable Logic-in-Memory ( PLiM ) Computer,” pp. 427–432, 2016.Z. R. Wang, Y. T. Su, Y. Li, Y. X. Zhou, T. J. Chu, K. C. Chang, T. C. Chang, T. M. Tsai, S. M. Sze, and X. S. Miao, “Functionally complete Boolean logic in 1T1R resistive random access memory,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 179–182, 2017.K. M. Kim and R. S. Williams, “A Family of Stateful Memristor Gates for Complete Cascading Logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. PP, pp. 1–8, 2019.E. G. Friedman, Grids in Very Large Scale Integration Systems. PhD thesis, University of Rochester, 2019.Y. Yu, F. Yang, S. Mao, S. Zhu, Y. Jia, L. Yuan, M. Salmen, and B. Sun, “Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device,” Chemical Physics Letters, vol. 706, pp. 477–482, 2018.W. K. Hsieh, K. T. Lam, and S. J. Chang, “Characteristics of tantalum-doped silicon oxide-based resistive random access memory,” Materials Science in Semiconductor Processing, vol. 27, no. 1, pp. 293–296, 2014.Y. Abbas, A. S. Sokolov, Y. R. Jeon, S. Kim, B. Ku, and C. Choi, “Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing,” Journal of Alloys and Compounds, vol. 759, pp. 44–51, 2018.H. L. Chee, T. N. Kumar, and H. A. Almurib, “Electrical model of multi-level bipolar Ta2O5/TaOx Bi-layered ReRAM,” Microelectronics Journal, vol. 93, no. March, p. 104616, 2019.H. Abunahla, B. Mohammad, M. A. Jaoude, M. Al-qutayri, A. Mathematics, A. Dhabi, and U. A. Emirates, “Novel Hafnium Oxide Memristor Device switching behaviour and size effect,” pp. 7–10, 2017.H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, and S. Sriram, “Nanoscale resistive switching in amorphous perovskite oxide ( a- SrTiO3) memristors,” Advanced Functional Materials, vol. 24, no. 43, pp. 6741–6750, 2014.I. Banerjee, P. Harris, A. Salimian, and A. K. Ray, “Graphene oxide thin films for resistive memory switches,” IET Circuits, Devices and Systems, vol. 9, no. 6, pp. 428–433, 2015.M. Lorenz, M. S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F. K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. Dasgupta, D. J. Rogers, F. H. Teherani, E. V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N. A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, and N. Pryds, “The 2016 oxide electronic materials and oxide interfaces roadmap,” Journal of Physics D: Applied Physics, vol. 49, no. 43, 2016.V. L. Patil, A. A. Patil, S. V. Patil, N. A. Khairnar, N. L. Tarwal, S. A. Vanalakar, R. N. Bulakhe, I. In, P. S. Patil, and T. D. Dongale, “Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film,” Materials Science in Semiconductor Processing, vol. 106, no. April 2019, p. 104769, 2020.K. J. Gan, P. T. Liu, S. J. Lin, D. B. Ruan, T. C. Chien, Y. C. Chiu, and S. M. Sze, “Bipolar resistive switching characteristics of tungsten-doped indium–zinc oxide conductive-bridging random access memory,” Vacuum, vol. 166, no. April, pp. 226–230, 2019.G. Hassan, J. Bae, M. U. Khan, and S. Ali, “Resistive switching device based on water and zinc oxide heterojunction for soft memory applications,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 246, no. April, pp. 1–6, 2019.S. Ren, W. Dong, H. Tang, L. Tang, Z. Li, Q. Sun, H. Yang, Z. Yang, and J. Zhao, “High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film,” Applied Surface Science, vol. 488, no. March, pp. 92–97, 2019.W. Wang, R. Dong, X. Yan, B. Yang, and X. An, “Memristive behavior of ZnO/Au film investigated by a TiN CAFM Tip and its model based on the experiments,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1135–1139, 2012.T. Movlarooy, “Transition metals doped and encapsulated ZnO nanotubes: Good materials for the spintronic applications,” Journal of Magnetism and Magnetic Materials, vol. 441, pp. 139–148, 2017.S. S. Ghosh, C. Choubey, and A. Sil, “Photocatalytic response of Fe, Co, Ni doped ZnO based diluted magnetic semiconductors for spintronics applications,” Superlattices and Microstructures, vol. 125, no. July 2018, pp. 271–280, 2019.R. Siddheswaran, R. Medlı́n, C. E. Jeyanthi, S. G. Raj, and R. V. Mangalaraja, “Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications,” Applied Physics A, vol. 125, no. 9, pp. 1–9, 2019.L. Chen, S. Li, Y. Cui, Z. Xiong, H. Luo, and Y. Gao, “Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations,” Applied Surface Science, vol. 479, no. February, pp. 440–448, 2019.S. U. Awan, Z. Mehmood, S. Hussain, S. A. Shah, N. Ahmad, M. Rafique, M. Aftab, and T. A. Abbas, “Correlation between structural, electrical, dielectric and magnetic properties of semiconducting Co doped and (Co, Li) co-doped ZnO nanoparticles for spintronics applications,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 103, no. April, pp. 110–121, 2018.Y. Babacan, A. Yesil, and F. Gul, “The Fabrication and MOSFET-Only Circuit Implementation of Semiconductor Memristor,” IEEE Transactions on Electron Devices, vol. 65, no. 4, pp. 1625–1632, 2018.D. Sharma and R. Jha, “Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals,” Ceramics International, vol. 43, no. 11, pp. 8488–8496, 2017.B. U. Haq, R. Ahmed, A. Shaari, A. Afaq, B. A. Tahir, and R. Khenata, “First-principles investigations of Mn doped zinc-blende ZnO based magnetic semiconductors: Materials for spintronic applications,” Materials Science in Semiconductor Processing, vol. 29, pp. 256–261, 2015.S. S. Nkosi, I. Kortidis, D. E. Motaung, G. F. Malgas, J. Keartland, E. Sideras-Haddad, A. Forbes, B. W. Mwakikunga, S. Sinha-Ray, and G. Kiriakidis, “Orientation-dependent low field magnetic anomalies and roomerature spintronic material - Mn doped ZnO films by aerosol spray pyrolysis,” Journal of Alloys and Compounds, vol. 579, pp. 484–494, 2013.H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 1st editio ed., 2009.M. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Crystals, vol. 9, no. 10, p. 505, 2019.E. Flores-Garcı́a, P. González-Garcı́a, J. González-Hernández, and R. Ramı́rez-Bon, “Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering,” Journal of Electronic Materials, vol. 47, no. 9, pp. 5537–5547, 2018.B. Angadi, R. Kumar, D. H. Park, J. W. Choi, and W. K. Choi, “Photoluminescence studies on MBE grown Co-doped ZnO thin films fabricated through ion implantation and swift heavy ion irradiation,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 272, pp. 305–308, 2012.F. J. Liu, Z. F. Hu, J. Sun, Z. J. Li, H. Q. Huang, J. W. Zhao, X. Q. Zhang, and Y. S. Wang, “Ultraviolet photoresistors based on ZnO thin films grown by P-MBE,” Solid-State Electronics, vol. 68, pp. 90–92, 2012.X. Yang, J. Zhang, Z. Bi, Y. He, Q. Xu, W. Hongbo, W. Zhang, and X. Hou, “Glancing-incidence X-ray analysis of ZnO thin films and ZnO/ZnMgO heterostructures grown by laser-MBE,” Journal of Crystal Growth, vol. 284, no. 1-2, pp. 123–128, 2005.S. Mourad, J. El Ghoul, A. Khettou, B. Mari, N. Abdel All, G. Khouqeer, L. El Mir, and K. Khirouni, “Effect of oxygen annealing treatment on structural, optical and electrical properties of In doped ZnO thin films prepared by PLD technique,” Physica B: Condensed Matter, vol. 626, no. November 2021, p. 413577, 2022.E. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee, and H. C. Swart, “Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure,” Superlattices and Microstructures, vol. 139, no. October 2019, p. 106432, 2020.C. Triolo, E. Fazio, F. Neri, A. M. Mezzasalma, S. Trusso, and S. Patanè, “Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material,” Applied Surface Science, vol. 359, pp. 266–271, 2015.J. Mittra, G. J. Abraham, M. Kesaria, S. Bahl, A. Gupta, S. M. Shivaprasad, C. S. Viswanadham, U. D. Kulkarni, and G. K. Dey, “Role of substrate temperature in the pulsed laser deposition of zirconium oxide thin film,” Materials Science Forum, vol. 710, no. January, pp. 757–761, 2012.T. M. Onn, R. Küngas, P. Fornasiero, K. Huang, and R. J. Gorte, “Atomic layer deposition on porous materials: Problems with conventional approaches to catalyst and fuel cell electrode preparation,” Inorganics, vol. 6, no. 1, 2018.H. Zaka, B. Parditka, Z. Erdélyi, H. E. Atyia, P. Sharma, and S. S. Fouad, “Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD,” Optik, vol. 203, no. September 2019, p. 163933, 2020.S. I. Boyadjiev, V. Georgieva, R. Yordanov, Z. Raicheva, and I. M. Szilágyi, “Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors,” Applied Surface Science, vol. 387, pp. 1230–1235, 2016.M. E. Labzowskaya, I. K. Akopyan, B. V. Novikov, A. E. Serov, N. G. Filosofov, L. L. Basov, V. E. Drozd, and A. A. Lisachenko, Exciton photoluminescence of ZnO thin films grown by ALD-technique, vol. 76. Elsevier B.V., 2015.K. Seshan, Handbook of thin-film deposition processes and techniques. William Andrew Publiching, 2002.S. Bose, S. Mandal, A. K. Barua, and S. Mukhopadhyay, “Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells,” Journal of Materials Science and Technology, vol. 55, pp. 136–143, 2020.C. Abed, S. Fernández, and H. Elhouichet, “Studies of optical properties of ZnO:MgO thin films fabricated by sputtering from home-made stable oversize targets,” Optik, vol. 216, no. March, p. 164934, 2020.D. Mendil, F. Challali, T. Touam, A. Chelouche, A. H. Souici, S. Ouhenia, and D. Djouadi, “Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering,” Journal of Luminescence, vol. 215, no. May, p. 116631, 2019.S. Fareed, A. Jamil, N. Tiwari, and M. A. Rafiq, “Influence of Cr doping on Schottky barrier height and visible light detection of ZnO thin films deposited by magnetron sputtering,” Micro and Nano Engineering, vol. 2, pp. 48–52, 2019.Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.B. D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley, 1956.R. A. Young, The Rietveld Method. New York: Oxford University Press, 2002.C. C. Koch, I. A. OVID’KO, S. Seal, and S. Veprek, Structural Nanocrystalline Materials. Cambridge University Press, 2007.P. J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis. Taylor & Francis, third edit ed., 2001.N. Seña, Caracterizacion Electrica Y Estudio De Las Propiedades De Transporte Del Compuesto Cu2Znsnse4 Para Ser Usado Como Capa Absorbente En Celdas Solares. PhD thesis, 2013.J. M. Albella Martı́nn, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Cientı́ficas, 2003. OCLC: 1097843669.J. Tauc, Amorphous and Liquid Semiconductors. Springer Science & Business Media, Dec. 2012. Google-Books-ID: YKnfBwAAQBAJ.J. Tauc, R. Grigorovic, and A. Vanc, “Optical Properties and Electronic Structure of Amorphous Germanium,” Physica Status Solidi, vol. 15, pp. 627–637, 1966.S. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009.S. Sadewasser and T. Glatzel, Kelvin Probe Force Microscopy. Springer, 2012.R. Ghomri, M. N. Shaikh, M. I. Ahmed, M. Bououdina, and M. Ghers, “(Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue,” Applied Physics A: Materials Science and Processing, vol. 122, no. 10, pp. 1–9, 2016.G. A. Ali, M. Emam-Ismail, M. El-Hagary, E. R. Shaaban, S. H. Moustafa, M. I. Amer, and H. Shaban, “Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic applications,” Optical Materials, vol. 119, no. May, p. 111312, 2021.E. Gürbüz, R. Aydin, and B. Şahin, “A study of the influences of transition metal (Mn,Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 3, pp. 1823–1831, 2018.H. P. Quiroz, E. F. Galı́ndez, A. Dussan, A. Cardona-Rodriguez, and J. G. Ramirez, “Super-exchange interaction model in DMOs: Co doped TiO2 thin films,” Journal of Materials Science, vol. 56, no. 1, pp. 581–591, 2021.A. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO2 ) -Sı́lice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” p. 158, 2017.W. Yang, J. Liu, Z. Guan, Z. Liu, B. Chen, L. Zhao, Y. Li, X. Cao, X. He, C. Zhang, Q. Zeng, and Y. Fu, “Morphology, electrical and optical properties of magnetron sputtered porous ZnO thin films on Si(100) and Si(111) substrates,” Ceramics International, vol. 46, no. 5, pp. 6605–6611, 2020.E. Roduner, “Metal–Support Interaction for Metal Clusters in Oxides,” pp. 520–526, 2018.H. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” Journal of Alloys and Compounds, vol. 825, p. 154006, 2020.A. O. M. Alzahrani, M. S. Abdel-wahab, M. Alayash, and M. S. Aida, “Metals and ITO Contact Nature on ZnO and NiO Thin Films,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1159–1165, 2021.J. Zhao, J. Y. Dong, X. Zhao, and W. Chen, “Role of oxygen vacancy arrangement on the formation of a conductive filament in a Zno thin film,” Chinese Physics Letters, vol. 31, no. 5, 2014.P. Makula, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814–6817, 2018.I. Loyola Poul Raj, S. Valanarasu, R. S. Rimal Isaac, M. Ramudu, Y. Bitla, V. Ganesh, and I. S. Yahia, “The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of nio thin films for uv photosensor applications,” Optik, vol. 254, p. 168634, Mar 2022.A. Herklotz, S. F. Rus, and T. Z. Ward, “Continuously controlled optical band gap in oxide semiconductor thin films,” Nano Letters, vol. 16, no. 3, pp. 1782–1786, 2016. Cited By :33.R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum., vol. 16, 1983.K.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, “The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes,” CrystEngComm, vol. 18, pp. 779–786, Jan. 2016.F. Woote, Optical properties of solids. Academic Press Inc, 1972.E. Mammadov, N. Naghavi, Z. Jehl, G. Renou, T. Tiwald, N. Mamedov, D. Lincot, and J. F. Guillemoles, “Dielectric function of zinc oxide thin films in a broad spectral range,” Thin Solid Films, vol. 571, no. P3, pp. 593–596, 2014.E. Agocs, B. Fodor, B. Pollakowski, B. Beckhoff, A. Nutsch, M. Jank, and P. Petrik, “Approaches to calculate the dielectric function of ZnO around the band gap,” Thin Solid Films, vol. 571, no. P3, pp. 684–688, 2014.J. A. Calderón, H. P. Quiroz, and A. Dussan, “Optical and structural properties of GaSb-doped Mn based diluted magnetic semiconductor thin films grown via DC magnetron sputtering,” Advanced Materials Letters, vol. 8, pp. 650–655, May 2017.Y. E. Kesim, E. Battal, and A. K. Okyay, “Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers,” AIP Advances, vol. 4, no. 7, 2014.W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Physical Review B, vol. 65, p. 075207, Jan. 2002.E. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, “ALD grown zinc oxide with controllable electrical properties,” Semiconductor Science and Technology, vol. 27, p. 074011, July 2012.H. Ennaceri, A. Taleb, M. Boujnah, A. Khaldoun, J. Ebothé, A. Ennaoui, and A. Benyoussef, “Theoretical and experimental studies of Al-doped ZnO thin films: optical and structural properties,” Journal of Computational Electronics, vol. 20, no. 5, pp. 1948–1958, 2021.E. Abdeltwab and F. A. Taher, “Polar and nonpolar self-assembled Co-doped ZnO thin films: Structural and magnetic study,” Thin Solid Films, vol. 636, pp. 200–206, 2017.G. Sanon, R. Rup, and A. Mansingh, “Band-gap narrowing and band structure in degenerate tin oxide (sno2) films,” Physical Review B, vol. 44, no. 11, pp. 5672–5680, 1991. Cited By :203.K. . Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Physical Review B, vol. 24, no. 4, pp. 1971–1986, 1981.S. C. Jain, J. M. McGregor, and D. J. Roulston, “Band-gap narrowing in novel iii-v semiconductors,” Journal of Applied Physics, vol. 68, no. 7, pp. 3747–3749, 1990.J. A. Calderón Cómbita, “Estudio de las propiedades ópticas y eléctricas del compuesto ga1-xmnxsb usado para aplicaciones en espintrónica,” Sep 2016.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82126/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1023892658.2022.pdf1023892658.2022.pdfTesis de Maestría en Ciencias - Fïsicaapplication/pdf13947090https://repositorio.unal.edu.co/bitstream/unal/82126/2/1023892658.2022.pdf9868591d74c3c5bf835b8ce67955279dMD52THUMBNAIL1023892658.2022.pdf.jpg1023892658.2022.pdf.jpgGenerated Thumbnailimage/jpeg4418https://repositorio.unal.edu.co/bitstream/unal/82126/3/1023892658.2022.pdf.jpged3063e1f6f62869d4c01b63c21e9838MD53unal/82126oai:repositorio.unal.edu.co:unal/821262024-08-09 23:21:57.314Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |