Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral

ilustraciones, diagramas

Autores:
Ishikawa, Flávia Midori
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86610
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86610
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Interleucina-15/uso terapéutico
Neoplasias/ tratamiento farmacológico
Microambiente Tumoral
Interleukin-15/therapeutic use
Neoplasms/drug therapy
Tumor Microenvironment
Inmunoterapia
Interleuquina-15
Citotoxicidad
Modelos in vivo humanizados
Cáncer
Immunotherapy
Interleukin-15
Cytotoxicity
Humanized in vivo models
Cancer
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_8772d5b9430722b6686f442ca061bb6b
oai_identifier_str oai:repositorio.unal.edu.co:unal/86610
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
dc.title.translated.eng.fl_str_mv Evaluation of the capacity of soluble or membrane-bound interleukin-15 to induce cytotoxic immune responses in a murine tumor model
title Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
spellingShingle Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
610 - Medicina y salud::615 - Farmacología y terapéutica
Interleucina-15/uso terapéutico
Neoplasias/ tratamiento farmacológico
Microambiente Tumoral
Interleukin-15/therapeutic use
Neoplasms/drug therapy
Tumor Microenvironment
Inmunoterapia
Interleuquina-15
Citotoxicidad
Modelos in vivo humanizados
Cáncer
Immunotherapy
Interleukin-15
Cytotoxicity
Humanized in vivo models
Cancer
title_short Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
title_full Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
title_fullStr Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
title_full_unstemmed Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
title_sort Evaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoral
dc.creator.fl_str_mv Ishikawa, Flávia Midori
dc.contributor.advisor.spa.fl_str_mv Muñoz Suárez, Alejandra Margarita
Parra López, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Ishikawa, Flávia Midori
dc.contributor.projectleader.spa.fl_str_mv Salguero López, Gustavo Andrés
dc.contributor.researchgroup.spa.fl_str_mv Unidad de Terapias Avanzadas Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Interleucina-15/uso terapéutico
Neoplasias/ tratamiento farmacológico
Microambiente Tumoral
Interleukin-15/therapeutic use
Neoplasms/drug therapy
Tumor Microenvironment
Inmunoterapia
Interleuquina-15
Citotoxicidad
Modelos in vivo humanizados
Cáncer
Immunotherapy
Interleukin-15
Cytotoxicity
Humanized in vivo models
Cancer
dc.subject.decs.spa.fl_str_mv Interleucina-15/uso terapéutico
Neoplasias/ tratamiento farmacológico
Microambiente Tumoral
dc.subject.decs.eng.fl_str_mv Interleukin-15/therapeutic use
Neoplasms/drug therapy
Tumor Microenvironment
dc.subject.proposal.spa.fl_str_mv Inmunoterapia
Interleuquina-15
Citotoxicidad
Modelos in vivo humanizados
Cáncer
dc.subject.proposal.eng.fl_str_mv Immunotherapy
Interleukin-15
Cytotoxicity
Humanized in vivo models
Cancer
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-24T18:42:27Z
dc.date.available.none.fl_str_mv 2024-07-24T18:42:27Z
dc.date.issued.none.fl_str_mv 2024-06-26
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86610
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86610
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Akdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Meyer, N., O’Mahony, L., Palomares, O., Rhyner, C., Quaked, N., Schaffartzik, A., Van De Veen, W., Zeller, S., Zimmermann, M., & Akdis, C. A. (2011). Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 127(3), 701-721.e70. https://doi.org/10.1016/j.jaci.2010.11.050
Allen, T. M., Brehm, M. A., Bridges, S., Ferguson, S., Kumar, P., Mirochnitchenko, O., Palucka, K., Pelanda, R., Sanders-Beer, B., Shultz, L. D., Su, L., & PrabhuDas, M. (2019). Humanized immune system mouse models: progress, challenges and opportunities. Nature Immunology, 20(7), 770–774. https://doi.org/10.1038/s41590-019-0416-z
Awad, R. M., Lecocq, Q., Zeven, K., Ertveldt, T., De Beck, L., Ceuppens, H., Broos, K., De Vlaeminck, Y., Goyvaerts, C., Verdonck, M., Raes, G., Van Parys, A., Cauwels, A., Keyaerts, M., Devoogdt, N., & Breckpot, K. (2021). Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods & Clinical Development, 22, 172–182. https://doi.org/10.1016/j.omtm.2021.05.017
Bergamaschi, C., Bear, J., Rosati, M., Beach, R. K., Alicea, C., Sowder, R., Chertova, E., Rosenberg, S. A., Felber, B. K., & Pavlakis, G. N. (2012). Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood, 120(1), e1–e8. https://doi.org/10.1182/blood-2011-10-384362
Bessard, A., Solé, V., Bouchaud, G., Quéméner, A., & Jacques, Y. (2009). High antitumor activity of RLI, an interleukin-15 (IL-15)–IL-15 receptor α fusion protein, in metastatic melanoma and colorectal cancer. Molecular Cancer Therapeutics, 8(9), 2736–2745. https://doi.org/10.1158/1535-7163.MCT-09-0275
Borish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460–S475. https://doi.org/10.1067/mai.2003.108
Boudko, S. P., Sasaki, T., Engel, J., Lerch, T. F., Nix, J., Chapman, M. S., & Bächinger, H. P. (2009). Crystal Structure of Human Collagen XVIII Trimerization Domain: A Novel Collagen Trimerization Fold. Journal of Molecular Biology, 392(3), 787–802. https://doi.org/10.1016/j.jmb.2009.07.057
Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. The Journal of Infectious Diseases, 208 Suppl(Suppl 2), 125–130. https://doi.org/10.1093/infdis/jit319
Breschi, A., Gingeras, T. R., & Guigó, R. (2017). Comparative transcriptomics in human and mouse. Nature Reviews Genetics, 18(7), 425–440. https://doi.org/10.1038/nrg.2017.19
Cai, M., Huang, X., Huang, X., Ju, D., Zhu, Y. Z., & Ye, L. (2023). Research progress of interleukin-15 in cancer immunotherapy. Frontiers in Pharmacology, 14(May). https://doi.org/10.3389/fphar.2023.1184703
Carrega, P., Bonaccorsi, I., Di Carlo, E., Morandi, B., Paul, P., Rizzello, V., Cipollone, G., Navarra, G., Mingari, M. C., Moretta, L., & Ferlazzo, G. (2014). CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph. The Journal of Immunology, 192(8), 3805–3815. https://doi.org/10.4049/jimmunol.1301889
Cha, J. H., Chan, L. C., Song, M. S., & Hung, M. C. (2020). New approaches on cancer immunotherapy. Cold Spring Harbor Perspectives in Medicine, 10(8), 1–16. https://doi.org/10.1101/cshperspect.a036863
Chang, Y. F., McMahon, J. E., Hennon, D. L., LaPorte, R. E., Coben, J. H., Y.-F., C., J.E., M., D.L., H., R.E., L., & J.H., C. (1997). Dog bite incidence in the city of pittsburgh: A capture-recapture approach. American Journal of Public Health, 87(10), 1703–1705. https://doi.org/10.2105/AJPH.87.10.1703
Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012
Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
Choi, S. S., Chhabra, V. S., Nguyen, Q. H., Ank, B. J., Stiehm, E. R., & Roberts, R. L. (2004). Interleukin-15 Enhances Cytotoxicity, Receptor Expression, and Expansion of Neonatal Natural Killer Cells in Long-Term Culture. Clinical and Vaccine Immunology, 11(5), 879–888. https://doi.org/10.1128/CDLI.11.5.879-888.2004
Conlon, K. C., Lugli, E., Welles, H. C., Rosenberg, S. A., Fojo, A. T., Morris, J. C., Fleisher, T. A., Dubois, S. P., Perera, L. P., Stewart, D. M., Goldman, C. K., Bryant, B. R., Decker, J. M., Chen, J., Worthy, T. A., Figg, W. D., Peer, C. J., Sneller, M. C., Lane, H. C., … Waldmann, T. A. (2015). Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. Journal of Clinical Oncology, 33(1), 74–82. https://doi.org/10.1200/JCO.2014.57.3329
Conlon, K. C., Potter, E. L., Pittaluga, S., Lee, C. R., Miljkovic, M. D., Fleisher, T. A., Dubois, S., Bryant, B. R., Petrus, M., Perera, L. P., Hsu, J., Figg, W. D., Peer, C. J., Shih, J. H., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2019). IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clinical Cancer Research, 25(16), 4945–4954. https://doi.org/10.1158/1078-0432.CCR-18-3468
Cornish, G. H., Sinclair, L. V., & Cantrell, D. A. (2006). Differential regulation of T-cell growth by IL-2 and IL-15. Blood, 108(2), 600–608. https://doi.org/10.1182/blood-2005-12-4827
Croce, M., Orengo, A. M., Azzarone, B., & Ferrini, S. (2012). Immunotherapeutic applications of IL-15. Immunotherapy, 4(9), 957–969. https://doi.org/10.2217/imt.12.92
Cuesta-Mateos, C., Terrón, F., & Herling, M. (2021). CCR7 in Blood Cancers – Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Frontiers in Oncology, 11(October), 1–25. https://doi.org/10.3389/fonc.2021.736758
De Guillebon, E., Dardenne, A., Saldmann, A., Séguier, S., Tran, T., Paolini, L., Lebbe, C., & Tartour, E. (2020). Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 147(6), 1509–1518. https://doi.org/10.1002/ijc.32889
Di Rosa, F., & Gebhardt, T. (2016). Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Frontiers in Immunology, 7(FEB), 1–13. https://doi.org/10.3389/fimmu.2016.00051
Dubois, S., Mariner, J., Waldmann, T. A., & Tagaya, Y. (2002). IL-15Rα Recycles and Presents IL-15 In trans to Neighboring Cells. Immunity, 17(5), 537–547. https://doi.org/10.1016/S1074-7613(02)00429-6
Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22(4), 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803
Elhage, A., Sligar, C., Cuthbertson, P., Watson, D., & Sluyter, R. (2022). Insights into mechanisms of graft-versus-host disease through humanised mouse models. Bioscience Reports, 42(9), 1–23. https://doi.org/10.1042/BSR20211986
Fehniger, T. A. (2019). Mystery Solved: IL-15. The Journal of Immunology, 202(11), 3125–3126. https://doi.org/10.4049/jimmunol.1900419
Ferlazzo, G., Thomas, D., Lin, S., Goodman, K., Morandi, B., Muller, W. A., Moretta, A., & Münz, C. (2004). The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic. The Journal of Immunology, 172(3), 1455–1462. https://doi.org/10.4049/jimmunol.172.3.1455
Fiore, P. F., Di Matteo, S., Tumino, N., Mariotti, F. R., Pietra, G., Ottonello, S., Negrini, S., Bottazzi, B., Moretta, L., Mortier, E., & Azzarone, B. (2020). Interleukin-15 and cancer: some solved and many unsolved questions. Journal for ImmunoTherapy of Cancer, 8(2), e001428. https://doi.org/10.1136/jitc-2020-001428
Gajewski, T. F., Corrales, L., Williams, J., Horton, B., Sivan, A., & Spranger, S. (2017). Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In P. Kalinski (Ed.), Physiology & behavior (Vol. 1036, Issue 2, pp. 19–31). Springer International Publishing. https://doi.org/10.1007/978-3-319-67577-0_2
Ghorani, E., Swanton, C., & Quezada, S. A. (2023). Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity, 56(10), 2270–2295. https://doi.org/10.1016/j.immuni.2023.09.004
Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., Johnson, L., Alderson, M. R., Watson, J. D., Anderson, D. M., & Giri, J. G. (1994). Cloning of a T Cell Growth Factor that Interacts with the β Chain of the Interleukin-2 Receptor. Science, 264(5161), 965–968. https://doi.org/10.1126/science.8178155
Guo, Y., Luan, L., Patil, N. K., & Sherwood, E. R. (2017). Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine & Growth Factor Reviews, 38(1), 10–21. https://doi.org/10.1016/j.cytogfr.2017.08.002
Hayakawa, Y., Huntington, N. D., Nutt, S. L., & Smyth, M. J. (2006). Functional subsets of mouse natural killer cells. Immunological Reviews, 214(1), 47–55. https://doi.org/10.1111/j.1600-065X.2006.00454.x
Herndler-Brandstetter, D., Shan, L., Yao, Y., Stecher, C., Plajer, V., Lietzenmayer, M., Strowig, T., de Zoete, M. R., Palm, N. W., Chen, J., Blish, C. A., Frleta, D., Gurer, C., Macdonald, L. E., Murphy, A. J., Yancopoulos, G. D., Montgomery, R. R., & Flavell, R. A. (2017). Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences, 114(45), E9626–E9634. https://doi.org/10.1073/pnas.1705301114
Hung, S., Kasperkowitz, A., Kurz, F., Dreher, L., Diessner, J., Ibrahim, E. S., Schwarz, S., Ohlsen, K., & Hertlein, T. (2023). Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1127709
Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., & Harada, M. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood, 106(5), 1565–1573. https://doi.org/10.1182/blood-2005-02-0516
Kapila V, Wehrle CJ, Tuma F. Physiology, Spleen. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537307/
Kenney, L. L., Shultz, L. D., Greiner, D. L., & Brehm, M. A. (2016). Humanized Mouse Models for Transplant Immunology. American Journal of Transplantation, 16(2), 389–397. https://doi.org/10.1111/ajt.13520
Kim, S. K., & Cho, S. W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology, 13(May), 1–16. https://doi.org/10.3389/fphar.2022.868695
Labani-Motlagh, A., Ashja-Mahdavi, M., & Loskog, A. (2020). The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 11(May), 1–22. https://doi.org/10.3389/fimmu.2020.00940
Leclercq, G., Debacker, V., de Smedt, M., & Plum, J. (1996). Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. The Journal of Experimental Medicine, 184(2), 325–336. https://doi.org/10.1084/jem.184.2.325
‘Mac’ Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunological Reviews, 222(1), 357–368. https://doi.org/10.1111/j.1600-065X.2008.00604.x
Manjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A., Fan, X., Shen, H., Lieberman, J., & von Andrian, U. H. (2001). Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. The Journal of clinical investigation, 108(6), 871–878. https://doi.org/10.1172/JCI13296
Mantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: effector response to tumour and role of the microenvironment. The Lancet, 371(9614), 771–783. https://doi.org/10.1016/S0140-6736(08)60241-X
Mao, Y., van Hoef, V., Zhang, X., Wennerberg, E., Lorent, J., Witt, K., Masvidal, L., Liang, S., Murray, S., Larsson, O., Kiessling, R., & Lundqvist, A. (2016). IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 128(11), 1475–1489. https://doi.org/10.1182/blood-2016-02-698027
Mellman, I., Chen, D. S., Powles, T., & Turley, S. J. (2023). The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 56(10), 2188–2205. https://doi.org/10.1016/j.immuni.2023.09.011
Morris, R., Kershaw, N. J., & Babon, J. J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 27(12), 1984–2009. https://doi.org/10.1002/pro.3519
Mortier, E., Quéméner, A., Vusio, P., Lorenzen, I., Boublik, Y., Grötzinger, J., Plet, A., & Jacques, Y. (2006). Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ: Hyperagonist IL-15·IL-15Rα fusion proteins. Journal of Biological Chemistry, 281(3), 1612–1619. https://doi.org/10.1074/jbc.M508624200
Muroyama, Y., & Wherry, E. J. (2021). Memory t-cell heterogeneity and terminology. Cold Spring Harbor Perspectives in Medicine, 13(10), 1–20. https://doi.org/10.1101/cshperspect.a037929
Nolz, J. C., & Richer, M. J. (2020). Control of memory CD8+ T cell longevity and effector functions by IL-15. Molecular Immunology, 117(3), 180–188. https://doi.org/10.1016/j.molimm.2019.11.011
O’connell, A. K., & Douam, F. (2020). Humanized mice for live-attenuated vaccine research: From unmet potential to new promises. Vaccines, 8(1). https://doi.org/10.3390/vaccines8010036
Olson, B., Li, Y., Lin, Y., Liu, E. T., & Patnaik, A. (2018). Mouse Models for Cancer Immunotherapy Research. Cancer Discovery, 8(11), 1358–1365. https://doi.org/10.1158/2159-8290.CD-18-0044
Patidar, M., Yadav, N., & Dalai, S. K. (2016). Interleukin 15: A key cytokine for immunotherapy. Cytokine & Growth Factor Reviews, 31, 49–59. https://doi.org/10.1016/j.cytogfr.2016.06.001
Poli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56 bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.x
Ran, G. he, Lin, Y. qing, Tian, L., Zhang, T., Yan, D. mei, Yu, J. hua, & Deng, Y. cai. (2022). Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01058-z
Rheinländer, A., Schraven, B., & Bommhardt, U. (2018). CD45 in human physiology and clinical medicine. Immunology Letters, 196(November 2017), 22–32. https://doi.org/10.1016/j.imlet.2018.01.009
Rhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., & Wong, H. C. (2016). Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunology Research, 4(1), 49–60. https://doi.org/10.1158/2326-6066.CIR-15-0093-T
Romagnani, C., Juelke, K., Falco, M., Morandi, B., D’Agostino, A., Costa, R., Ratto, G., Forte, G., Carrega, P., Lui, G., Conte, R., Strowig, T., Moretta, A., Münz, C., Thiel, A., Moretta, L., & Ferlazzo, G. (2007). CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation. The Journal of Immunology, 178(8), 4947–4955. https://doi.org/10.4049/jimmunol.178.8.4947
Romee, R., Cooley, S., Berrien-Elliott, M. M., Westervelt, P., Verneris, M. R., Wagner, J. E., Weisdorf, D. J., Blazar, B. R., Ustun, C., DeFor, T. E., Vivek, S., Peck, L., DiPersio, J. F., Cashen, A. F., Kyllo, R., Musiek, A., Schaffer, A., Anadkat, M. J., Rosman, I., … Miller, J. S. (2018). First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood, 131(23), 2515–2527. https://doi.org/10.1182/blood-2017-12-823757
Romero, P., Zippelius, A., Kurth, I., Pittet, M. J., Touvrey, C., Iancu, E. M., Corthesy, P., Devevre, E., Speiser, D. E., & Rufer, N. (2007). Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. The Journal of Immunology, 178(7), 4112–4119. https://doi.org/10.4049/jimmunol.178.7.4112
Rosenberg, S. A. (2014). IL-2: The First Effective Immunotherapy for Human Cancer. The Journal of Immunology, 192(12), 5451–5458. https://doi.org/10.4049/jimmunol.1490019
Salguero, G., Sundarasetty, B. S., Borchers, S., Wedekind, D., Eiz-Vesper, B., Velaga, S., Jirmo, A. C., Behrens, G., Warnecke, G., Knöfel, A.-K., Blasczyk, R., Mischak-Weissinger, E., Ganser, A., & Stripecke, R. (2011). Preconditioning Therapy with Lentiviral Vector-Programmed Dendritic Cells Accelerates the Homeostatic Expansion of Antigen-Reactive Human T Cells in NOD.Rag1 −/− .IL-2rγc −/− mice. Human Gene Therapy, 22(10), 1209–1224. https://doi.org/10.1089/hum.2010.215
Sckisel, G. D., Bouchlaka, M. N., Monjazeb, A. M., Crittenden, M., Curti, B. D., Wilkins, D. E. C., Alderson, K. A., Sungur, C. M., Ames, E., Mirsoian, A., Reddy, A., Alexander, W., Soulika, A., Blazar, B. R., Longo, D. L., Wiltrout, R. H., & Murphy, W. J. (2015). Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T-Cell-Dependent Immunity. Immunity, 43(2), 240–250. https://doi.org/10.1016/j.immuni.2015.06.023
Seder, R. A., & Ahmed, R. (2003). Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunology, 4(9), 835–842. https://doi.org/10.1038/ni969
Stoklasek, T. A., Schluns, K. S., & Lefrançois, L. (2006). Combined IL-15/IL-15Rα Immunotherapy Maximizes IL-15 Activity In Vivo. The Journal of Immunology, 177(9), 6072–6080. https://doi.org/10.4049/jimmunol.177.9.6072
Teng, M. W. L., Galon, J., Fridman, W.-H., & Smyth, M. J. (2015). From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 125(9), 3338–3346. https://doi.org/10.1172/JCI80004
Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., & Manz, M. G. (2004). Development of a Human Adaptive Immune System in Cord Blood Cell-Transplanted Mice. Science, 304(5667), 104–107. https://doi.org/10.1126/science.1093933
Tumino, N., Nava Lauson, C. B., Tiberti, S., Besi, F., Martini, S., Fiore, P. F., Scodamaglia, F., Mingari, M. C., Moretta, L., Manzo, T., & Vacca, P. (2023). The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. International Journal of Cancer, 152(8), 1698–1706. https://doi.org/10.1002/ijc.34389
Velcheti, V., & Schalper, K. (2016). Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book, 36, 298–308. https://doi.org/10.1200/EDBK_156572
Wagner, J. A., Rosario, M., Romee, R., Berrien-Elliott, M. M., Schneider, S. E., Leong, J. W., Sullivan, R. P., Jewell, B. A., Becker-Hapak, M., Schappe, T., Abdel-Latif, S., Ireland, A. R., Jaishankar, D., King, J. A., Vij, R., Clement, D., Goodridge, J., Malmberg, K., Wong, H. C., & Fehniger, T. A. (2017). CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. Journal of Clinical Investigation, 127(11), 4042–4058. https://doi.org/10.1172/JCI90387
Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5
Waldmann, T. A., Dubois, S., Miljkovic, M. D., & Conlon, K. C. (2020). IL-15 in the Combination Immunotherapy of Cancer. Frontiers in Immunology, 11(May). https://doi.org/10.3389/fimmu.2020.00868
Xu, X., Gu, H., Li, H., Gao, S., Shi, X., Shen, J., Li, B., Wang, H., Zheng, K., Shao, Z., Cheng, P., Cha, Z., Peng, S., Nie, Y., Li, Z., Guo, S., Qian, B., & Jin, G. (2022). Large‐cohort humanized NPI mice reconstituted with CD34 + hematopoietic stem cells are feasible for evaluating preclinical cancer immunotherapy. The FASEB Journal, 36(4). https://doi.org/10.1096/fj.202101548RR
Yang, Y. (2015). Cancer immunotherapy: harnessing the immune system to battle cancer. Journal of Clinical Investigation, 125(9), 3335–3337. https://doi.org/10.1172/JCI83871
Yang, Y., & Lundqvist, A. (2020). Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers, 12(12), 3586. https://doi.org/10.3390/cancers12123586
Yang, Y., Neo, S. Y., Chen, Z., Cui, W., Chen, Y., Guo, M., Wang, Y., Xu, H., Kurzay, A., Alici, E., Holmgren, L., Haglund, F., Wang, K., & Lundqvist, A. (2020). Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. Journal of Clinical Investigation, 130(10), 5508–5522. https://doi.org/10.1172/JCI137585
Zheng, X., Wu, Y., Bi, J., Huang, Y., Cheng, Y., Li, Y., Wu, Y., Cao, G., & Tian, Z. (2022). The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cellular and Molecular Immunology, 19(2), 192–209. https://doi.org/10.1038/s41423-021-00786-6
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 146 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86610/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86610/2/965422.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86610/3/965422.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
cd117ee0ad9f5fcd52fd49988f732359
212af6efaac377dc021d578be6392153
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089856055246848
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Suárez, Alejandra Margarita038a9a8644782bf95ba8bd79650af287600Parra López, Carlos Alberto29924f3507fcedbca9501300464d5b61600Ishikawa, Flávia Midori8d3d0c6b247c3bcd64427257a5a84ac1600Salguero López, Gustavo AndrésUnidad de Terapias Avanzadas Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud2024-07-24T18:42:27Z2024-07-24T18:42:27Z2024-06-26https://repositorio.unal.edu.co/handle/unal/86610Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa IL-15 ha sido considerada por el National Cancer Institute como una de las inmunoterapias más promisoras para el tratamiento del cáncer, una molécula central en la activación de la inmunidad antiviral y antitumoral sin un aparente efecto dual, siendo excelente alternativa a la IL-2. La IL-15 interactúa con su receptor α formando un complejo IL-15/IL-15Rα en la membrana de células dendríticas, monocitos y macrófagos. Este complejo interactúa con los receptores IL-2Rβ/γ de las células T y NK en transpresentación, promoviendo la señalización necesaria para una potente activación y proliferación de estos tipos celulares. Sin embargo, los mecanismos y efectos de la activación celular de la IL-15/IL-15Rα no han sido completamente elucidados en el contexto humano in vivo, y se carecen de estudios en modelos preclínicos con mayor poder traslacional que puedan contribuir al entendimiento del rol de esta citoquina en el contexto clínico del cáncer. En este trabajo se investigó el potencial efecto in vivo de dos formas de complejo IL-15/IL-5Rα, uno anclado a la membrana y el otro en una forma soluble (IL-15mb vs IL-15s), en el crecimiento tumor de una línea de melanoma maligno humano. Para esto se utilizaron dos modelos murinos humanizados a partir de la cepa NRG, con la transferencia de leucocitos de sangre periférica (HuPBL) y con el trasplante de células progenitoras hematopoyéticas (HuHSC). En este estudio se demostró que la IL-15, en complejo con su receptor α, tiene un potente efecto antitumoral sobre las células inmunes, principalmente las células T y NK. El efecto antitumoral fue evidenciado a través de la reducción del crecimiento tumoral y mayor infiltración de dichas células en el tumor y en la sangre periférica. Este trabajo contribuye a la comprensión del efecto de la IL-15 en el microambiente tumoral, permitiendo identificar vías clave de esta molécula en la estimulación de la inmunidad antitumoral, lo que abre la puerta al desarrollo de posibles terapias novedosas para pacientes con cáncer. (Texto tomado de la fuente).IL-15 has been considered by the National Cancer Institute as one of the most promising immunotherapies for cancer treatment, serving as a central molecule in the activation of antiviral and antitumor immunity without apparent dual effects, making it an excellent alternative to IL-2. IL-15 is frequently bound to its receptor α, forming an IL-15/IL-15Rα complex on the membrane of dendritic cells, monocytes, and macrophages. This complex interacts with IL-2Rβ/γ receptors on T and NK cells in transpresentation, promoting the necessary signaling for potent activation and proliferation of these cells. The mechanisms of action have not been fully elucidated, and there is a lack of preclinical studies with higher translational power to contribute to understanding the role of this cytokine in the clinical context of cancer. This study investigated the potential in vivo effect of two IL-15/IL-5Rα agonists, one anchored to the membrane and the other in a soluble form (IL-15mb vs. IL-15s), on the tumor growth of a human malignant melanoma cell line. Two humanized murine models were utilized, derived from the NRG strain, with the transfer of peripheral blood leukocytes (HuPBL) and the transplantation of hematopoietic stem cells (HuHSC). Here, we demonstrated that IL-15, in complex with its α receptor, has a potent antitumor effect on immune cells, primarily T and NK cells. The antitumor effect was evidenced by the reduction in tumor growth and increased infiltration of these cells in the tumor and peripheral blood. This work contributes to the understanding of the IL-15 effect in the tumor microenvironment, identifying key pathways of this potent molecule in stimulation, leading to potential novel therapies for cancer patients.MaestríaMagíster en Ciencias - Biologíaxiii, 146 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaInterleucina-15/uso terapéuticoNeoplasias/ tratamiento farmacológicoMicroambiente TumoralInterleukin-15/therapeutic useNeoplasms/drug therapyTumor MicroenvironmentInmunoterapiaInterleuquina-15CitotoxicidadModelos in vivo humanizadosCáncerImmunotherapyInterleukin-15CytotoxicityHumanized in vivo modelsCancerEvaluación de la capacidad de la interleuquina-15 soluble o anclada a la membrana de inducir respuestas inmunes citotóxicas en un modelo murino tumoralEvaluation of the capacity of soluble or membrane-bound interleukin-15 to induce cytotoxic immune responses in a murine tumor modelTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAkdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Meyer, N., O’Mahony, L., Palomares, O., Rhyner, C., Quaked, N., Schaffartzik, A., Van De Veen, W., Zeller, S., Zimmermann, M., & Akdis, C. A. (2011). Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 127(3), 701-721.e70. https://doi.org/10.1016/j.jaci.2010.11.050Allen, T. M., Brehm, M. A., Bridges, S., Ferguson, S., Kumar, P., Mirochnitchenko, O., Palucka, K., Pelanda, R., Sanders-Beer, B., Shultz, L. D., Su, L., & PrabhuDas, M. (2019). Humanized immune system mouse models: progress, challenges and opportunities. Nature Immunology, 20(7), 770–774. https://doi.org/10.1038/s41590-019-0416-zAwad, R. M., Lecocq, Q., Zeven, K., Ertveldt, T., De Beck, L., Ceuppens, H., Broos, K., De Vlaeminck, Y., Goyvaerts, C., Verdonck, M., Raes, G., Van Parys, A., Cauwels, A., Keyaerts, M., Devoogdt, N., & Breckpot, K. (2021). Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods & Clinical Development, 22, 172–182. https://doi.org/10.1016/j.omtm.2021.05.017Bergamaschi, C., Bear, J., Rosati, M., Beach, R. K., Alicea, C., Sowder, R., Chertova, E., Rosenberg, S. A., Felber, B. K., & Pavlakis, G. N. (2012). Circulating IL-15 exists as heterodimeric complex with soluble IL-15Rα in human and mouse serum. Blood, 120(1), e1–e8. https://doi.org/10.1182/blood-2011-10-384362Bessard, A., Solé, V., Bouchaud, G., Quéméner, A., & Jacques, Y. (2009). High antitumor activity of RLI, an interleukin-15 (IL-15)–IL-15 receptor α fusion protein, in metastatic melanoma and colorectal cancer. Molecular Cancer Therapeutics, 8(9), 2736–2745. https://doi.org/10.1158/1535-7163.MCT-09-0275Borish, L. C., & Steinke, J. W. (2003). 2. Cytokines and chemokines. Journal of Allergy and Clinical Immunology, 111(2), S460–S475. https://doi.org/10.1067/mai.2003.108Boudko, S. P., Sasaki, T., Engel, J., Lerch, T. F., Nix, J., Chapman, M. S., & Bächinger, H. P. (2009). Crystal Structure of Human Collagen XVIII Trimerization Domain: A Novel Collagen Trimerization Fold. Journal of Molecular Biology, 392(3), 787–802. https://doi.org/10.1016/j.jmb.2009.07.057Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. The Journal of Infectious Diseases, 208 Suppl(Suppl 2), 125–130. https://doi.org/10.1093/infdis/jit319Breschi, A., Gingeras, T. R., & Guigó, R. (2017). Comparative transcriptomics in human and mouse. Nature Reviews Genetics, 18(7), 425–440. https://doi.org/10.1038/nrg.2017.19Cai, M., Huang, X., Huang, X., Ju, D., Zhu, Y. Z., & Ye, L. (2023). Research progress of interleukin-15 in cancer immunotherapy. Frontiers in Pharmacology, 14(May). https://doi.org/10.3389/fphar.2023.1184703Carrega, P., Bonaccorsi, I., Di Carlo, E., Morandi, B., Paul, P., Rizzello, V., Cipollone, G., Navarra, G., Mingari, M. C., Moretta, L., & Ferlazzo, G. (2014). CD56brightPerforinlow Noncytotoxic Human NK Cells Are Abundant in Both Healthy and Neoplastic Solid Tissues and Recirculate to Secondary Lymphoid Organs via Afferent Lymph. The Journal of Immunology, 192(8), 3805–3815. https://doi.org/10.4049/jimmunol.1301889Cha, J. H., Chan, L. C., Song, M. S., & Hung, M. C. (2020). New approaches on cancer immunotherapy. Cold Spring Harbor Perspectives in Medicine, 10(8), 1–16. https://doi.org/10.1101/cshperspect.a036863Chang, Y. F., McMahon, J. E., Hennon, D. L., LaPorte, R. E., Coben, J. H., Y.-F., C., J.E., M., D.L., H., R.E., L., & J.H., C. (1997). Dog bite incidence in the city of pittsburgh: A capture-recapture approach. American Journal of Public Health, 87(10), 1703–1705. https://doi.org/10.2105/AJPH.87.10.1703Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: The cancer-immunity cycle. Immunity, 39(1), 1–10. https://doi.org/10.1016/j.immuni.2013.07.012Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039Choi, S. S., Chhabra, V. S., Nguyen, Q. H., Ank, B. J., Stiehm, E. R., & Roberts, R. L. (2004). Interleukin-15 Enhances Cytotoxicity, Receptor Expression, and Expansion of Neonatal Natural Killer Cells in Long-Term Culture. Clinical and Vaccine Immunology, 11(5), 879–888. https://doi.org/10.1128/CDLI.11.5.879-888.2004Conlon, K. C., Lugli, E., Welles, H. C., Rosenberg, S. A., Fojo, A. T., Morris, J. C., Fleisher, T. A., Dubois, S. P., Perera, L. P., Stewart, D. M., Goldman, C. K., Bryant, B. R., Decker, J. M., Chen, J., Worthy, T. A., Figg, W. D., Peer, C. J., Sneller, M. C., Lane, H. C., … Waldmann, T. A. (2015). Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. Journal of Clinical Oncology, 33(1), 74–82. https://doi.org/10.1200/JCO.2014.57.3329Conlon, K. C., Potter, E. L., Pittaluga, S., Lee, C. R., Miljkovic, M. D., Fleisher, T. A., Dubois, S., Bryant, B. R., Petrus, M., Perera, L. P., Hsu, J., Figg, W. D., Peer, C. J., Shih, J. H., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2019). IL15 by Continuous Intravenous Infusion to Adult Patients with Solid Tumors in a Phase I Trial Induced Dramatic NK-Cell Subset Expansion. Clinical Cancer Research, 25(16), 4945–4954. https://doi.org/10.1158/1078-0432.CCR-18-3468Cornish, G. H., Sinclair, L. V., & Cantrell, D. A. (2006). Differential regulation of T-cell growth by IL-2 and IL-15. Blood, 108(2), 600–608. https://doi.org/10.1182/blood-2005-12-4827Croce, M., Orengo, A. M., Azzarone, B., & Ferrini, S. (2012). Immunotherapeutic applications of IL-15. Immunotherapy, 4(9), 957–969. https://doi.org/10.2217/imt.12.92Cuesta-Mateos, C., Terrón, F., & Herling, M. (2021). CCR7 in Blood Cancers – Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Frontiers in Oncology, 11(October), 1–25. https://doi.org/10.3389/fonc.2021.736758De Guillebon, E., Dardenne, A., Saldmann, A., Séguier, S., Tran, T., Paolini, L., Lebbe, C., & Tartour, E. (2020). Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 147(6), 1509–1518. https://doi.org/10.1002/ijc.32889Di Rosa, F., & Gebhardt, T. (2016). Bone marrow T cells and the integrated functions of recirculating and tissue-resident memory T cells. Frontiers in Immunology, 7(FEB), 1–13. https://doi.org/10.3389/fimmu.2016.00051Dubois, S., Mariner, J., Waldmann, T. A., & Tagaya, Y. (2002). IL-15Rα Recycles and Presents IL-15 In trans to Neighboring Cells. Immunity, 17(5), 537–547. https://doi.org/10.1016/S1074-7613(02)00429-6Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22(4), 329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803Elhage, A., Sligar, C., Cuthbertson, P., Watson, D., & Sluyter, R. (2022). Insights into mechanisms of graft-versus-host disease through humanised mouse models. Bioscience Reports, 42(9), 1–23. https://doi.org/10.1042/BSR20211986Fehniger, T. A. (2019). Mystery Solved: IL-15. The Journal of Immunology, 202(11), 3125–3126. https://doi.org/10.4049/jimmunol.1900419Ferlazzo, G., Thomas, D., Lin, S., Goodman, K., Morandi, B., Muller, W. A., Moretta, A., & Münz, C. (2004). The Abundant NK Cells in Human Secondary Lymphoid Tissues Require Activation to Express Killer Cell Ig-Like Receptors and Become Cytolytic. The Journal of Immunology, 172(3), 1455–1462. https://doi.org/10.4049/jimmunol.172.3.1455Fiore, P. F., Di Matteo, S., Tumino, N., Mariotti, F. R., Pietra, G., Ottonello, S., Negrini, S., Bottazzi, B., Moretta, L., Mortier, E., & Azzarone, B. (2020). Interleukin-15 and cancer: some solved and many unsolved questions. Journal for ImmunoTherapy of Cancer, 8(2), e001428. https://doi.org/10.1136/jitc-2020-001428Gajewski, T. F., Corrales, L., Williams, J., Horton, B., Sivan, A., & Spranger, S. (2017). Cancer Immunotherapy Targets Based on Understanding the T Cell-Inflamed Versus Non-T Cell-Inflamed Tumor Microenvironment. In P. Kalinski (Ed.), Physiology & behavior (Vol. 1036, Issue 2, pp. 19–31). Springer International Publishing. https://doi.org/10.1007/978-3-319-67577-0_2Ghorani, E., Swanton, C., & Quezada, S. A. (2023). Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity, 56(10), 2270–2295. https://doi.org/10.1016/j.immuni.2023.09.004Grabstein, K. H., Eisenman, J., Shanebeck, K., Rauch, C., Srinivasan, S., Fung, V., Beers, C., Richardson, J., Schoenborn, M. A., Ahdieh, M., Johnson, L., Alderson, M. R., Watson, J. D., Anderson, D. M., & Giri, J. G. (1994). Cloning of a T Cell Growth Factor that Interacts with the β Chain of the Interleukin-2 Receptor. Science, 264(5161), 965–968. https://doi.org/10.1126/science.8178155Guo, Y., Luan, L., Patil, N. K., & Sherwood, E. R. (2017). Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine & Growth Factor Reviews, 38(1), 10–21. https://doi.org/10.1016/j.cytogfr.2017.08.002Hayakawa, Y., Huntington, N. D., Nutt, S. L., & Smyth, M. J. (2006). Functional subsets of mouse natural killer cells. Immunological Reviews, 214(1), 47–55. https://doi.org/10.1111/j.1600-065X.2006.00454.xHerndler-Brandstetter, D., Shan, L., Yao, Y., Stecher, C., Plajer, V., Lietzenmayer, M., Strowig, T., de Zoete, M. R., Palm, N. W., Chen, J., Blish, C. A., Frleta, D., Gurer, C., Macdonald, L. E., Murphy, A. J., Yancopoulos, G. D., Montgomery, R. R., & Flavell, R. A. (2017). Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences, 114(45), E9626–E9634. https://doi.org/10.1073/pnas.1705301114Hung, S., Kasperkowitz, A., Kurz, F., Dreher, L., Diessner, J., Ibrahim, E. S., Schwarz, S., Ohlsen, K., & Hertlein, T. (2023). Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1127709Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., & Harada, M. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood, 106(5), 1565–1573. https://doi.org/10.1182/blood-2005-02-0516Kapila V, Wehrle CJ, Tuma F. Physiology, Spleen. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537307/Kenney, L. L., Shultz, L. D., Greiner, D. L., & Brehm, M. A. (2016). Humanized Mouse Models for Transplant Immunology. American Journal of Transplantation, 16(2), 389–397. https://doi.org/10.1111/ajt.13520Kim, S. K., & Cho, S. W. (2022). The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Frontiers in Pharmacology, 13(May), 1–16. https://doi.org/10.3389/fphar.2022.868695Labani-Motlagh, A., Ashja-Mahdavi, M., & Loskog, A. (2020). The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Frontiers in Immunology, 11(May), 1–22. https://doi.org/10.3389/fimmu.2020.00940Leclercq, G., Debacker, V., de Smedt, M., & Plum, J. (1996). Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. The Journal of Experimental Medicine, 184(2), 325–336. https://doi.org/10.1084/jem.184.2.325‘Mac’ Cheever, M. A. (2008). Twelve immunotherapy drugs that could cure cancers. Immunological Reviews, 222(1), 357–368. https://doi.org/10.1111/j.1600-065X.2008.00604.xManjunath, N., Shankar, P., Wan, J., Weninger, W., Crowley, M. A., Hieshima, K., Springer, T. A., Fan, X., Shen, H., Lieberman, J., & von Andrian, U. H. (2001). Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. The Journal of clinical investigation, 108(6), 871–878. https://doi.org/10.1172/JCI13296Mantovani, A., Romero, P., Palucka, A. K., & Marincola, F. M. (2008). Tumour immunity: effector response to tumour and role of the microenvironment. The Lancet, 371(9614), 771–783. https://doi.org/10.1016/S0140-6736(08)60241-XMao, Y., van Hoef, V., Zhang, X., Wennerberg, E., Lorent, J., Witt, K., Masvidal, L., Liang, S., Murray, S., Larsson, O., Kiessling, R., & Lundqvist, A. (2016). IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood, 128(11), 1475–1489. https://doi.org/10.1182/blood-2016-02-698027Mellman, I., Chen, D. S., Powles, T., & Turley, S. J. (2023). The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity, 56(10), 2188–2205. https://doi.org/10.1016/j.immuni.2023.09.011Morris, R., Kershaw, N. J., & Babon, J. J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Science, 27(12), 1984–2009. https://doi.org/10.1002/pro.3519Mortier, E., Quéméner, A., Vusio, P., Lorenzen, I., Boublik, Y., Grötzinger, J., Plet, A., & Jacques, Y. (2006). Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action through IL-15Rβ/γ: Hyperagonist IL-15·IL-15Rα fusion proteins. Journal of Biological Chemistry, 281(3), 1612–1619. https://doi.org/10.1074/jbc.M508624200Muroyama, Y., & Wherry, E. J. (2021). Memory t-cell heterogeneity and terminology. Cold Spring Harbor Perspectives in Medicine, 13(10), 1–20. https://doi.org/10.1101/cshperspect.a037929Nolz, J. C., & Richer, M. J. (2020). Control of memory CD8+ T cell longevity and effector functions by IL-15. Molecular Immunology, 117(3), 180–188. https://doi.org/10.1016/j.molimm.2019.11.011O’connell, A. K., & Douam, F. (2020). Humanized mice for live-attenuated vaccine research: From unmet potential to new promises. Vaccines, 8(1). https://doi.org/10.3390/vaccines8010036Olson, B., Li, Y., Lin, Y., Liu, E. T., & Patnaik, A. (2018). Mouse Models for Cancer Immunotherapy Research. Cancer Discovery, 8(11), 1358–1365. https://doi.org/10.1158/2159-8290.CD-18-0044Patidar, M., Yadav, N., & Dalai, S. K. (2016). Interleukin 15: A key cytokine for immunotherapy. Cytokine & Growth Factor Reviews, 31, 49–59. https://doi.org/10.1016/j.cytogfr.2016.06.001Poli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56 bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458–465. https://doi.org/10.1111/j.1365-2567.2008.03027.xRan, G. he, Lin, Y. qing, Tian, L., Zhang, T., Yan, D. mei, Yu, J. hua, & Deng, Y. cai. (2022). Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01058-zRheinländer, A., Schraven, B., & Bommhardt, U. (2018). CD45 in human physiology and clinical medicine. Immunology Letters, 196(November 2017), 22–32. https://doi.org/10.1016/j.imlet.2018.01.009Rhode, P. R., Egan, J. O., Xu, W., Hong, H., Webb, G. M., Chen, X., Liu, B., Zhu, X., Wen, J., You, L., Kong, L., Edwards, A. C., Han, K., Shi, S., Alter, S., Sacha, J. B., Jeng, E. K., Cai, W., & Wong, H. C. (2016). Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunology Research, 4(1), 49–60. https://doi.org/10.1158/2326-6066.CIR-15-0093-TRomagnani, C., Juelke, K., Falco, M., Morandi, B., D’Agostino, A., Costa, R., Ratto, G., Forte, G., Carrega, P., Lui, G., Conte, R., Strowig, T., Moretta, A., Münz, C., Thiel, A., Moretta, L., & Ferlazzo, G. (2007). CD56brightCD16− Killer Ig-Like Receptor− NK Cells Display Longer Telomeres and Acquire Features of CD56dim NK Cells upon Activation. The Journal of Immunology, 178(8), 4947–4955. https://doi.org/10.4049/jimmunol.178.8.4947Romee, R., Cooley, S., Berrien-Elliott, M. M., Westervelt, P., Verneris, M. R., Wagner, J. E., Weisdorf, D. J., Blazar, B. R., Ustun, C., DeFor, T. E., Vivek, S., Peck, L., DiPersio, J. F., Cashen, A. F., Kyllo, R., Musiek, A., Schaffer, A., Anadkat, M. J., Rosman, I., … Miller, J. S. (2018). First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood, 131(23), 2515–2527. https://doi.org/10.1182/blood-2017-12-823757Romero, P., Zippelius, A., Kurth, I., Pittet, M. J., Touvrey, C., Iancu, E. M., Corthesy, P., Devevre, E., Speiser, D. E., & Rufer, N. (2007). Four Functionally Distinct Populations of Human Effector-Memory CD8+ T Lymphocytes. The Journal of Immunology, 178(7), 4112–4119. https://doi.org/10.4049/jimmunol.178.7.4112Rosenberg, S. A. (2014). IL-2: The First Effective Immunotherapy for Human Cancer. The Journal of Immunology, 192(12), 5451–5458. https://doi.org/10.4049/jimmunol.1490019Salguero, G., Sundarasetty, B. S., Borchers, S., Wedekind, D., Eiz-Vesper, B., Velaga, S., Jirmo, A. C., Behrens, G., Warnecke, G., Knöfel, A.-K., Blasczyk, R., Mischak-Weissinger, E., Ganser, A., & Stripecke, R. (2011). Preconditioning Therapy with Lentiviral Vector-Programmed Dendritic Cells Accelerates the Homeostatic Expansion of Antigen-Reactive Human T Cells in NOD.Rag1 −/− .IL-2rγc −/− mice. Human Gene Therapy, 22(10), 1209–1224. https://doi.org/10.1089/hum.2010.215Sckisel, G. D., Bouchlaka, M. N., Monjazeb, A. M., Crittenden, M., Curti, B. D., Wilkins, D. E. C., Alderson, K. A., Sungur, C. M., Ames, E., Mirsoian, A., Reddy, A., Alexander, W., Soulika, A., Blazar, B. R., Longo, D. L., Wiltrout, R. H., & Murphy, W. J. (2015). Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T-Cell-Dependent Immunity. Immunity, 43(2), 240–250. https://doi.org/10.1016/j.immuni.2015.06.023Seder, R. A., & Ahmed, R. (2003). Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nature Immunology, 4(9), 835–842. https://doi.org/10.1038/ni969Stoklasek, T. A., Schluns, K. S., & Lefrançois, L. (2006). Combined IL-15/IL-15Rα Immunotherapy Maximizes IL-15 Activity In Vivo. The Journal of Immunology, 177(9), 6072–6080. https://doi.org/10.4049/jimmunol.177.9.6072Teng, M. W. L., Galon, J., Fridman, W.-H., & Smyth, M. J. (2015). From mice to humans: developments in cancer immunoediting. Journal of Clinical Investigation, 125(9), 3338–3346. https://doi.org/10.1172/JCI80004Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., & Manz, M. G. (2004). Development of a Human Adaptive Immune System in Cord Blood Cell-Transplanted Mice. Science, 304(5667), 104–107. https://doi.org/10.1126/science.1093933Tumino, N., Nava Lauson, C. B., Tiberti, S., Besi, F., Martini, S., Fiore, P. F., Scodamaglia, F., Mingari, M. C., Moretta, L., Manzo, T., & Vacca, P. (2023). The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. International Journal of Cancer, 152(8), 1698–1706. https://doi.org/10.1002/ijc.34389Velcheti, V., & Schalper, K. (2016). Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book, 36, 298–308. https://doi.org/10.1200/EDBK_156572Wagner, J. A., Rosario, M., Romee, R., Berrien-Elliott, M. M., Schneider, S. E., Leong, J. W., Sullivan, R. P., Jewell, B. A., Becker-Hapak, M., Schappe, T., Abdel-Latif, S., Ireland, A. R., Jaishankar, D., King, J. A., Vij, R., Clement, D., Goodridge, J., Malmberg, K., Wong, H. C., & Fehniger, T. A. (2017). CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. Journal of Clinical Investigation, 127(11), 4042–4058. https://doi.org/10.1172/JCI90387Waldman, A. D., Fritz, J. M., & Lenardo, M. J. (2020). A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 20(11), 651–668. https://doi.org/10.1038/s41577-020-0306-5Waldmann, T. A., Dubois, S., Miljkovic, M. D., & Conlon, K. C. (2020). IL-15 in the Combination Immunotherapy of Cancer. Frontiers in Immunology, 11(May). https://doi.org/10.3389/fimmu.2020.00868Xu, X., Gu, H., Li, H., Gao, S., Shi, X., Shen, J., Li, B., Wang, H., Zheng, K., Shao, Z., Cheng, P., Cha, Z., Peng, S., Nie, Y., Li, Z., Guo, S., Qian, B., & Jin, G. (2022). Large‐cohort humanized NPI mice reconstituted with CD34 + hematopoietic stem cells are feasible for evaluating preclinical cancer immunotherapy. The FASEB Journal, 36(4). https://doi.org/10.1096/fj.202101548RRYang, Y. (2015). Cancer immunotherapy: harnessing the immune system to battle cancer. Journal of Clinical Investigation, 125(9), 3335–3337. https://doi.org/10.1172/JCI83871Yang, Y., & Lundqvist, A. (2020). Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy. Cancers, 12(12), 3586. https://doi.org/10.3390/cancers12123586Yang, Y., Neo, S. Y., Chen, Z., Cui, W., Chen, Y., Guo, M., Wang, Y., Xu, H., Kurzay, A., Alici, E., Holmgren, L., Haglund, F., Wang, K., & Lundqvist, A. (2020). Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. Journal of Clinical Investigation, 130(10), 5508–5522. https://doi.org/10.1172/JCI137585Zheng, X., Wu, Y., Bi, J., Huang, Y., Cheng, Y., Li, Y., Wu, Y., Cao, G., & Tian, Z. (2022). The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cellular and Molecular Immunology, 19(2), 192–209. https://doi.org/10.1038/s41423-021-00786-6Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud - IDCBISEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86610/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL965422.2024.pdf965422.2024.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf5435126https://repositorio.unal.edu.co/bitstream/unal/86610/2/965422.2024.pdfcd117ee0ad9f5fcd52fd49988f732359MD52THUMBNAIL965422.2024.pdf.jpg965422.2024.pdf.jpgGenerated Thumbnailimage/jpeg4385https://repositorio.unal.edu.co/bitstream/unal/86610/3/965422.2024.pdf.jpg212af6efaac377dc021d578be6392153MD53unal/86610oai:repositorio.unal.edu.co:unal/866102024-07-24 23:25:56.587Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=