Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico
ilustraciones, diagramas, tablas
- Autores:
-
Arboleda-Giraldo, Daniela
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82165
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
Tomate de árbol - Enfermedades y plagas
Tree tomato - disease and pests
Crecimiento de Phytophthora
Defensa sistémica
Duración
BABA
Reducción de enfermedad en campo
Phytophthora infestans sensu lato
Phytophthora growth
Durability
Reduction of disease in the field.
Systemic resistance
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_876fe1b37a745b6c3bffab9233baaba5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82165 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
dc.title.translated.eng.fl_str_mv |
Induction of defense in Solanum betaceum against attack by Phytophthora infestans sensu lato by β-aminobutyric acid |
title |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
spellingShingle |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico 630 - Agricultura y tecnologías relacionadas Tomate de árbol - Enfermedades y plagas Tree tomato - disease and pests Crecimiento de Phytophthora Defensa sistémica Duración BABA Reducción de enfermedad en campo Phytophthora infestans sensu lato Phytophthora growth Durability Reduction of disease in the field. Systemic resistance |
title_short |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
title_full |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
title_fullStr |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
title_full_unstemmed |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
title_sort |
Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico |
dc.creator.fl_str_mv |
Arboleda-Giraldo, Daniela |
dc.contributor.advisor.none.fl_str_mv |
Morales Osorio, Juan Gonzalo Patiño Hoyos, Luis Fernando |
dc.contributor.author.none.fl_str_mv |
Arboleda-Giraldo, Daniela |
dc.contributor.researchgroup.spa.fl_str_mv |
Fitotecnia Tropical |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas |
topic |
630 - Agricultura y tecnologías relacionadas Tomate de árbol - Enfermedades y plagas Tree tomato - disease and pests Crecimiento de Phytophthora Defensa sistémica Duración BABA Reducción de enfermedad en campo Phytophthora infestans sensu lato Phytophthora growth Durability Reduction of disease in the field. Systemic resistance |
dc.subject.lemb.none.fl_str_mv |
Tomate de árbol - Enfermedades y plagas Tree tomato - disease and pests |
dc.subject.proposal.spa.fl_str_mv |
Crecimiento de Phytophthora Defensa sistémica Duración BABA Reducción de enfermedad en campo |
dc.subject.proposal.eng.fl_str_mv |
Phytophthora infestans sensu lato Phytophthora growth Durability Reduction of disease in the field. Systemic resistance |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-08 |
dc.date.accessioned.none.fl_str_mv |
2022-08-29T15:11:18Z |
dc.date.available.none.fl_str_mv |
2022-08-29T15:11:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82165 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82165 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acuña, I., Bravo, R., & Remehue, I. (2015). Tizón tardío de la papa : Estrategias de manejo integrado con alertas temprana. 137 AGRIOS, G. N. (2005). How Plants Defend Themselves Against Pathogens. Plant Pathology, 207–248. https://doi.org/10.1016/b978-0-08-047378-9.50012-9 Alexandersson, E., Jacobson, D., Vivier, M. A., Weckwerth, W., & Andreasson, E. (2014). Field-omics-understanding large-scale molecular data from field crops. Frontiers in Plant Science, 5(JUN), 1–6. https://doi.org/10.3389/fpls.2014.00286 Alexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101673 Altamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37(4), 421–427. https://doi.org/10.1071/AP08033 Amzalek, E., & Cohen, Y. (2007a). Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology, 97(2), 179–186. https://doi.org/10.1094/PHYTO-97-2-0179 An, Y., Kang, S., Kim, K. D., Hwang, B. K. K., & Jeun, Y. (2010). Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 29(12), 1406–1412. https://doi.org/10.1016/j.cropro.2010.07.023 Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62(2), 162–170. https://doi.org/10.1002/ps.1142 Arici, Ş. E., & Dehne, H. W. (2007). Induced resistance against Phytophthora infestans by chemical inducers BION and BABA in tomato plants. Acta Horticulturae, 729, 503–507. https://doi.org/10.17660/ActaHortic.2007.729.86 Asim, R., Khan, A., Ghazanfar, M. U., & Raza, W. (2019). Eco-friendly management of Phytophthora infestans causing late blight of potato. May, 144–147. Asohofrucol. (2018). Balance Hortifruticola 2018. In Asohofrucol. http://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdf Ávila, E. (2015). Manual de Tomate de árbol. Cámara de Comercio de Bogotá, 1, 50. https://doi.org/10.1158/2159-8290.CD-16-1154 Avrova, A. O., Boevink, P. C., Young, V., Grenville-Briggs, L. J., Van West, P., Birch, P. R. J., & Whisson, S. C. (2008). A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 10(11), 2271–2284. https://doi.org/10.1111/j.1462-5822.2008.01206.x Baccelli, I., & Mauch-Mani, B. (2016). Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 91(6), 703–711. https://doi.org/10.1007/s11103-015-0406-y Bae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005 Baider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399–409. https://doi.org/10.1007/BF02979812 Bain, R. A., & Walters, D. R. (2016). The contribution of host resistance elicitors to the control of potato foliar blight in Scotland. The Dundee Conference: Crop Protection in Northern Britain 2016, 23-24 February 2016, Dundee, UK, 205–210. Balmer, A., Glauser, G., Mauch-Mani, B., & Baccelli, I. (2019). Accumulation patterns of endogenous β-aminobutyric acid during plant development and defence in Arabidopsis thaliana. In Plant Biology (Vol. 21, Issue 2). https://doi.org/10.1111/plb.12940 Barilli, E., Rubiales, D., Amalfitano, C., Evidente, A., & Prats, E. (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5), 1095–1106. https://doi.org/10.1007/s00425-015-2339-8 Barilli, E., Sillero, J. C., & Rubiales, D. (2010). Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. Journal of Phytopathology, 158(1), 30–34. https://doi.org/10.1111/j.1439-0434.2009.01571.x Baysal, Ö., Gürsoy, Y. Z., Örnek, H., & Duru, A. (2005). Induction of oxidants in tomato leaves treated with DL-β-Amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. European Journal of Plant Pathology, 112(4), 361–369. https://doi.org/10.1007/s10658-005-6234-1 Beckers, G. J., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431. https://doi.org/10.1016/j.pbi.2007.06.002 Bengtsson, T., Holefors, A., Witzell, J., Andreasson, E., & Liljeroth, E. (2014). Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathology, 63(1), 193–202. https://doi.org/10.1111/ppa.12069 Birch, P. R. J., & Whisson, S. C. (2001). Pathogen profile Phytophthora infestans enters the genomics era. MOLECULAR PLANT PATHOLOGY, 2(5), 257–263. Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346 Bostock, R. M., Thaler, J., Fidantsef, A., & Duffey, S. (1999). Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology, 25(7), 1597–1609. http://www.springerlink.com/index/UT5534K176615T37.pdf Boubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants Academic Press. (pp. 79-99). Bruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2016). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128–134. https://doi.org/10.1016/j.cropro.2016.10.003 Burgos, H., Chávez, C., Amaya, J., & Julca, J. (2006). Tomate de árbol (Cyphomandra betacea Send.). 8. www.regionlalibertad.gob.pe Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., & Alexandersson, E. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/s12870-014-0254-y Buswell, W., Schwarzenbacher, R. E., Luna, E., Sellwood, M., Chen, B., Flors, V., Pétriacq, P., & Ton, J. (2018). Chemical priming of immunity without costs to plant growth. New Phytologist, 218(3), 1205–1216. https://doi.org/10.1111/nph.1506 Cárdenas, M., Grajales, A., Sierra, R., Rojas, A., González-Almario, A., Vargas, A., Marín, M., Fermín, G., Lagos, L. E., Grünwald, N. J., Bernal, A., Salazar, C., & Restrepo, S. (2011). Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 12. https://doi.org/10.1186/1471-2156-12-23 Carreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdf Castaño Monsalve, J. I., Guillermo Ramírez Gil, J. I., Fernando Patiño Hoyos, L. I., & Gonzalo Morales Osorio, J. I. (2015). Alternativa para el manejo de Phytophthora infestans (Mont.) de Bary en Solanum betaceum Cav. mediante inductores de resistencia. Rev. Protección Veg, 30(3), 204–212. http://blast.ncbi.nlm.nih.gov/ Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., Modrie, P., Legrève, A., Mahillon, J., & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9(143). https://doi.org/10.3389/fmicb.2018.00143 Cerkauskas, R. F., Ferguson, G., & Macnair, C. (2015). Management of Phytophthora blight (Phytophthora capsici) on vegetables in Ontario: Some greenhouse and field aspects. Canadian Journal of Plant Pathology, 37(3), 285–304. https://doi.org/10.1080/07060661.2015.1078411 Chañag-Miramag, H. A., Viveros-Rojas, J., Álvarez-Ordoñez, S., Criollo-Escobar, H., & Lagos-Mora, L. E. (2017). Evaluación de genotipos de tomate de árbol [Cyphomandra betacea (Cav.) Sendt.] frente al ataque de Phytophthora infestans (Mont.) de Bary sensu lato. Revista Colombiana de Ciencias Hortícolas, 11(1), 11–20. https://doi.org/10.17584/rcch.2017v11i1.4725 Chowdappa, P., Mohan Kumar, S. P., Jyothi Lakshmi, M., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009 Cohen, Y. (1994). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84(1), 55–59. https://doi.org/10.1094/Phyto-84-55 Cohen, Y., & Gisi, U. (1994). Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology, 45(6), 441–456. https://doi.org/10.1016/S0885-5765(05)80041-4 Cohen, Y., Niderman, T., Mosinger, E., & Fluhr, R. (1994). beta-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiology, 104(1), 59–66. https://doi.org/10.1104/pp.104.1.59 Cohen, Y. R. (2000). Method for protecting plants from fungal infection. https://patentimages.storage.googleapis.com/f2/58/60/bd52d493cc4915/US6075051.pd Cohen, Y. R. (2002). β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 86(5), 448–457. https://doi.org/10.1094/pdis.2002.86.5.448 Cohen, Y, Reuveni, M., & Baider, A. (2002). Local and Systemic Activity of Baba ( Dl-3-Aminobutyric (pp. 207–224). Cohen, Yigal., Rubin, A. E., & Vaknin, M. (2011). Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 130(1), 13–27. https://doi.org/10.1007/s10658-010-9724-8 Cohen, Yigal, Baider, A., Gotlieb, D., & Rubin, E. (2007). Control of Bremia lactucae in Field-Grown Lettuce by DL-3-Amino-n-Butanoic Acid (BABA). 3rd QLIF Congress: Improving Sustainability in Organic and Low Input Food Production Systems, University of Hohenheim, Germany, 1–5. http://orgprints.org/view/projects/int_conf_qlif2007.html%0AControl Cohen, Yigal, Reuveni, M., & Baider, A. (1999). Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. European Journal of Plant Pathology, 105(4), 351–361. https://doi.org/10.1023/A:1008734019040 Cohen, Yigal, Rubin, A. E., & Kilfin, G. (2010). Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 126(4), 553–573. https://doi.org/10.1007/s10658-009-9564-6 Cohen, Yigal, Vaknin, M., & Mauch-Mani, B. (2016). BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 44(4), 513–538. https://doi.org/10.1007/s12600-016-0546-x Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004 de Vries, S., von Dahlen, J. K., Schnake, A., Ginschel, S., Schulz, B., & Rose, L. E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 94(4), 1–15. https://doi.org/10.1093/femsec/fiy037 De Vrieze, M., Germanier, F., Vuille, N., & Weisskopf, L. (2018). Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9(2573), 1–13. https://doi.org/10.3389/fmicb.2018.02573 Departamento Administrativo Nacional de Estadística DANE. (2018). Boletín mensual insumos y factores asociados a la producción agropecuaria (Issue 75). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_sep_2018.pdf Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, (https://www.r-project.org/) Di Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144–149. https://doi.org/10.1016/j.biocontrol.2017.08.010 Elsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L., & Bennett, J. W. (2020). Trichoderma Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen Phytophthora infestans in Postharvest Potato Tubers. Journal of Agricultural and Food Chemistry, 68(31), 8163–8171. https://doi.org/10.1021/acs.jafc.0c03150 Elsherbiny, E. A., Dawood, D. H., & Safwat, N. A. (2021). Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pesticide Biochemistry and Physiology, 171, 104721. Elsisi, A. A., & Shams, A. S. (2019). Controlling of Artichoke powdery mildew and improving Vegetative growth and yield productivity by using Dl-β-aminobutyric acid (BABA) with some natural essential oils. Middle East Journal of Applied Sciences, 09(02), 443–455. Eschen-Lippold, L., Altmann, S., & Rosahl, S. (2010). DL-β-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions, 23(5), 585–592. https://doi.org/10.1094/MPMI-23-5-0585 Farahani, A. S., Mohsen Taghavi, S., Afsharifar, A., & Niazi, A. (2016). Effect of β-aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. Carotovorum. Journal of Plant Diseases and Protection, 123(4), 155–161. https://doi.org/10.1007/s41348-016-0028-x Fatima, K., Noureddine, K., Henni, J. E., & Mabrouk, K. (2015). Antagonistic effect of Trichoderma harzianum against Phytophthora infestans in the North-west of Algeria. 6(4), 44–53. Feicán-Mejia, C. G., Encalada-Alvarado, C. R., & Becerril-Román, A. E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum Cav.). Agroproductividad, 9, 78–86. Https://www.researchgate.net/profile/Carlos_Feican/publication/312938646_DESCRIPCION_AGRONOMICA_DEL_CULTIVO_DE_TOMATE_DE_ARBOL_Solanum_betaceum_Cav/links/588a4f3d45851522127ff7b3/DESCRIPCION-AGRONOMICA-DEL-CULTIVO-DE-TOMATE-DE-ARBOL-Solanum-betaceum-Cav.p Fischer, M. J. C., Farine, S., Chong, J., Guerlain, P., & Bertsch, C. (2009). The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protection, 28(8), 710–712. https://doi.org/10.1016/j.cropro.2009.03.014 Forbes, Gregory A, Morales, J. G., Restrepo, S., Pérez, W., Gamboa, S., Ruiz, R., Cedeño, L., Fermin, G., Andreu, A. B., Acuña, I., & Oliva, R. (2013). Phytophthora infestans and Phytophthora andina on Solanaceous hosts in South America. In Phytophthora: a global perspective (pp. 48–58). https://doi.org/10.1079/9781780640938.0048 Gajendran, K., Gonzales, M., Farmer, A., Archuleta, E., Win, J., Waugh, M., & Kamoun, S. (2006). Phytophthora functional genomics database (PFGD): functional genomics of Phytophthora-plant interactions. Nucleic Acids Research, 34(90001), D465–D470. https://doi.org/10.1093/nar/gkj119 García-Núñez, H. G., Martínez-Campos, Á. R., Hermosa-Prieto, M. R., Monte-Vázquez, E., Aguilar-Ortigoza, C. J., & González-Esquivel, C. E. (2017). Caracterización morfológica y molecular de cepas nativas de Trichoderma y su potencial de biocontrol sobre Phytophthora infestans. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 35(1), 58–79. https://doi.org/10.18781/r.mex.fit.1605-4 Ghazanfar, M. U., Raza, W., Wakil, W., Hussain, I., & Qamar, M. I. (2020). Management of late blight and sucking insect pests of potato with application of salicylic acid and β-aminobutyric acid under greenhouse conditions. Sarhad Journal of Agriculture, 36(2), 646–654. https://doi.org/10.17582/JOURNAL.SJA/2020/36.2.646.654 Gómez-Alpizar, L., Hu, C.-H., Oliva, R., Forbes, G., & Ristaino, J. B. (2008). Phylogenetic relationships of Phytophthora andina , a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans . Mycologia, 100(4), 590–602. https://doi.org/10.3852/07-074r1 Goss, E. M., Cardenas, M. E., Myers, K., Forbes, G. A., Fry, W. E., Restrepo, S., & Grünwald, N. J. (2011). The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the irish potato famine pathogen, P. infestans. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0024543 Gudero, G., Hussien, T., Dejene, M., & Biazin, B. (2018). Integrated Management of Tomato Late Blight [Phytophthora infestans (Mont.) de Bary] Through Host Plant Resistance and Reduced Frequency of Fungicide in Arbaminch Areas, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(9). https://www.researchgate.net/publication/336209921%0AIntegrated Haesaert, G., Vossen, J. H., Custers, R., De Loose, M., Haverkort, A., Heremans, B., Hutten, R., Kessel, G., Landschoot, S., Van Droogenbroeck, B., Visser, R. G. F., & Gheysen, G. (2015). Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection, 77, 163–175. https://doi.org/10.1016/j.cropro.2015.07.018 Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819–829. https://doi.org/10.1094/MPMI-18-0819 Han, G. Z. (2019). Origin and evolution of the plant immune system. New Phytologist, 222(1), 70–83. https://doi.org/10.1111/nph.15596 Hao, W., Gray, M. A., Förster, H., & Adaskaveg, J. E. (2019). Evaluation of new oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Disease, 103(4), 619–628. https://doi.org/10.1094/PDIS-07-18-1152-RE Hassan, M. A. E., & Buchenauer, H. (2007). Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. Journal of Plant Diseases and Protection, 114(4), 151–158. https://doi.org/10.1007/BF03356211 Hassan, M., & Abo-Elyousr, K. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). European Journal of Plant Pathology, 136(1), 145–157. https://doi.org/10.1007/s10658-012-0149-4 Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52(3), 249–264. https://doi.org/10.1007/s11540-009-9136-3 Hernandez, M. L., Falloon, R. E., Butler, R. C., Conner, A. J., & Bulman, S. R. (2015). Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid. Australasian Plant Pathology, 44(4), 445–453. https://doi.org/10.1007/s13313-015-0363-6 Hinestrosa Maldonado, A., & Peláez Restrepo, D. (2006). Manual fitosanitario para la protección de cultivos de fruta pequeña de clima frío moderado. In Gobernación de Antioquia, Corporación PBA. https://doi.org/10.1017/CBO9781107415324.004 Hong, J. K., Hwang, B. K., & Kim, C. H. (1999). Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 147(4), 193–198. https://doi.org/10.1046/j.1439-0434.1999.147004193.x Ivanov, A. A., Ukladov, E. O., & Golubeva, T. S. (2021). Phytophthora infestans: An overview of methods and attempts to combat late blight. Journal of Fungi, 7(12), 1071. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric acid-induced resistance in plants Gabor. 107, 29–37. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89–91. https://doi.org/10.1126/science.1170025 Justyna, P. G., & Ewa, K. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-z Kamoun, S. (2003). Molecular Genetics of Pathogenic MINIREVIEWS Molecular Genetics of Pathogenic Oomycetes. Eukaryotic Cell, 2(2), 191–199. Kilonzi, J. M., Mafurah, J. J., & Nyongesa, M. W. (2020). In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum. African Journal of Microbiology Research, 14(5), 148–157. https://doi.org/10.5897/AJMR2019.9195 Kim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., Yun, B. W., & Hong, J. K. (2013). Β-Amino-N-Butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage. Plant Pathology Journal, 29(3), 305–316. https://doi.org/10.5423/PPJ.OA.12.2012.0191 Koné, D., Csinos, A. S., Jackson, K. L., & Ji, P. (2009). Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Protection, 28(6), 533–538. https://doi.org/10.1016/j.cropro.2009.02.005 Kroon, L. P. N. M., Bakker, F. T., Van Den Bosch, G. B. M., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782. https://doi.org/10.1016/j.fgb.2004.03.007 Ladi, E., Shukla, N., Bohra, Y., Tiwari, A. K., & Kumar, J. (2020). Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phytoparasitica, 48(3), 357–370. https://doi.org/10.1007/s12600-020-00804-9 Lagos, T. C., Checa, O. E., Bacca, T., Betancourt, C. A., Vélez, J. A., Benavides, C. A., Portilla, A. E., Lagos, L. K., & Insuasty, S. (2012). Principales Problemas Sanitarios en el cultivo de Tomate de árbol Cyphomandra betacea (Cav.) Sendt en el Departamento de Nariño (Universidad de Nariño (ed.)). https://repository.agrosavia.co/handle/20.500.12324/1862 Leal, A. (2020). Agronegocios.. https://www.agronegocios.co/agricultura/colombia-exporto-us743-millones-de-frutas-exoticas-en-2019-6-mas-que-en-2018-2950228 Li, G., Meng, F., Wei, X., & Lin, M. (2019). Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Scientia Horticulturae, 257(July). https://doi.org/10.1016/j.scienta.2019.108713 Li, J., Trivedi, P., & Wang, N. (2016). Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology®, 106(1), 37–46. https://doi.org/10.1094/PHYTO-08-15-0196-R Liljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytophthora infestans-effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127(2), 171–183. https://doi.org/10.1007/s10658-010-9582-4 Lobo Arias, M. (2006). Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. Corpoica Ciencia y Tecnología Agropecuaria, 7(2), 40–54. https://doi.org/10.21930/rcta.vol7_num2_art:68 Ludewing, U., & Koch, W. (2000). Amino acid transporters in plants. Plant Membrane and Vacuolar Transporters, 1465, 267–282. https://doi.org/10.1079/9781845934026.0267 Luna, Estrella;, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520 Luna, Estrella, López, A., Kooiman, J., & Ton, J. (2014). Role of NPR1 and KYP in long-lasting induced resistance by Î2-aminobutyric acid. Frontiers in Plant Science, 5(May), 1–9. https://doi.org/10.3389/fpls.2014.00184 Luna, Estrella, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Induced resistance for plant defense. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520 Ma, Y., Chang, Z. zhou, Zhao, J. tao, & Zhou, M. guo. (2008). Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44(1), 24–31. https://doi.org/10.1016/j.biocontrol.2007.10.005 Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424. https://doi.org/10.1016/j.jplph.2012.05.005 MADR. (2005). La cadena de los frutales de exportación en Colombia: Una mirada global de su estructura y dinámica 1991-2005. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 67. http://www.agronet.gov.co/www/docs_agronet/2005112145659_caracterizacion_cacao.pdf Majeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late Blight of Potato (Phytophthora infestans) II: Employing Integrated Approaches in Late Blight Disease Management. PSM Biological Research, 2(3), 117–123. https://www.journals.psmpublishers.org/index.php/biolres/article/view/71 Marcucci, E., Aleandri, M. P., Chilosi, G., & Magro, P. (2010). Induced resistance by β-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158(10), 659–667. https://doi.org/10.1111/j.1439-0434.2010.01677.x Marquez, C., Otero, C., & Cortes, M. (2007). Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) En poscosecha changes physiological, textural, physicochemical and microestructural of the tree tomato (Cyphomandra betacea S.) At postharve. Vitae, 14(2), 07–08. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0121-40042007000200002 Martin, R. L., Le Boulch, P., Clin, P., Schwarzenberg, A., Yvin, J. C., Andrivon, D., ... & Val, F. (2020). A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. Plos one, 15(8), e0236633. Matson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology, 105(12), 1594–1600. https://doi.org/10.1094/PHYTO-05-15-0129-R Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132 McKee, M. L., Zheng, L., O’sullivan, E. C., Kehoe, R. A., Doyle Prestwich, B. M., Mackrill, J. J., & McCarthy, F. O. (2020). Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of Phytophthora infestans. Pathogens, 9(7), 1–23. https://doi.org/10.3390/pathogens9070558 Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.16437 Mhatre, P. H., Lekshmanan, D. K., Palanisamy, V. E., Bairwa, A., & Sharma, S. (2021). Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. Journal of Phytopathology, 169(1), 52–61. https://doi.org/10.1111/jph.12958 Mideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., Myers, K., Tabima, J., Goss, E. M., Bernal, A., Lagos, L. E., Grajales, A., Gonzalez, L. N., Cooke, D. E. L., Fry, W. E., Grünwald, N., Matute, D. R., & Restrepo, S. (2018). Phytophthora betacei , a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia . Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39–55. https://doi.org/10.3767/persoonia.2018.41.03 Miller, J., Olsen, N., Woodell, L., Porter, L., & Clayson, S. (2006). Post-Harvest Applications of Zoxamide and Phosphite for Control of Potato Tuber Rots Caused by Oomycetes at Harvest. American Journal of Potato Research, 83(January), 269–278. Mosquera Espinosa, A. T. (2016). Fitonematodos asociados a Cyphomandra betacea (Cav.) Sendtn., Solanum quitoense Lam. y Daucus carota L. en el Departamento de Boyacá, Colombia. Acta Agronómica, 65(1), 87–97. https://doi.org/10.15446/acag.v65n1.45180 Mosquera, T., Fernández, C., Martínez, L., & Acuña, A. (2008). Genética de la resistencia de la papa ( Solanum tuberosum ) a patógenos . Estado de arte Genetics of the Solanum tuberosum pathogen resistance . State of research. 26(1), 7–15. Najdabbasi, N., Mirmajlessi, S. M., Dewitte, K., Landschoot, S., Mänd, M., Audenaert, K., Ameye, M., & Haesaert, G. (2020). Biocidal activity of plant-derived compounds against Phytophthora infestans: An alternative approach to late blight management. Crop Protection, 138, 105315. https://doi.org/10.1016/j.cropro.2020.105315 Navia, Ó., Gandarillas, A., Ortuño, N., Meneses, E., & Franco, J. (2012). Tizón de la Papa (Phytophthora infestans ) y Agricultura Sostenible : Integración de Resistencia Sistémica Inducida y Estrategias de Manejo Integrado. Fundación PROINPA, 1–18. http://www.proinpa.org/phocadownload/articulos/Papa/Oscar Navia_tizon papa.pdf Nowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and Tomato Late Blight Caused by Phytophthora infestans : An Overview of Pathology and Resistance Breeding. Plant Disease, 96(1), 4–17. https://doi.org/10.1094/PDIS-05-11-0458 Oliva, R. F., Kroon, L. P. N. M., Chacón, G., Flier, W. G., Ristaino, J. B., & Forbes, G. A. (2010). Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology, 59(4), 613–625. https://doi.org/10.1111/j.1365-3059.2010.02287.x Olivieri, F. P., Lobato, M. C., González Altamiranda, E., Daleo, G. R., Huarte, M., Guevara, M. G., & Andreu, A. B. (2009). BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. European Journal of Plant Pathology, 123(1), 47–56. https://doi.org/10.1007/s10658-008-9340-z Oostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19–28. https://doi.org/10.1023/A:1008760518772 Ordoñez, M. E., Hohl, H. R., Velasco, J. A., Ramon, M. P., Oyarzun, P. J., Smart, C. D., Fry, W. E., Forbes, G. A., & Erselius, L. J. (2000). A novel population of Phytophthora, similar to P. infestans, attacks wild Solanum species in ecuador. Phytopathology, 90(2), 197–202. https://doi.org/10.1094/PHYTO.2000.90.2.197 Ovadia, A., Biton, R., & Cohen, Y. (2000). Induced resistance to downy mildew and fusarium wilt in cucurbits. https://doi.org/10.17660/ActaHortic.2000.510.8 Pajot, E., Le Corre, D., & Silué, D. (2001). Phytogard® and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology, 107(9), 861–869. https://doi.org/10.1023/A:1013136608965 Pardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410 Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113 Pastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–13. https://doi.org/10.3389/fpls.2014.00295 Peerzada, S. H., Bhat, K. A., & Viswanath, H. S. (2020). Studies on Management of Late Blight (Phytophthora infestans (Mont) de Bary) of Potato Using Organic Soil Amendments. International Journal of Current Microbiology and Applied Sciences, 9(2), 2093–2099. https://doi.org/10.20546/ijcmas.2020.902.237 Piekna Grochala, J., & Kepczyńska, E. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-z Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2011). Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055 Pirondi, A., Brunelli, A., Muzzi, E., & Collina, M. (2017). Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). Journal of General Plant Pathology, 83(4), 244–252. https://doi.org/10.1007/s10327-017-0717-8 Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Droby, S. (2003). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. European Journal of Plant Pathology, 109, 901–907. https://doi.org/10.1094/phyto.2002.92.4.393 Ramírez, F., & Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248(January), 206–215. https://doi.org/10.1016/j.scienta.2019.01.019 Rejeb, I. Ben, Pastor, V., Gravel, V., & Mauch-Mani, B. (2018). Impact of β-aminobutyric acid on induced resistance in tomato plants exposed to a combination of abiotic and biotic stress. Journal of Agricultural Science and Botany, 2(3). http://www.alliedacademies.org/articles/impact-of-aminobutyric-acid-on-induced-resistance-in-tomato-plantsexposed-to-a-combination-of-abiotic-and-biotic-stress-10758.html Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936. https://doi.org/10.1094/PDIS.2003.87.8.933 Reuveni, Moshe, Zahavi, T., & Cohen, Y. (2001). Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica, 29(2), 125–133. https://doi.org/10.1007/BF02983956 Revelo, E., Dorado, G., Lagos, L. E., & Burbano-Figueroa, O. (2011). Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Tropical Plant Pathology, 36(6), 367–373. https://doi.org/10.1590/s1982-56762011000600005 Riofrío, L. A. (2010). Regeneración de plantas de tomate de árbol ( Solanum betacea ) a partir de protoplastos. Universidad San Fracisco De Quito Rojas-Estevez, P., Urbina-Gómez, D. A., Ayala-Usma, D. A., Guayazan-Palacios, N., Mideros, M. F., Bernal, A. J., Cardenas, M., & Restrepo, S. (2020). Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity. Frontiers in Genetics, 11(June). https://doi.org/10.3389/fgene.2020.00579 Safaie Farahani, A., & Taghavi, S. M. (2017). Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australasian Plant Disease Notes, 12(1), 12–15. https://doi.org/10.1007/s13314-016-0226-1 Safarova, F., & Novruzova, E. (2021). Self-defense Mechanisms of Plants in Nature. Bulletin of Science and Practice, 7(8), 73-77. (in Russian). https://doi.org/10.33619/2414-2948/69/09 Sanabria, K., Pérez, W., & Andrade-Piedra, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 105241 Šašek, V., Nováková, M., Dobrev, P. I., Valentová, O., & Burketová, L. (2012). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? European Journal of Plant Pathology, 133(1), 279–289. https://doi.org/10.1007/s10658-011-9897-9 Saville, A., Graham, K., Grünwald, N. J., Myers, K., Fry, W. E., & Ristaino, J. B. (2015). Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 99(5), 659–666. https://doi.org/10.1094/PDIS-05-14-0452-RE Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 Schotsmans, W. C., East, A., & Woolf, A. (2011). Tamarillo (Solanum betaceum (Cav.)). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.427 Shailasree, S., Ramachandra, K. K., & Shetty, S. H. (2007). β-Amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australasian Plant Pathology, 36(2), 204–211. https://doi.org/10.1071/AP06093 Shailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57(8), 721–728. https://doi.org/10.1002/ps.346 Shattock, R. C. (2002). Phytophthora infestans: Populations, pathogenicity and phenylamides. Pest Management Science, 58(9), 944–950. https://doi.org/10.1002/ps.527 Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450 Si-Ammour, A., Mauch-Mani, B., & Mauch, F. (2003). Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: β-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology, 4(4), 237–248. https://doi.org/10.1046/j.1364-3703.2003.00168.x Siegrist, J., Orober, M., & Buchenauer, H. (2000). β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiological and Molecular Plant Pathology, 56, 95–106. https://doi.org/10.1006?pmpp.1999.0255, Silué, D., Pajot, E., & Cohen, Y. (2002). Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-β-amino-n-butanoic acid (BABA). Plant Pathology, 51(1), 97–102. https://doi.org/10.1046/j.1365-3059.2002.00649.x Slaughter, A. R., Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M., & Mauch-Mani, B. (2008). Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: Involvement of pterostilbene. European Journal of Plant Pathology, 122(1), 185–195. https://doi.org/10.1007/s10658-008-9285-2 Soto Plancarte, A., Rodríguez Alvarado, G., Fernández Pavía, Y. L., Pedraza Santos, M. E., López Pérez, L., Celaya Díaz, M., & Fernández Pavía, S. P. (2017). Protocolos de aislamiento y diagnóstico de Phytophthora spp . enfoque aplicado a la investigación * Isolation and diagnosis protocols of Phytophthora spp . applied research approach Resumen. Revista Mexicana de Ciencias Agrícolas Vol.8, 8(December), 1867–1880. https://doi.org/10.29312/remexca.v8i8.708 Sunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-ß-amino-n-butyric acid. European Journal of Plant Pathology, 102(7), 663–670. https://doi.org/10.1007/BF01877247 Tamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA. Tavallali, V., Karimi, S., Mohammadi, S., & Hojati, S. (2008). Effects of ß-aminobutyric Acid on the Induction of Resistance to Penicillium italicum. World Applied Sciences Journal, 5(3), 345–351. Tejeda-sartorius, M., Martínez-gallardo, N. A., Olalde-Portugal, V., & Délano-frier, J. P. (2007). Jasmonic Acid Accelerates the Expression of a Pathogen-Specific Lipoxygenase (POTLX-3) and Delays Foliar Late Blight Development in Potato (Solanum tuberosum L.). Revista Mexicana de Fitopatología, 25(1), 18–25. Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G., & Mauch-Mani, B. (2016). The priming molecule β -aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213(2), 552–559. https://doi.org/10.1111/nph.14298 Ton, J., Jakab, G., Toquin, V., Flors, V., Lavicoli, A., Maeder, M., Métrax, J.-P., & Mauch-Mani, B. (2005). Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17(March), 987–999. https://doi.org/10.1105/tpc.104.029728.2 Ton, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119–130. https://doi.org/10.1111/j.1365-313X.2004.02028.x Tosi, L., Luigetti, R., & Zazzerini, A. (1998). Induced Resistance Against Plasmopara helianthi in Sunflower Plants by DL-β-Amino-n-butyric acid. Journal of Phytopathology, 146(5–6), 295–299. https://doi.org/10.1111/j.1439-0434.1998.tb04694.x Upson, J. L., Zess, E. K., Białas, A., Wu, C. hang, & Kamoun, S. (2018). The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 44, 108–116. https://doi.org/10.1016/j.pbi.2018.03.003 Vallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science Society of America, 44, 1920–1934. Vasyukova, N. I., Ozeretskovskaya, O. L., Chalenko, G. I., Gerasimova, N. G., L’vova, A. A., Il’ina, A. V., Levov, A. N., Varlamov, V. P., & Tarchevsky, I. A. (2010). Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. Applied Biochemistry and Microbiology, 46(3), 346–351. https://doi.org/10.1134/S0003683810030166 Walters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71(1–3), 3–17. https://doi.org/10.1016/j.pmpp.2007.09.008 Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. Journal of Agricultural Science, 147(5), 523–535. https://doi.org/10.1017/S0021859609008806 Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95(12), 1368–1373. https://doi.org/10.1094/PHYTO-95-1368 Walters, Dale R. (2009). Are plants in the field already induced? Implications for practical disease control. Crop Protection, 28(6), 459–465. https://doi.org/10.1016/j.cropro.2009.01.009 Walters, Dale R., Havis, N. D., Paterson, L., Taylor, J., & Walsh, D. J. (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95(5), 595–600. https://doi.org/10.1094/PDIS-08-10-0577 Wilkinson, S. W., Pastor, V., Paplauskas, S., Pétriacq, P., & Luna, E. (2018). Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology, 67(1), 30–41. https://doi.org/10.1111/ppa.12725 Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193(3), 770–778. https://doi.org/10.1111/j.1469-8137.2011.03987.x Yuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. https://doi.org/10.1016/j.pbi.2021.102030 Zapata P., J. L., & Bernal E., J. A. (2012). Caracterización de razas fisiológicas de Phytophthora infestans (Mont.) de Bary en lulo (Solanum quitoense Lam.). Corpoica Ciencia y Tecnología Agropecuaria, 13(1), 13. https://doi.org/10.21930/rcta.vol13_num1_art:235 Zhang, C., Wang, J., Zhang, J., Hou, C., & Wang, G. (2011). Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biology and Technology, 61(2–3), 145–151. https://doi.org/10.1016/j.postharvbio.2011.02.008 Zhang, S., Reddy, M. S., Kokalis-Burelle, N., Wells, L. W., Nightengale, S. P., & Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884. https://doi.org/10.1094/PDIS.2001.85.8.879 Zimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897 Zimmerli, Laurent, Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897 Zimmerli, Laurent, Me, J., & Mauch-mani, B. (2001). β- aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(June), 517–523. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 114 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Agronómicas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82165/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82165/3/1035428073.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/82165/4/1035428073.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 29e55225c1146cdf0cdecd14f3ab7f46 07a80c4f3454b5682735f977c6c2ce8f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090203434844160 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Morales Osorio, Juan Gonzaloce9d0b85a9448c46affc4098c5e44864Patiño Hoyos, Luis Fernando2999ad1a444ebacafb6ccd0b7a3b0f30Arboleda-Giraldo, Daniela1dc127a66aa29844a6171172b18b6281Fitotecnia Tropical2022-08-29T15:11:18Z2022-08-29T15:11:18Z2021-08https://repositorio.unal.edu.co/handle/unal/82165Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa gota o el tizón causado por Phytophthora infestans (Mont.) De Bary, es una enfermedad de gran importancia en la producción de papa y el tomate de mesa, por ser devastadora y de gran impacto económico. Además de estas dos especies, se reportado su presencia en otros cultivos de la familia Solanáceas como Solanum betaceum (Tomate de árbol o Tamarillo) y Solanum quitoense (Lulo). Las características agroecológicas de las zonas en donde se cultiva tomate de árbol son altamente favorables durante casi todo el año, al desarrollo de P. infestans, identificándose fuertes epidemias en las últimas décadas, lo que ha ocasionado cuantiosas pérdidas a los agricultores. El fruto de tomate de árbol se caracteriza por su alto valor nutricional y agroindustrial, por ende, posee un potencial de exportación hacia varios países. El manejo de la enfermedad en ausencia de variedades resistentes es una labor difícil y se centra en el uso de fungicidas convencionales como su método de control primordial. Consecuentemente se genera un impacto negativo en la salud y el medio ambiente, además de un aumento de fenotipos resistentes de este oomycete a fungicidas, siendo necesario encontrar alternativas para el manejo y control de la enfermedad. En este trabajo se estudió el efecto del ácido β-aminobutírico (β-aminobutanoico) (BABA), como inductor de defensa en S. betaceum contra P. infestans sensu lato. Los resultados mostraron que aplicaciones de BABA a una dosis de 10 mM: i) exhibió una reducción significativa del crecimiento del oomycete in vitro, ii) el inductor demostró su capacidad de sistemicidad, al reducir la enfermedad en un punto distante desde donde se aplicó directamente, iii) cuando BABA se aplicó previa y simultáneamente con la inoculación mediante esporangios del patógeno la respuesta de defensa inducida fue mayor, iv) la duración de la defensa inducida se expresó al menos hasta 15 días después de la aspersión de BABA, y v) la aplicación por aspersión de BABA en condiciones de campo redujo significativamente la lesión por la enfermedad. Se discute el uso potencial de BABA para el manejo de la gota o tizón en cultivos de tomate de árbol. (Texto tomado de la fuente)The late blight caused by Phytophthora infestans (Mont.) De Bary, is the most devastating disease in potato and tomato crops worldwide. Besides these, late blight has been reported in other Andean crops of the Solanaceae family such as Solanum betaceum (Tree tomato or Tamarillo) and Solanum quitoense (Lulo). The agroecological characteristics of the areas where tree tomatoes are grown are favorable to the development of P. infestans, with strong epidemics being identified in recent decades, which caused serious losses to farmers. The tree tomato fruit is characterized by its high nutritional and agro-industrial value; therefore, it has a potential for export to several countries. Their management in the absence of resistant varieties is a difficult task and focuses mainly on the use of conventional fungicides of chemical synthesis. Consequently, a negative impact on health and the environment is generated, in addition to an increase in the probability of the emergence of resistant strains of this oomycete to fungicides. In the present research, the effect of β-aminobutyric- acid (3-aminobutanoic acid) (BABA) as a defense inducer in S. betaceum against P. infestans sensu lato was investigated. The results showed that applications of BABA at a dose of 10 mM: i) exhibited a significant reduction in the oomycete in vitro growth, ii) the inducer demonstrated its capacity for systematicity by reducing disease at a point distant from where it was directly applied, iii) when BABA was applied prior to and simultaneously with P. infestans sporangia, the induced defense response was greater than when it was applied after pathogen inoculation, iv) the induced defense was expressed at least up to 15 days after BABA spraying, v) spray application of BABA under field conditions significantly reduced late blight disease. The potential use of BABA for late blight disease management in tree tomato crops is discussed.Minciencias | Ministerio de Ciencia Tecnología e InnovaciónMaestríaMagister en Ciencias AgrariasEl propósito será impulsar la promoción del conocimiento, la productividad y la contribución al desarrollo y la competitividad del paísMetodología cuantitativaSanidad VegetalÁrea Curricular en Producción Agraria Sosteniblexiii, 114 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Ciencias AgrariasDepartamento de AgronómicasFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín630 - Agricultura y tecnologías relacionadasTomate de árbol - Enfermedades y plagasTree tomato - disease and pestsCrecimiento de PhytophthoraDefensa sistémicaDuraciónBABAReducción de enfermedad en campoPhytophthora infestans sensu latoPhytophthora growthDurabilityReduction of disease in the field.Systemic resistanceInducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutíricoInduction of defense in Solanum betaceum against attack by Phytophthora infestans sensu lato by β-aminobutyric acidTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAcuña, I., Bravo, R., & Remehue, I. (2015). Tizón tardío de la papa : Estrategias de manejo integrado con alertas temprana. 137AGRIOS, G. N. (2005). How Plants Defend Themselves Against Pathogens. Plant Pathology, 207–248. https://doi.org/10.1016/b978-0-08-047378-9.50012-9Alexandersson, E., Jacobson, D., Vivier, M. A., Weckwerth, W., & Andreasson, E. (2014). Field-omics-understanding large-scale molecular data from field crops. Frontiers in Plant Science, 5(JUN), 1–6. https://doi.org/10.3389/fpls.2014.00286Alexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101673Altamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37(4), 421–427. https://doi.org/10.1071/AP08033Amzalek, E., & Cohen, Y. (2007a). Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology, 97(2), 179–186. https://doi.org/10.1094/PHYTO-97-2-0179An, Y., Kang, S., Kim, K. D., Hwang, B. K. K., & Jeun, Y. (2010). Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 29(12), 1406–1412. https://doi.org/10.1016/j.cropro.2010.07.023Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62(2), 162–170. https://doi.org/10.1002/ps.1142Arici, Ş. E., & Dehne, H. W. (2007). Induced resistance against Phytophthora infestans by chemical inducers BION and BABA in tomato plants. Acta Horticulturae, 729, 503–507. https://doi.org/10.17660/ActaHortic.2007.729.86Asim, R., Khan, A., Ghazanfar, M. U., & Raza, W. (2019). Eco-friendly management of Phytophthora infestans causing late blight of potato. May, 144–147.Asohofrucol. (2018). Balance Hortifruticola 2018. In Asohofrucol. http://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdfÁvila, E. (2015). Manual de Tomate de árbol. Cámara de Comercio de Bogotá, 1, 50. https://doi.org/10.1158/2159-8290.CD-16-1154Avrova, A. O., Boevink, P. C., Young, V., Grenville-Briggs, L. J., Van West, P., Birch, P. R. J., & Whisson, S. C. (2008). A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 10(11), 2271–2284. https://doi.org/10.1111/j.1462-5822.2008.01206.xBaccelli, I., & Mauch-Mani, B. (2016). Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 91(6), 703–711. https://doi.org/10.1007/s11103-015-0406-yBae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005Baider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399–409. https://doi.org/10.1007/BF02979812Bain, R. A., & Walters, D. R. (2016). The contribution of host resistance elicitors to the control of potato foliar blight in Scotland. The Dundee Conference: Crop Protection in Northern Britain 2016, 23-24 February 2016, Dundee, UK, 205–210.Balmer, A., Glauser, G., Mauch-Mani, B., & Baccelli, I. (2019). Accumulation patterns of endogenous β-aminobutyric acid during plant development and defence in Arabidopsis thaliana. In Plant Biology (Vol. 21, Issue 2). https://doi.org/10.1111/plb.12940Barilli, E., Rubiales, D., Amalfitano, C., Evidente, A., & Prats, E. (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5), 1095–1106. https://doi.org/10.1007/s00425-015-2339-8Barilli, E., Sillero, J. C., & Rubiales, D. (2010). Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. Journal of Phytopathology, 158(1), 30–34. https://doi.org/10.1111/j.1439-0434.2009.01571.xBaysal, Ö., Gürsoy, Y. Z., Örnek, H., & Duru, A. (2005). Induction of oxidants in tomato leaves treated with DL-β-Amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. European Journal of Plant Pathology, 112(4), 361–369. https://doi.org/10.1007/s10658-005-6234-1Beckers, G. J., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431. https://doi.org/10.1016/j.pbi.2007.06.002Bengtsson, T., Holefors, A., Witzell, J., Andreasson, E., & Liljeroth, E. (2014). Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathology, 63(1), 193–202. https://doi.org/10.1111/ppa.12069Birch, P. R. J., & Whisson, S. C. (2001). Pathogen profile Phytophthora infestans enters the genomics era. MOLECULAR PLANT PATHOLOGY, 2(5), 257–263.Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346Bostock, R. M., Thaler, J., Fidantsef, A., & Duffey, S. (1999). Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology, 25(7), 1597–1609. http://www.springerlink.com/index/UT5534K176615T37.pdfBoubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants Academic Press. (pp. 79-99).Bruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2016). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128–134. https://doi.org/10.1016/j.cropro.2016.10.003Burgos, H., Chávez, C., Amaya, J., & Julca, J. (2006). Tomate de árbol (Cyphomandra betacea Send.). 8. www.regionlalibertad.gob.peBurra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., & Alexandersson, E. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/s12870-014-0254-yBuswell, W., Schwarzenbacher, R. E., Luna, E., Sellwood, M., Chen, B., Flors, V., Pétriacq, P., & Ton, J. (2018). Chemical priming of immunity without costs to plant growth. New Phytologist, 218(3), 1205–1216. https://doi.org/10.1111/nph.1506Cárdenas, M., Grajales, A., Sierra, R., Rojas, A., González-Almario, A., Vargas, A., Marín, M., Fermín, G., Lagos, L. E., Grünwald, N. J., Bernal, A., Salazar, C., & Restrepo, S. (2011). Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 12. https://doi.org/10.1186/1471-2156-12-23Carreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdfCastaño Monsalve, J. I., Guillermo Ramírez Gil, J. I., Fernando Patiño Hoyos, L. I., & Gonzalo Morales Osorio, J. I. (2015). Alternativa para el manejo de Phytophthora infestans (Mont.) de Bary en Solanum betaceum Cav. mediante inductores de resistencia. Rev. Protección Veg, 30(3), 204–212. http://blast.ncbi.nlm.nih.gov/Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., Modrie, P., Legrève, A., Mahillon, J., & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9(143). https://doi.org/10.3389/fmicb.2018.00143Cerkauskas, R. F., Ferguson, G., & Macnair, C. (2015). Management of Phytophthora blight (Phytophthora capsici) on vegetables in Ontario: Some greenhouse and field aspects. Canadian Journal of Plant Pathology, 37(3), 285–304. https://doi.org/10.1080/07060661.2015.1078411Chañag-Miramag, H. A., Viveros-Rojas, J., Álvarez-Ordoñez, S., Criollo-Escobar, H., & Lagos-Mora, L. E. (2017). Evaluación de genotipos de tomate de árbol [Cyphomandra betacea (Cav.) Sendt.] frente al ataque de Phytophthora infestans (Mont.) de Bary sensu lato. Revista Colombiana de Ciencias Hortícolas, 11(1), 11–20. https://doi.org/10.17584/rcch.2017v11i1.4725Chowdappa, P., Mohan Kumar, S. P., Jyothi Lakshmi, M., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009Cohen, Y. (1994). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84(1), 55–59. https://doi.org/10.1094/Phyto-84-55Cohen, Y., & Gisi, U. (1994). Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology, 45(6), 441–456. https://doi.org/10.1016/S0885-5765(05)80041-4Cohen, Y., Niderman, T., Mosinger, E., & Fluhr, R. (1994). beta-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiology, 104(1), 59–66. https://doi.org/10.1104/pp.104.1.59Cohen, Y. R. (2000). Method for protecting plants from fungal infection. https://patentimages.storage.googleapis.com/f2/58/60/bd52d493cc4915/US6075051.pdCohen, Y. R. (2002). β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 86(5), 448–457. https://doi.org/10.1094/pdis.2002.86.5.448Cohen, Y, Reuveni, M., & Baider, A. (2002). Local and Systemic Activity of Baba ( Dl-3-Aminobutyric (pp. 207–224).Cohen, Yigal., Rubin, A. E., & Vaknin, M. (2011). Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 130(1), 13–27. https://doi.org/10.1007/s10658-010-9724-8Cohen, Yigal, Baider, A., Gotlieb, D., & Rubin, E. (2007). Control of Bremia lactucae in Field-Grown Lettuce by DL-3-Amino-n-Butanoic Acid (BABA). 3rd QLIF Congress: Improving Sustainability in Organic and Low Input Food Production Systems, University of Hohenheim, Germany, 1–5. http://orgprints.org/view/projects/int_conf_qlif2007.html%0AControlCohen, Yigal, Reuveni, M., & Baider, A. (1999). Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. European Journal of Plant Pathology, 105(4), 351–361. https://doi.org/10.1023/A:1008734019040Cohen, Yigal, Rubin, A. E., & Kilfin, G. (2010). Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 126(4), 553–573. https://doi.org/10.1007/s10658-009-9564-6Cohen, Yigal, Vaknin, M., & Mauch-Mani, B. (2016). BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 44(4), 513–538. https://doi.org/10.1007/s12600-016-0546-xConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004de Vries, S., von Dahlen, J. K., Schnake, A., Ginschel, S., Schulz, B., & Rose, L. E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 94(4), 1–15. https://doi.org/10.1093/femsec/fiy037De Vrieze, M., Germanier, F., Vuille, N., & Weisskopf, L. (2018). Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9(2573), 1–13. https://doi.org/10.3389/fmicb.2018.02573Departamento Administrativo Nacional de Estadística DANE. (2018). Boletín mensual insumos y factores asociados a la producción agropecuaria (Issue 75). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_sep_2018.pdfDevelopment Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, (https://www.r-project.org/)Di Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144–149. https://doi.org/10.1016/j.biocontrol.2017.08.010Elsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L., & Bennett, J. W. (2020). Trichoderma Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen Phytophthora infestans in Postharvest Potato Tubers. Journal of Agricultural and Food Chemistry, 68(31), 8163–8171. https://doi.org/10.1021/acs.jafc.0c03150Elsherbiny, E. A., Dawood, D. H., & Safwat, N. A. (2021). Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pesticide Biochemistry and Physiology, 171, 104721.Elsisi, A. A., & Shams, A. S. (2019). Controlling of Artichoke powdery mildew and improving Vegetative growth and yield productivity by using Dl-β-aminobutyric acid (BABA) with some natural essential oils. Middle East Journal of Applied Sciences, 09(02), 443–455.Eschen-Lippold, L., Altmann, S., & Rosahl, S. (2010). DL-β-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions, 23(5), 585–592. https://doi.org/10.1094/MPMI-23-5-0585Farahani, A. S., Mohsen Taghavi, S., Afsharifar, A., & Niazi, A. (2016). Effect of β-aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. Carotovorum. Journal of Plant Diseases and Protection, 123(4), 155–161. https://doi.org/10.1007/s41348-016-0028-xFatima, K., Noureddine, K., Henni, J. E., & Mabrouk, K. (2015). Antagonistic effect of Trichoderma harzianum against Phytophthora infestans in the North-west of Algeria. 6(4), 44–53.Feicán-Mejia, C. G., Encalada-Alvarado, C. R., & Becerril-Román, A. E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum Cav.). Agroproductividad, 9, 78–86. Https://www.researchgate.net/profile/Carlos_Feican/publication/312938646_DESCRIPCION_AGRONOMICA_DEL_CULTIVO_DE_TOMATE_DE_ARBOL_Solanum_betaceum_Cav/links/588a4f3d45851522127ff7b3/DESCRIPCION-AGRONOMICA-DEL-CULTIVO-DE-TOMATE-DE-ARBOL-Solanum-betaceum-Cav.pFischer, M. J. C., Farine, S., Chong, J., Guerlain, P., & Bertsch, C. (2009). The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protection, 28(8), 710–712. https://doi.org/10.1016/j.cropro.2009.03.014Forbes, Gregory A, Morales, J. G., Restrepo, S., Pérez, W., Gamboa, S., Ruiz, R., Cedeño, L., Fermin, G., Andreu, A. B., Acuña, I., & Oliva, R. (2013). Phytophthora infestans and Phytophthora andina on Solanaceous hosts in South America. In Phytophthora: a global perspective (pp. 48–58). https://doi.org/10.1079/9781780640938.0048Gajendran, K., Gonzales, M., Farmer, A., Archuleta, E., Win, J., Waugh, M., & Kamoun, S. (2006). Phytophthora functional genomics database (PFGD): functional genomics of Phytophthora-plant interactions. Nucleic Acids Research, 34(90001), D465–D470. https://doi.org/10.1093/nar/gkj119García-Núñez, H. G., Martínez-Campos, Á. R., Hermosa-Prieto, M. R., Monte-Vázquez, E., Aguilar-Ortigoza, C. J., & González-Esquivel, C. E. (2017). Caracterización morfológica y molecular de cepas nativas de Trichoderma y su potencial de biocontrol sobre Phytophthora infestans. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 35(1), 58–79. https://doi.org/10.18781/r.mex.fit.1605-4Ghazanfar, M. U., Raza, W., Wakil, W., Hussain, I., & Qamar, M. I. (2020). Management of late blight and sucking insect pests of potato with application of salicylic acid and β-aminobutyric acid under greenhouse conditions. Sarhad Journal of Agriculture, 36(2), 646–654. https://doi.org/10.17582/JOURNAL.SJA/2020/36.2.646.654Gómez-Alpizar, L., Hu, C.-H., Oliva, R., Forbes, G., & Ristaino, J. B. (2008). Phylogenetic relationships of Phytophthora andina , a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans . Mycologia, 100(4), 590–602. https://doi.org/10.3852/07-074r1Goss, E. M., Cardenas, M. E., Myers, K., Forbes, G. A., Fry, W. E., Restrepo, S., & Grünwald, N. J. (2011). The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the irish potato famine pathogen, P. infestans. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0024543Gudero, G., Hussien, T., Dejene, M., & Biazin, B. (2018). Integrated Management of Tomato Late Blight [Phytophthora infestans (Mont.) de Bary] Through Host Plant Resistance and Reduced Frequency of Fungicide in Arbaminch Areas, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(9). https://www.researchgate.net/publication/336209921%0AIntegratedHaesaert, G., Vossen, J. H., Custers, R., De Loose, M., Haverkort, A., Heremans, B., Hutten, R., Kessel, G., Landschoot, S., Van Droogenbroeck, B., Visser, R. G. F., & Gheysen, G. (2015). Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection, 77, 163–175. https://doi.org/10.1016/j.cropro.2015.07.018Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819–829. https://doi.org/10.1094/MPMI-18-0819Han, G. Z. (2019). Origin and evolution of the plant immune system. New Phytologist, 222(1), 70–83. https://doi.org/10.1111/nph.15596Hao, W., Gray, M. A., Förster, H., & Adaskaveg, J. E. (2019). Evaluation of new oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Disease, 103(4), 619–628. https://doi.org/10.1094/PDIS-07-18-1152-REHassan, M. A. E., & Buchenauer, H. (2007). Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. Journal of Plant Diseases and Protection, 114(4), 151–158. https://doi.org/10.1007/BF03356211Hassan, M., & Abo-Elyousr, K. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). European Journal of Plant Pathology, 136(1), 145–157. https://doi.org/10.1007/s10658-012-0149-4Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52(3), 249–264. https://doi.org/10.1007/s11540-009-9136-3Hernandez, M. L., Falloon, R. E., Butler, R. C., Conner, A. J., & Bulman, S. R. (2015). Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid. Australasian Plant Pathology, 44(4), 445–453. https://doi.org/10.1007/s13313-015-0363-6Hinestrosa Maldonado, A., & Peláez Restrepo, D. (2006). Manual fitosanitario para la protección de cultivos de fruta pequeña de clima frío moderado. In Gobernación de Antioquia, Corporación PBA. https://doi.org/10.1017/CBO9781107415324.004Hong, J. K., Hwang, B. K., & Kim, C. H. (1999). Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 147(4), 193–198. https://doi.org/10.1046/j.1439-0434.1999.147004193.xIvanov, A. A., Ukladov, E. O., & Golubeva, T. S. (2021). Phytophthora infestans: An overview of methods and attempts to combat late blight. Journal of Fungi, 7(12), 1071.Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric acid-induced resistance in plants Gabor. 107, 29–37.Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89–91. https://doi.org/10.1126/science.1170025Justyna, P. G., & Ewa, K. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-zKamoun, S. (2003). Molecular Genetics of Pathogenic MINIREVIEWS Molecular Genetics of Pathogenic Oomycetes. Eukaryotic Cell, 2(2), 191–199.Kilonzi, J. M., Mafurah, J. J., & Nyongesa, M. W. (2020). In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum. African Journal of Microbiology Research, 14(5), 148–157. https://doi.org/10.5897/AJMR2019.9195Kim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., Yun, B. W., & Hong, J. K. (2013). Β-Amino-N-Butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage. Plant Pathology Journal, 29(3), 305–316. https://doi.org/10.5423/PPJ.OA.12.2012.0191Koné, D., Csinos, A. S., Jackson, K. L., & Ji, P. (2009). Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Protection, 28(6), 533–538. https://doi.org/10.1016/j.cropro.2009.02.005Kroon, L. P. N. M., Bakker, F. T., Van Den Bosch, G. B. M., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782. https://doi.org/10.1016/j.fgb.2004.03.007Ladi, E., Shukla, N., Bohra, Y., Tiwari, A. K., & Kumar, J. (2020). Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phytoparasitica, 48(3), 357–370. https://doi.org/10.1007/s12600-020-00804-9Lagos, T. C., Checa, O. E., Bacca, T., Betancourt, C. A., Vélez, J. A., Benavides, C. A., Portilla, A. E., Lagos, L. K., & Insuasty, S. (2012). Principales Problemas Sanitarios en el cultivo de Tomate de árbol Cyphomandra betacea (Cav.) Sendt en el Departamento de Nariño (Universidad de Nariño (ed.)). https://repository.agrosavia.co/handle/20.500.12324/1862Leal, A. (2020). Agronegocios.. https://www.agronegocios.co/agricultura/colombia-exporto-us743-millones-de-frutas-exoticas-en-2019-6-mas-que-en-2018-2950228Li, G., Meng, F., Wei, X., & Lin, M. (2019). Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Scientia Horticulturae, 257(July). https://doi.org/10.1016/j.scienta.2019.108713Li, J., Trivedi, P., & Wang, N. (2016). Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology®, 106(1), 37–46. https://doi.org/10.1094/PHYTO-08-15-0196-RLiljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytophthora infestans-effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127(2), 171–183. https://doi.org/10.1007/s10658-010-9582-4Lobo Arias, M. (2006). Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. Corpoica Ciencia y Tecnología Agropecuaria, 7(2), 40–54. https://doi.org/10.21930/rcta.vol7_num2_art:68Ludewing, U., & Koch, W. (2000). Amino acid transporters in plants. Plant Membrane and Vacuolar Transporters, 1465, 267–282. https://doi.org/10.1079/9781845934026.0267Luna, Estrella;, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520Luna, Estrella, López, A., Kooiman, J., & Ton, J. (2014). Role of NPR1 and KYP in long-lasting induced resistance by Î2-aminobutyric acid. Frontiers in Plant Science, 5(May), 1–9. https://doi.org/10.3389/fpls.2014.00184Luna, Estrella, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Induced resistance for plant defense. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520Ma, Y., Chang, Z. zhou, Zhao, J. tao, & Zhou, M. guo. (2008). Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44(1), 24–31. https://doi.org/10.1016/j.biocontrol.2007.10.005Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424. https://doi.org/10.1016/j.jplph.2012.05.005MADR. (2005). La cadena de los frutales de exportación en Colombia: Una mirada global de su estructura y dinámica 1991-2005. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 67. http://www.agronet.gov.co/www/docs_agronet/2005112145659_caracterizacion_cacao.pdfMajeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late Blight of Potato (Phytophthora infestans) II: Employing Integrated Approaches in Late Blight Disease Management. PSM Biological Research, 2(3), 117–123. https://www.journals.psmpublishers.org/index.php/biolres/article/view/71Marcucci, E., Aleandri, M. P., Chilosi, G., & Magro, P. (2010). Induced resistance by β-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158(10), 659–667. https://doi.org/10.1111/j.1439-0434.2010.01677.xMarquez, C., Otero, C., & Cortes, M. (2007). Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) En poscosecha changes physiological, textural, physicochemical and microestructural of the tree tomato (Cyphomandra betacea S.) At postharve. Vitae, 14(2), 07–08. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0121-40042007000200002Martin, R. L., Le Boulch, P., Clin, P., Schwarzenberg, A., Yvin, J. C., Andrivon, D., ... & Val, F. (2020). A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. Plos one, 15(8), e0236633.Matson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology, 105(12), 1594–1600. https://doi.org/10.1094/PHYTO-05-15-0129-RMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132McKee, M. L., Zheng, L., O’sullivan, E. C., Kehoe, R. A., Doyle Prestwich, B. M., Mackrill, J. J., & McCarthy, F. O. (2020). Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of Phytophthora infestans. Pathogens, 9(7), 1–23. https://doi.org/10.3390/pathogens9070558Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.16437Mhatre, P. H., Lekshmanan, D. K., Palanisamy, V. E., Bairwa, A., & Sharma, S. (2021). Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. Journal of Phytopathology, 169(1), 52–61. https://doi.org/10.1111/jph.12958Mideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., Myers, K., Tabima, J., Goss, E. M., Bernal, A., Lagos, L. E., Grajales, A., Gonzalez, L. N., Cooke, D. E. L., Fry, W. E., Grünwald, N., Matute, D. R., & Restrepo, S. (2018). Phytophthora betacei , a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia . Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39–55. https://doi.org/10.3767/persoonia.2018.41.03Miller, J., Olsen, N., Woodell, L., Porter, L., & Clayson, S. (2006). Post-Harvest Applications of Zoxamide and Phosphite for Control of Potato Tuber Rots Caused by Oomycetes at Harvest. American Journal of Potato Research, 83(January), 269–278.Mosquera Espinosa, A. T. (2016). Fitonematodos asociados a Cyphomandra betacea (Cav.) Sendtn., Solanum quitoense Lam. y Daucus carota L. en el Departamento de Boyacá, Colombia. Acta Agronómica, 65(1), 87–97. https://doi.org/10.15446/acag.v65n1.45180Mosquera, T., Fernández, C., Martínez, L., & Acuña, A. (2008). Genética de la resistencia de la papa ( Solanum tuberosum ) a patógenos . Estado de arte Genetics of the Solanum tuberosum pathogen resistance . State of research. 26(1), 7–15.Najdabbasi, N., Mirmajlessi, S. M., Dewitte, K., Landschoot, S., Mänd, M., Audenaert, K., Ameye, M., & Haesaert, G. (2020). Biocidal activity of plant-derived compounds against Phytophthora infestans: An alternative approach to late blight management. Crop Protection, 138, 105315. https://doi.org/10.1016/j.cropro.2020.105315Navia, Ó., Gandarillas, A., Ortuño, N., Meneses, E., & Franco, J. (2012). Tizón de la Papa (Phytophthora infestans ) y Agricultura Sostenible : Integración de Resistencia Sistémica Inducida y Estrategias de Manejo Integrado. Fundación PROINPA, 1–18. http://www.proinpa.org/phocadownload/articulos/Papa/Oscar Navia_tizon papa.pdfNowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and Tomato Late Blight Caused by Phytophthora infestans : An Overview of Pathology and Resistance Breeding. Plant Disease, 96(1), 4–17. https://doi.org/10.1094/PDIS-05-11-0458Oliva, R. F., Kroon, L. P. N. M., Chacón, G., Flier, W. G., Ristaino, J. B., & Forbes, G. A. (2010). Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology, 59(4), 613–625. https://doi.org/10.1111/j.1365-3059.2010.02287.xOlivieri, F. P., Lobato, M. C., González Altamiranda, E., Daleo, G. R., Huarte, M., Guevara, M. G., & Andreu, A. B. (2009). BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. European Journal of Plant Pathology, 123(1), 47–56. https://doi.org/10.1007/s10658-008-9340-zOostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19–28. https://doi.org/10.1023/A:1008760518772Ordoñez, M. E., Hohl, H. R., Velasco, J. A., Ramon, M. P., Oyarzun, P. J., Smart, C. D., Fry, W. E., Forbes, G. A., & Erselius, L. J. (2000). A novel population of Phytophthora, similar to P. infestans, attacks wild Solanum species in ecuador. Phytopathology, 90(2), 197–202. https://doi.org/10.1094/PHYTO.2000.90.2.197Ovadia, A., Biton, R., & Cohen, Y. (2000). Induced resistance to downy mildew and fusarium wilt in cucurbits. https://doi.org/10.17660/ActaHortic.2000.510.8Pajot, E., Le Corre, D., & Silué, D. (2001). Phytogard® and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology, 107(9), 861–869. https://doi.org/10.1023/A:1013136608965Pardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113Pastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–13. https://doi.org/10.3389/fpls.2014.00295Peerzada, S. H., Bhat, K. A., & Viswanath, H. S. (2020). Studies on Management of Late Blight (Phytophthora infestans (Mont) de Bary) of Potato Using Organic Soil Amendments. International Journal of Current Microbiology and Applied Sciences, 9(2), 2093–2099. https://doi.org/10.20546/ijcmas.2020.902.237Piekna Grochala, J., & Kepczyńska, E. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-zPieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2011). Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055Pirondi, A., Brunelli, A., Muzzi, E., & Collina, M. (2017). Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). Journal of General Plant Pathology, 83(4), 244–252. https://doi.org/10.1007/s10327-017-0717-8Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Droby, S. (2003). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. European Journal of Plant Pathology, 109, 901–907. https://doi.org/10.1094/phyto.2002.92.4.393Ramírez, F., & Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248(January), 206–215. https://doi.org/10.1016/j.scienta.2019.01.019Rejeb, I. Ben, Pastor, V., Gravel, V., & Mauch-Mani, B. (2018). Impact of β-aminobutyric acid on induced resistance in tomato plants exposed to a combination of abiotic and biotic stress. Journal of Agricultural Science and Botany, 2(3). http://www.alliedacademies.org/articles/impact-of-aminobutyric-acid-on-induced-resistance-in-tomato-plantsexposed-to-a-combination-of-abiotic-and-biotic-stress-10758.htmlReuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936. https://doi.org/10.1094/PDIS.2003.87.8.933Reuveni, Moshe, Zahavi, T., & Cohen, Y. (2001). Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica, 29(2), 125–133. https://doi.org/10.1007/BF02983956Revelo, E., Dorado, G., Lagos, L. E., & Burbano-Figueroa, O. (2011). Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Tropical Plant Pathology, 36(6), 367–373. https://doi.org/10.1590/s1982-56762011000600005Riofrío, L. A. (2010). Regeneración de plantas de tomate de árbol ( Solanum betacea ) a partir de protoplastos. Universidad San Fracisco De QuitoRojas-Estevez, P., Urbina-Gómez, D. A., Ayala-Usma, D. A., Guayazan-Palacios, N., Mideros, M. F., Bernal, A. J., Cardenas, M., & Restrepo, S. (2020). Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity. Frontiers in Genetics, 11(June). https://doi.org/10.3389/fgene.2020.00579Safaie Farahani, A., & Taghavi, S. M. (2017). Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australasian Plant Disease Notes, 12(1), 12–15. https://doi.org/10.1007/s13314-016-0226-1Safarova, F., & Novruzova, E. (2021). Self-defense Mechanisms of Plants in Nature. Bulletin of Science and Practice, 7(8), 73-77. (in Russian). https://doi.org/10.33619/2414-2948/69/09Sanabria, K., Pérez, W., & Andrade-Piedra, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 105241Šašek, V., Nováková, M., Dobrev, P. I., Valentová, O., & Burketová, L. (2012). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? European Journal of Plant Pathology, 133(1), 279–289. https://doi.org/10.1007/s10658-011-9897-9Saville, A., Graham, K., Grünwald, N. J., Myers, K., Fry, W. E., & Ristaino, J. B. (2015). Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 99(5), 659–666. https://doi.org/10.1094/PDIS-05-14-0452-RESchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089Schotsmans, W. C., East, A., & Woolf, A. (2011). Tamarillo (Solanum betaceum (Cav.)). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.427Shailasree, S., Ramachandra, K. K., & Shetty, S. H. (2007). β-Amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australasian Plant Pathology, 36(2), 204–211. https://doi.org/10.1071/AP06093Shailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57(8), 721–728. https://doi.org/10.1002/ps.346Shattock, R. C. (2002). Phytophthora infestans: Populations, pathogenicity and phenylamides. Pest Management Science, 58(9), 944–950. https://doi.org/10.1002/ps.527Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450Si-Ammour, A., Mauch-Mani, B., & Mauch, F. (2003). Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: β-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology, 4(4), 237–248. https://doi.org/10.1046/j.1364-3703.2003.00168.xSiegrist, J., Orober, M., & Buchenauer, H. (2000). β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiological and Molecular Plant Pathology, 56, 95–106. https://doi.org/10.1006?pmpp.1999.0255,Silué, D., Pajot, E., & Cohen, Y. (2002). Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-β-amino-n-butanoic acid (BABA). Plant Pathology, 51(1), 97–102. https://doi.org/10.1046/j.1365-3059.2002.00649.xSlaughter, A. R., Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M., & Mauch-Mani, B. (2008). Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: Involvement of pterostilbene. European Journal of Plant Pathology, 122(1), 185–195. https://doi.org/10.1007/s10658-008-9285-2Soto Plancarte, A., Rodríguez Alvarado, G., Fernández Pavía, Y. L., Pedraza Santos, M. E., López Pérez, L., Celaya Díaz, M., & Fernández Pavía, S. P. (2017). Protocolos de aislamiento y diagnóstico de Phytophthora spp . enfoque aplicado a la investigación * Isolation and diagnosis protocols of Phytophthora spp . applied research approach Resumen. Revista Mexicana de Ciencias Agrícolas Vol.8, 8(December), 1867–1880. https://doi.org/10.29312/remexca.v8i8.708Sunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-ß-amino-n-butyric acid. European Journal of Plant Pathology, 102(7), 663–670. https://doi.org/10.1007/BF01877247Tamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.Tavallali, V., Karimi, S., Mohammadi, S., & Hojati, S. (2008). Effects of ß-aminobutyric Acid on the Induction of Resistance to Penicillium italicum. World Applied Sciences Journal, 5(3), 345–351.Tejeda-sartorius, M., Martínez-gallardo, N. A., Olalde-Portugal, V., & Délano-frier, J. P. (2007). Jasmonic Acid Accelerates the Expression of a Pathogen-Specific Lipoxygenase (POTLX-3) and Delays Foliar Late Blight Development in Potato (Solanum tuberosum L.). Revista Mexicana de Fitopatología, 25(1), 18–25.Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G., & Mauch-Mani, B. (2016). The priming molecule β -aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213(2), 552–559. https://doi.org/10.1111/nph.14298Ton, J., Jakab, G., Toquin, V., Flors, V., Lavicoli, A., Maeder, M., Métrax, J.-P., & Mauch-Mani, B. (2005). Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17(March), 987–999. https://doi.org/10.1105/tpc.104.029728.2Ton, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119–130. https://doi.org/10.1111/j.1365-313X.2004.02028.xTosi, L., Luigetti, R., & Zazzerini, A. (1998). Induced Resistance Against Plasmopara helianthi in Sunflower Plants by DL-β-Amino-n-butyric acid. Journal of Phytopathology, 146(5–6), 295–299. https://doi.org/10.1111/j.1439-0434.1998.tb04694.xUpson, J. L., Zess, E. K., Białas, A., Wu, C. hang, & Kamoun, S. (2018). The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 44, 108–116. https://doi.org/10.1016/j.pbi.2018.03.003Vallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science Society of America, 44, 1920–1934.Vasyukova, N. I., Ozeretskovskaya, O. L., Chalenko, G. I., Gerasimova, N. G., L’vova, A. A., Il’ina, A. V., Levov, A. N., Varlamov, V. P., & Tarchevsky, I. A. (2010). Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. Applied Biochemistry and Microbiology, 46(3), 346–351. https://doi.org/10.1134/S0003683810030166Walters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71(1–3), 3–17. https://doi.org/10.1016/j.pmpp.2007.09.008Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. Journal of Agricultural Science, 147(5), 523–535. https://doi.org/10.1017/S0021859609008806Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95(12), 1368–1373. https://doi.org/10.1094/PHYTO-95-1368Walters, Dale R. (2009). Are plants in the field already induced? Implications for practical disease control. Crop Protection, 28(6), 459–465. https://doi.org/10.1016/j.cropro.2009.01.009Walters, Dale R., Havis, N. D., Paterson, L., Taylor, J., & Walsh, D. J. (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95(5), 595–600. https://doi.org/10.1094/PDIS-08-10-0577Wilkinson, S. W., Pastor, V., Paplauskas, S., Pétriacq, P., & Luna, E. (2018). Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology, 67(1), 30–41. https://doi.org/10.1111/ppa.12725Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193(3), 770–778. https://doi.org/10.1111/j.1469-8137.2011.03987.xYuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. https://doi.org/10.1016/j.pbi.2021.102030Zapata P., J. L., & Bernal E., J. A. (2012). Caracterización de razas fisiológicas de Phytophthora infestans (Mont.) de Bary en lulo (Solanum quitoense Lam.). Corpoica Ciencia y Tecnología Agropecuaria, 13(1), 13. https://doi.org/10.21930/rcta.vol13_num1_art:235Zhang, C., Wang, J., Zhang, J., Hou, C., & Wang, G. (2011). Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biology and Technology, 61(2–3), 145–151. https://doi.org/10.1016/j.postharvbio.2011.02.008Zhang, S., Reddy, M. S., Kokalis-Burelle, N., Wells, L. W., Nightengale, S. P., & Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884. https://doi.org/10.1094/PDIS.2001.85.8.879Zimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897Zimmerli, Laurent, Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897Zimmerli, Laurent, Me, J., & Mauch-mani, B. (2001). β- aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(June), 517–523.Estudio sobre resistencia inducida transgeneracional en la interacción tomate de árbol (Solanum betaceum)- Phytophthora infestans sensu lato"; Código 130171250695, contrato 254-2016Minciencias | Ministerio de Ciencia Tecnología e InnovaciónUniversidad Nacional de ColombiaPolitécnico Colombiano Jaime Isaza CadavidInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82165/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1035428073.2021.pdf1035428073.2021.pdfTesis de Maestría Ciencias Agrariasapplication/pdf3154983https://repositorio.unal.edu.co/bitstream/unal/82165/3/1035428073.2021.pdf29e55225c1146cdf0cdecd14f3ab7f46MD53THUMBNAIL1035428073.2021.pdf.jpg1035428073.2021.pdf.jpgGenerated Thumbnailimage/jpeg5466https://repositorio.unal.edu.co/bitstream/unal/82165/4/1035428073.2021.pdf.jpg07a80c4f3454b5682735f977c6c2ce8fMD54unal/82165oai:repositorio.unal.edu.co:unal/821652023-08-08 23:03:58.641Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |