Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions

Non-prismatic piles are typically used in cases where large lateral loads must be resisted. In many applications, these elements are implemented in partially and fully-embedded layered soils to improve the load transfer to the soil with a more efficient strength distribution due to their larger cros...

Full description

Autores:
Meza Abalo, Maria de los Angeles Clariet
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82869
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82869
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Consolidación de suelos
Non-prismatic pile
Multi-layered soil
Non-homogeneous soil
Partially embedded pile
Differential Transformation Method
Differential Transformation Method
Pila no prismática
Suelo estratificado
Suelo no homogéneo
Pila parcialmente embebida
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8744354a333df3d841c9cfd81470f322
oai_identifier_str oai:repositorio.unal.edu.co:unal/82869
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
dc.title.translated.spa.fl_str_mv Solución analítica para la interacción suelo estructura de un pilote de sección no uniforme en condiciones de suelos no homogeneas
title Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
spellingShingle Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Consolidación de suelos
Non-prismatic pile
Multi-layered soil
Non-homogeneous soil
Partially embedded pile
Differential Transformation Method
Differential Transformation Method
Pila no prismática
Suelo estratificado
Suelo no homogéneo
Pila parcialmente embebida
title_short Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
title_full Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
title_fullStr Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
title_full_unstemmed Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
title_sort Analytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditions
dc.creator.fl_str_mv Meza Abalo, Maria de los Angeles Clariet
dc.contributor.advisor.none.fl_str_mv Zapata Medina, David Guillermo
Vega Posada, Carlos Alberto
dc.contributor.author.none.fl_str_mv Meza Abalo, Maria de los Angeles Clariet
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Consolidación de suelos
Non-prismatic pile
Multi-layered soil
Non-homogeneous soil
Partially embedded pile
Differential Transformation Method
Differential Transformation Method
Pila no prismática
Suelo estratificado
Suelo no homogéneo
Pila parcialmente embebida
dc.subject.lemb.none.fl_str_mv Consolidación de suelos
dc.subject.proposal.eng.fl_str_mv Non-prismatic pile
Multi-layered soil
Non-homogeneous soil
Partially embedded pile
Differential Transformation Method
Differential Transformation Method
dc.subject.proposal.spa.fl_str_mv Pila no prismática
Suelo estratificado
Suelo no homogéneo
Pila parcialmente embebida
description Non-prismatic piles are typically used in cases where large lateral loads must be resisted. In many applications, these elements are implemented in partially and fully-embedded layered soils to improve the load transfer to the soil with a more efficient strength distribution due to their larger cross-sectional area at the top of the element. However, they require complex and more comprehensive analysis and design than uniform elements. This investigation presents the derivation of the stiffness matrix and load vector of an analytical solution for non-uniform section piles fully and partially embedded on non-homogeneous soils. The methodology presented herein allows to i) perform static and stability analyses of non-prismatic circular piles (i.e., tapered piles, stepped-tapered piles, etc.), ii) consider soil variation along depth with a linear and trapezoidal distribution of the modulus of subgrade reaction, iii) evaluate fully and partially embedded piles in multilayered soils by just neglecting the soil contribution in the unembedded section, iv) consider partially and fully restricted connections, v) account for a Pasternak soil foundation. The Differential Transformation Method (DTM) was used to solve the governing differential equation and determine the polynomial terms that satisfy the boundary conditions. Then, compatibility conditions were applied at the bounds of each pile segment to derive the stiffness matrix and load vector. Four examples are presented to evaluate the lateral response of tapered, stepped and prismatic piles: 1) Fully-embedded tapered and prismatic pile in two homogeneous soil layers; 2) Influence a non-homogeneous layer in the lateral deformation on tapered and prismatic piles; 3) Deformation, rotation, moment, and shear profile of a tapered pile in a four layers soil; 4) Prismatic pile and non-prismatic piles partially embedded in a two-layered soil. The reliability of the proposed method is validated using finite element analysis in SAP2000 for the above-mentioned examples. The results show excellent agreement with the FE analyses at a lower computational cost, and it is observed that lateral deformations are mainly affected by the taper ratio of the pile and the thickness and stiffness relationship of the layers.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-21T13:20:35Z
dc.date.available.none.fl_str_mv 2022-12-21T13:20:35Z
dc.date.issued.none.fl_str_mv 2022-12
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82869
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82869
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Kurian, N. P., & Srinivas, M. S. (1995). Studies on the behaviour of axially loaded tapered piles by the finite element method. International journal for numerical and analytical methods in geomechanics, 19(12), 869-888.
SD Zil’berberg and AD Sherstnev. Construction of compaction tapered pile foundations (from the experience of the" vladspetsstroi" trust). Soil Mechanics and Foundation Engineering, 27(3):96–101, 1990.
Jinqi Wei and M Hesham El Naggar. Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4):641–654, 1998.
P Suresh Kumar Gupta and K Rajagopal. Review of research on taper and stepped piles. In The 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions Chennai, India, 2015
Joon Kyu Lee, Sangseom Jeong, and Youngho Kim. Buckling of tapered friction piles in inhomogeneous soil. Computers and Geotechnics, 97:1–6, 2018
Jian-Hong Wan, Si-Wei Liu, Xue-You Li, Li-Min Zhang, and Hai-Peng Zhao. Buckling analysis of tapered piles using non-prismatic beamcolumn element model. Computers and Geotechnics, 139:104370, 2021.
M Hesham El Naggar and Jin Qi Wei. Response of tapered piles subjected to lateral loading. Canadian Geotechnical Journal, 36(1):52–71, 1999.
Nabil F Ismael. Behavior of step tapered bored piles in sand under static lateral loading. Journal of geotechnical and geoenvironmental engineering, 136(5):669–676, 2010.
Nabil F Ismael. Load tests on straight and step tapered bored piles in weakly. In Field Measurements in Geomechanics: Proceedings of the 6th International Symposium, Oslo, Norway, 23-26 September 2003, page 129. CRC Press, 2003.
Mahmoud Ghazavi and Omid Tavasoli. Characteristics of non-uniform cross-section piles in drivability. Soil Dynamics and Earthquake Engineering, 43:287–299, 2012.
Amin Sormeie and Mahmoud Ghazavi. Analysis of non-uniform piles driven into cohesive soils. Soil Dynamics and Earthquake Engineering, 109:282–285, 2018
Tavasoli, O., & Ghazavi, M. (2020). Driving behavior of stepped and tapered offshore piles due to hammer blows. Marine Georesources & Geotechnology, 38(6), 633-646.
Ling Zhang, Minghua Zhao, and Xinjun Zou. Behavior of laterally loaded piles in multilayered soils. International Journal of Geomechanics, 15(2):06014017, 2015.
Keming Sun. Laterally loaded piles in elastic media. Journal of Geotechnical Engineering, 120(8):1324–1344, 1994
M Eisenberger. Exact solution for general variable cross-section members. Computers & structures, 41(4):765–772, 1991.
Moshe Eisenberger. Buckling loads for variable cross-section members with variable axial forces. International Journal of Solids and Structures, 27(2):135–143, 1991.
Jayantha K Kodikara and Ian D Moore. Axial response of tapered piles in cohesive frictional ground. Journal of Geotechnical Engineering, 119(4):675–693, 1993
Husain Jubran Al-Gahtani. Exact stiffnesses for tapered members. Journal of Structural Engineering, 122(10):1234–1239, 1996
Nader Hataf and Amin Shafaghat. Optimizing the bearing capacity of tapered piles in realistic scale using 3d finite element method. Geotechnical and Geological Engineering, 33(6):1465–1473, 2015.
Ning Wang, Yi Le, Wentao Hu, Tao Fang, Bitang Zhu, Daxin Geng, and Changjie Xu. New interaction model for the annular zone of stepped piles with respect to their vertical dynamic characteristics. Computers and Geotechnics, 117:103256, 2020.
D Basu and R Salgado. Elastic analysis of laterally loaded pile in multi-layered soil. Geomechanics and Geoengineering: An International Journal, 2(3):183–196, 2007.
Dipanjan Basu, Rodrigo Salgado, and Monica Prezzi. Analysis of laterally loaded piles in multilayered soil deposits. Joint Transportation Research Program, page 330, 2008.
Yoon Seok Choi, Dipanjan Basu, Rodrigo Salgado, and Monica Prezzi. Response of laterally loaded rectangular and circular piles in soils with properties varying with depth. Journal of Geotechnical and Geoenvironmental Engineering, 140(4):04013049, 2014.
Carlos A Vega-Posada, Aaron P Gallant, and Mauricio Areiza-Hurtado. Simple approach for analysis of beam-column elements on homogeneous and non-homogeneous elastic soil. Engineering Structures, 221:111110, 2020
Juan Sebastián Carvajal-Muñoz, Carlos Alberto Vega-Posada, and Julio César Saldarriaga-Molina. Analysis of beam-column elements on non-homogeneous soil using the differential transformation method. Revista Facultad de Ingeniería Universidad de Antioquia, (103), 2022.
ZY Ai and J Han. Boundary element analysis of axially loaded piles embedded in a multi-layered soil. Computers and Geotechnics, 36(3):427– 434, 2009.
Carlos A Vega-Posada, Edwin F Garcia-Aristizabal, and Julio C Saldarriaga-Molina. Simplified analytical solution for tapered circular elements on homogeneous or non homogeneous soil. In Journal of Physics: Conference Series, volume 2047, page 012003. IOP Publishing, 2021.
ME Heelis, MN Pavlović, and RP West. The analytical prediction of the buckling loads of fully and partially embedded piles. Geotechnique, 54(6):363–373, 2004.
Seval Catal. Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method. Structural engineering and mechanics: An international journal, 52(5):971–995, 2014
CA Vega-Posada, M Areiza-Hurtado, and EF Garcia-Aristizabal. Second-order stiffness matrix and loading vector of a pile element on non-homogeneous soil. Géotechnique Letters, 11(1):112–118, 2021
Reddy, A. S., & Ramasamy, G. (1973). Analysis of an axially and laterally loaded tapered pile in sand. Soils and Foundations, 13(4), 15-27.
Kruchoski, B. L., & Leonard, J. W. (1981). Stability of non-prismatic members. Engineering Structures, 3(1), 52-61.
Manandhar, S., & Yasufuku, N. (2012). Analytical model for the end-bearing capacity of tapered piles using cavity expansion theory. Advances in Civil Engineering, 2012.
Xi, P. S., Zhang, X. T., & Liu, B. (2014). Numerical simulation of load transfer mechanism of T-shaped soil-cement deep mixing column. In Applied Mechanics and Materials (Vol. 580, pp. 118-122). Trans Tech Publications Ltd
Singh, S., & Patra, N. R. (2020). Axial behavior of tapered piles using cavity expansion theory. Acta Geotechnica, 15(6), 1619-1636.
Ghazavi, M. (2008). Response of tapered piles to axial harmonic loading. Canadian Geotechnical Journal, 45(11), 1622-1628.
Nassef, A. (2022). Non-prismatic model for laterally loaded pile in granular soil resisted by ultimate lateral reaction. International Journal of Geotechnical Engineering, 16(4), 400- 407.
Vega-Posada, C. A., Gallant, A. P., & Carvajal-Muñoz, J. S. (2022). Simplified analytical method for static and stability analysis of circular tapered friction piles. Engineering Structures, 251, 113498.
Mahmoud Ghazavi and Arash Alimardani Lavasan. Bearing capacity of tapered and step-tapered piles subjected to axial compressive loading. In The 7th international conference on coasts. Ports & marine structures, ICOPMAS, Tehran, Iran, 2006.
Ghazavi, M., & Tavassoli, O. (2008). Numerical analysis for pile geometry effect on drivability. In Proceedings of the 8th International Conference on the Application of Stress Wave Theory to Piles, Lisbon, Portugal (pp. 271-276).
Higgins, W., Vasquez, C., Basu, D., & Griffiths, D. V. (2013). Elastic solutions for laterally loaded piles. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1096-1103
Kampitsis, A. E., Giannakos, S., Gerolymos, N., & Sapountzakis, E. J. (2015). Soil – pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering structures, 99, 319–333. https://doi.org/10.1016/j.engstruct.2015.05.004
Xi, P. S., Zhang, X. T., & Liu, B. (2014). Numerical simulation of load transfer mechanism of T-shaped soil-cement deep mixing column. In Applied Mechanics and Materials (Vol. 580, pp. 118-122). Trans Tech Publications Ltd.
Jamali, N., & Dehghani, M. FEM Analysis of Bearing Capacity with Constant Section Piles Compared to Variable Section Piles Under Vertical Loads in Sandy Soils. 2017
Vali, R., Mehrinejad Khotbehsara, E., Saberian, M., Li, J., Mehrinejad, M., & Jahandari, S. (2019). A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. International Journal of Geotechnical Engineering, 13(3), 236-248
Jian-Hong Wan, Si-Wei Liu, Xue-You Li, Li-Min Zhang, and Hai-Peng Zhao. Buckling analysis of tapered piles using non-prismatic beam column element model. Computers and Geotechnics, 139:104370, 2021
Kodikara, J., Kong, K. H., & Haque, A. (2006). Numerical evaluation of side resistance of tapered piles in mudstone. Geotechnique, 56(7), 505-510
Wan, J. H., Liu, S. W., Li, X. Y., Zhang, L. M., & Zhao, H. P. (2021). Buckling analysis of tapered piles using non-prismatic beam-column element model. Computers and Geotechnics, 139, 104370
Nasrollahzadeh, E., & Hataf, N. (2022). Experimental and numerical study on the bearing capacity of single and groups of tapered and cylindrical piles in sand. International Journal of Geotechnical Engineering, 16(4), 426-437.
Gotman, A. L. (2000). Finite-element analysis of tapered piles under combined vertical and horizontal loadings. Soil Mechanics and Foundation Engineering, 37(1), 5-12.
Hajisafari, M., & Saboteh, E. (2019). Compare the axial bearing capacity piles cylindrical, tapered and semi-tapered in the sand by finite element method. Journal of Structural and Construction Engineering, 6(4), 162-175.
Rybnikov, A. M. (1990). Experimental investigations of bearing capacity of bored-cast in-place tapered piles. Soil Mechanics and Foundation Engineering, 27(2), 48-52.
Sakr, M., El Naggar, M. H., & Nehdi, M. (2005). Lateral behaviour of composite tapered piles in dense sand. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 158(3), 145-157
Manandhar, S., Yasufuku, N., Omine, K., & Kobayashi, T. (2010). Response of tapered piles in cohesionless soil based on model tests. Journal of Nepal Geological Society, 40, 85-92.
Naggar, M. H. E., & Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308.
Khan, M. K., El Naggar, M. H., & Elkasabgy, M. (2008). Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil. Canadian Geotechnical Journal, 45(3), 377-392
Paik, K., Lee, J., & Kim, D. (2013). Calculation of the axial bearing capacity of tapered bored piles. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(5), 502-514.
Fahmy, A., & El Naggar, M. H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576.
Tavasoli, O., & Ghazavi, M. (2020). Effect of tapered and semi-tapered geometry on the offshore piles driving performance. Ocean Engineering, 201, 107147
Shabanpour, A., & Ghazavi, M. (2022). Centrifuge tests on axially loaded tapered piles with different cross-sections under compressive and tensile loading. Canadian Geotechnical Journal, 99(999), 1-10
Senm, R., Kausel, E., & Banerjee, P. K. (1985). Dynamic analysis of piles and pile groups embedded in non‐homogeneous soils. International journal for numerical and analytical methods in geomechanics, 9(6), 507-524.
Chow, Y. K., & Teh, C. I. (1991). Pile-cap-pile-group interaction in nonhomogeneous soil. Journal of Geotechnical Engineering, 117(11), 1655-1668
Abed, Y., Bouzid, D. A., Bhattacharya, S., & Aissa, M. H. (2016). Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics. Earthquakes and Structures, 10(5), 1143-1179.
Kitiyodom, P., & Matsumoto, T. (2003). A simplified analysis method for piled raft foundations in non‐homogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 27(2), 85-109.
Karatzia, X., & Mylonakis, G. (2012, May). Horizontal response of piles in inhomogeneous soil: Simple analysis. In Proceedings of the Second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy. Paper (No. 1117).
Di Laora, R., Mandolini, A., & Mylonakis, G. (2012). Insight on kinematic bending of flexible piles in layered soil. Soil Dynamics and Earthquake Engineering, 43, 309-322.
Gupta, P., & Sharma, J. K. (2018). Settlement analysis of non-homogeneous single granular pile. Indian Geotechnical Journal, 48(1), 92-101
Guo, W. D., Chow, Y. K., & Randolph, M. F. (2007). Torsional piles in two-layered nonhomogeneous soil. International Journal of Geomechanics, 7(6), 410-422
Miura, K., Kaynia, A. M., Masuda, K., Kitamura, E., & Seto, Y. (1994). Dynamic behaviour of pile foundations in homogeneous and non‐homogeneous media. Earthquake engineering & structural dynamics, 23(2), 183-192.
Di Laora, R., & Rovithis, E. (2015). Kinematic bending of fixed-head piles in nonhomogeneous soil. Journal of Geotechnical and Geoenvironmental Engineering, 141(4), 04014126.
Anoyatis, G., Mylonakis, G., & Tsikas, A. (2019). An analytical continuum model for axially loaded end‐bearing piles in inhomogeneous soil. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1162-1183.
Zou, X., Zhao, L., Zhou, M., & Tian, Y. (2020). Investigation of the torsional behaviour of circular piles in double-layered nonhomogeneous soil. Applied Ocean Research, 98, 102110.
Crispin, J. J., Leahy, C. P., & Mylonakis, G. (2018). Winkler model for axially loaded piles in inhomogeneous soil. Géotechnique Letters, 8(4), 290-297.
Cai, Y., Liu, Z., Li, T., Yu, J., & Wang, N. (2020). Vertical dynamic response of a pile embedded in radially inhomogeneous soil based on fictitious soil pile model. Soil Dynamics and Earthquake Engineering, 132, 106038
Carvajal-Muñoz, J. S., Vega-Posada, C. A., & Saldarriaga-Molina, J. C. (2022). Analysis of beam-column elements on non-homogeneous soil using the differential transformation method. Revista Facultad de Ingeniería Universidad de Antioquia, (103), 67- 76
LEE, K., & XIAO, Z. (1999). A new analytical model for settlement analysis of a single pile in multi-layered soil. Soils and foundations, 39(5), 131-143.
Seo, H., Basu, D., Prezzi, M., & Salgado, R. (2009). Load-settlement response of rectangular and circular piles in multilayered soil. Journal of geotechnical and geoenvironmental engineering, 135(3), 420-430.
Ai, Z. Y., & Yue, Z. (2009). Elastic analysis of axially loaded single pile in multilayered soils. International Journal of Engineering Science, 47(11-12), 1079-1088
Zhang, Q. Q., Zhang, Z. M., & He, J. Y. (2010). A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Computers and Geotechnics, 37(7-8), 969-976.
Ai, Z. Y., & Cheng, Y. C. (2013). Analysis of vertically loaded piles in multilayered transversely isotropic soils by BEM. Engineering Analysis with Boundary Elements, 37(2), 327-335.
Salgado, R., Seo, H., & Prezzi, M. (2013). Variational elastic solution for axially loaded piles in multilayered soil. International Journal for Numerical and Analytical Methods in Geomechanics, 37(4), 423-440
Zhang, L., Zhao, M., & Zou, X. (2015). Behavior of laterally loaded piles in multilayered soils. International Journal of Geomechanics, 15(2), 06014017.
Hu, Q., Han, F., Prezzi, M., Salgado, R., & Zhao, M. (2022). Finite-Element Analysis of the Lateral Load Response of Monopiles in Layered Sand. Journal of Geotechnical and Geoenvironmental Engineering, 148(4), 04022001.
Basu, D., Salgado, R., & Prezzi, M. (2009). A continuum-based model for analysis of laterally loaded piles in layered soils. Geotechnique, 59(2), 127-140.
Zhang, Q. Q., Zhang, Z. M., & He, J. Y. (2010). A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Computers and Geotechnics, 37(7-8), 969-976.
Gupta, B. K., & Basu, D. (2017). Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil. Soils and Foundations, 57(1), 92-110
Catal, S., & Catal, H. H. (2006). Buckling analysis of partially embedded pile in elastic soil using differential transform method. Structural Engineering and Mechanics, 24(2), 247- 268.
Zhu, M. X., Zhang, Y., Gong, W. M., Wang, L., & Dai, G. L. (2017). Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method. International Journal of Geomechanics, 17(4), 04016104.
J Dario Aristizabal-Ochoa. First-and second-order stiffness matrices and load vector of beam-columns with semirigid connections. Journal of Structural Engineering, 123(5):669– 678, 1997.
JK Zhou. Differential transformation and its applications for electrical circuits, 1986.
Ming-Jyi Jang and Chieh-Li Chen. Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Applied Mathematics and Computation, 88(2-3):137–151, 1997.
Jang, M. J., & Chen, C. L. (1997). Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Applied Mathematics and Computation, 88(2-3), 137-151.
Ho, S. H., & Chen, C. O. K. (1998). Analysis of general elastically end restrained non uniform beams using differential transform. Applied Mathematical Modelling, 22(4-5), 219- 234
Catal, S. (2008). Solution of free vibration equations of beam on elastic soil by using differential transform method. Applied Mathematical Modelling, 32(9), 1744-1757.
Gallant, A. P., Vega-Posada, C. A., & Areiza-Hurtado, M. (2021). Assessing the influence of side friction and intermediate end-boundary conditions on the critical buckling load in piles using the differential transform method. Engineering Structures, 239, 112269.
Vega-Posada, C. A., Gallant, A. P., & Carvajal-Muñoz, J. S. (2022). Simplified analytical method for static and stability analysis of circular tapered friction piles. Engineering Structures, 251, 113498.
Ertürk, V. S. (2007). Differential transformation method for solving differential equations of Lane-Emden type. Mathematical and computational Applications, 12(3), 135-139.
Odibat, Z. M. (2008). Differential transform method for solving Volterra integral equation with separable kernels. Mathematical and Computer Modelling, 48(7-8), 1144-1149.
Joseph E Bowles. Foundation analysis and design. McGraw-Hill International Edition, Illinois, 1997.
Aleksandar B Vesić. Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division, 87(2):35–53, 1961
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 109 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82869/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82869/4/1037672954.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82869/5/1037672954.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ab73b6b4fddc2934091f0a77cd2c8694
8f68b5c1c533e7075dbedffdc093c3f6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089844278689792
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata Medina, David Guillermod0cb89e6158ab687ccff97cd4bbcefeb600Vega Posada, Carlos Alberto94a90ba254581fffd887187d3dcea4b3Meza Abalo, Maria de los Angeles Clarietfd393721d97f3d768f7344eceee316172022-12-21T13:20:35Z2022-12-21T13:20:35Z2022-12https://repositorio.unal.edu.co/handle/unal/82869Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Non-prismatic piles are typically used in cases where large lateral loads must be resisted. In many applications, these elements are implemented in partially and fully-embedded layered soils to improve the load transfer to the soil with a more efficient strength distribution due to their larger cross-sectional area at the top of the element. However, they require complex and more comprehensive analysis and design than uniform elements. This investigation presents the derivation of the stiffness matrix and load vector of an analytical solution for non-uniform section piles fully and partially embedded on non-homogeneous soils. The methodology presented herein allows to i) perform static and stability analyses of non-prismatic circular piles (i.e., tapered piles, stepped-tapered piles, etc.), ii) consider soil variation along depth with a linear and trapezoidal distribution of the modulus of subgrade reaction, iii) evaluate fully and partially embedded piles in multilayered soils by just neglecting the soil contribution in the unembedded section, iv) consider partially and fully restricted connections, v) account for a Pasternak soil foundation. The Differential Transformation Method (DTM) was used to solve the governing differential equation and determine the polynomial terms that satisfy the boundary conditions. Then, compatibility conditions were applied at the bounds of each pile segment to derive the stiffness matrix and load vector. Four examples are presented to evaluate the lateral response of tapered, stepped and prismatic piles: 1) Fully-embedded tapered and prismatic pile in two homogeneous soil layers; 2) Influence a non-homogeneous layer in the lateral deformation on tapered and prismatic piles; 3) Deformation, rotation, moment, and shear profile of a tapered pile in a four layers soil; 4) Prismatic pile and non-prismatic piles partially embedded in a two-layered soil. The reliability of the proposed method is validated using finite element analysis in SAP2000 for the above-mentioned examples. The results show excellent agreement with the FE analyses at a lower computational cost, and it is observed that lateral deformations are mainly affected by the taper ratio of the pile and the thickness and stiffness relationship of the layers.Las pilas no prismáticas suelen ser utilizadas para resistir grandes cargas laterales. En muchas de estas aplicaciones dichos elementos se implementan en suelos estratificados parcial o totalmente embebidos para mejorar la transferencia de carga al suelo con una distribución de la resistencia más eficiente, debido al incremento de la sección transversal en la parte superior del elemento. Sin embargo, requieren un análisis y diseño más complejo y exhaustivo que los elementos uniformes. Esta investigación presenta la derivación de la matriz de rigidez y el vector de carga de una solución analítica para pilotes de sección no uniforme total y parcialmente embebidos en un suelo no homogéneo. La metodología presentada permite, i) realizar análisis estáticos y de estabilidad de pilas no prismáticas circulares (i.e., pilas cónicas, pilas escalonadas, etc.), ii) considerar la variación del suelo en profundidad con distribuciones lineales y trapezoidales del módulo de reacción del suelo, iii) evaluar pilas completa y parcialmente embebidas en suelos multi capa, iv) considerar conexiones parcial y completamente restringidas, v) tener en cuenta un modelo de fundación Pasternak. (texto tomado de la fuente)MaestríaMagíster en Ingeniería - GeotecniaInteracción suelo estructuraÁrea Curricular de Ingeniería Civilxi, 109 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::624 - Ingeniería civilConsolidación de suelosNon-prismatic pileMulti-layered soilNon-homogeneous soilPartially embedded pileDifferential Transformation MethodDifferential Transformation MethodPila no prismáticaSuelo estratificadoSuelo no homogéneoPila parcialmente embebidaAnalytical solution for the soil-structure interaction of a non-uniform section pile on non-homogeneous soil conditionsSolución analítica para la interacción suelo estructura de un pilote de sección no uniforme en condiciones de suelos no homogeneasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaKurian, N. P., & Srinivas, M. S. (1995). Studies on the behaviour of axially loaded tapered piles by the finite element method. International journal for numerical and analytical methods in geomechanics, 19(12), 869-888.SD Zil’berberg and AD Sherstnev. Construction of compaction tapered pile foundations (from the experience of the" vladspetsstroi" trust). Soil Mechanics and Foundation Engineering, 27(3):96–101, 1990.Jinqi Wei and M Hesham El Naggar. Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4):641–654, 1998.P Suresh Kumar Gupta and K Rajagopal. Review of research on taper and stepped piles. In The 6th International Geotechnical Symposium on Disaster Mitigation in Special Geoenvironmental Conditions Chennai, India, 2015Joon Kyu Lee, Sangseom Jeong, and Youngho Kim. Buckling of tapered friction piles in inhomogeneous soil. Computers and Geotechnics, 97:1–6, 2018Jian-Hong Wan, Si-Wei Liu, Xue-You Li, Li-Min Zhang, and Hai-Peng Zhao. Buckling analysis of tapered piles using non-prismatic beamcolumn element model. Computers and Geotechnics, 139:104370, 2021.M Hesham El Naggar and Jin Qi Wei. Response of tapered piles subjected to lateral loading. Canadian Geotechnical Journal, 36(1):52–71, 1999.Nabil F Ismael. Behavior of step tapered bored piles in sand under static lateral loading. Journal of geotechnical and geoenvironmental engineering, 136(5):669–676, 2010.Nabil F Ismael. Load tests on straight and step tapered bored piles in weakly. In Field Measurements in Geomechanics: Proceedings of the 6th International Symposium, Oslo, Norway, 23-26 September 2003, page 129. CRC Press, 2003.Mahmoud Ghazavi and Omid Tavasoli. Characteristics of non-uniform cross-section piles in drivability. Soil Dynamics and Earthquake Engineering, 43:287–299, 2012.Amin Sormeie and Mahmoud Ghazavi. Analysis of non-uniform piles driven into cohesive soils. Soil Dynamics and Earthquake Engineering, 109:282–285, 2018Tavasoli, O., & Ghazavi, M. (2020). Driving behavior of stepped and tapered offshore piles due to hammer blows. Marine Georesources & Geotechnology, 38(6), 633-646.Ling Zhang, Minghua Zhao, and Xinjun Zou. Behavior of laterally loaded piles in multilayered soils. International Journal of Geomechanics, 15(2):06014017, 2015.Keming Sun. Laterally loaded piles in elastic media. Journal of Geotechnical Engineering, 120(8):1324–1344, 1994M Eisenberger. Exact solution for general variable cross-section members. Computers & structures, 41(4):765–772, 1991.Moshe Eisenberger. Buckling loads for variable cross-section members with variable axial forces. International Journal of Solids and Structures, 27(2):135–143, 1991.Jayantha K Kodikara and Ian D Moore. Axial response of tapered piles in cohesive frictional ground. Journal of Geotechnical Engineering, 119(4):675–693, 1993Husain Jubran Al-Gahtani. Exact stiffnesses for tapered members. Journal of Structural Engineering, 122(10):1234–1239, 1996Nader Hataf and Amin Shafaghat. Optimizing the bearing capacity of tapered piles in realistic scale using 3d finite element method. Geotechnical and Geological Engineering, 33(6):1465–1473, 2015.Ning Wang, Yi Le, Wentao Hu, Tao Fang, Bitang Zhu, Daxin Geng, and Changjie Xu. New interaction model for the annular zone of stepped piles with respect to their vertical dynamic characteristics. Computers and Geotechnics, 117:103256, 2020.D Basu and R Salgado. Elastic analysis of laterally loaded pile in multi-layered soil. Geomechanics and Geoengineering: An International Journal, 2(3):183–196, 2007.Dipanjan Basu, Rodrigo Salgado, and Monica Prezzi. Analysis of laterally loaded piles in multilayered soil deposits. Joint Transportation Research Program, page 330, 2008.Yoon Seok Choi, Dipanjan Basu, Rodrigo Salgado, and Monica Prezzi. Response of laterally loaded rectangular and circular piles in soils with properties varying with depth. Journal of Geotechnical and Geoenvironmental Engineering, 140(4):04013049, 2014.Carlos A Vega-Posada, Aaron P Gallant, and Mauricio Areiza-Hurtado. Simple approach for analysis of beam-column elements on homogeneous and non-homogeneous elastic soil. Engineering Structures, 221:111110, 2020Juan Sebastián Carvajal-Muñoz, Carlos Alberto Vega-Posada, and Julio César Saldarriaga-Molina. Analysis of beam-column elements on non-homogeneous soil using the differential transformation method. Revista Facultad de Ingeniería Universidad de Antioquia, (103), 2022.ZY Ai and J Han. Boundary element analysis of axially loaded piles embedded in a multi-layered soil. Computers and Geotechnics, 36(3):427– 434, 2009.Carlos A Vega-Posada, Edwin F Garcia-Aristizabal, and Julio C Saldarriaga-Molina. Simplified analytical solution for tapered circular elements on homogeneous or non homogeneous soil. In Journal of Physics: Conference Series, volume 2047, page 012003. IOP Publishing, 2021.ME Heelis, MN Pavlović, and RP West. The analytical prediction of the buckling loads of fully and partially embedded piles. Geotechnique, 54(6):363–373, 2004.Seval Catal. Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method. Structural engineering and mechanics: An international journal, 52(5):971–995, 2014CA Vega-Posada, M Areiza-Hurtado, and EF Garcia-Aristizabal. Second-order stiffness matrix and loading vector of a pile element on non-homogeneous soil. Géotechnique Letters, 11(1):112–118, 2021Reddy, A. S., & Ramasamy, G. (1973). Analysis of an axially and laterally loaded tapered pile in sand. Soils and Foundations, 13(4), 15-27.Kruchoski, B. L., & Leonard, J. W. (1981). Stability of non-prismatic members. Engineering Structures, 3(1), 52-61.Manandhar, S., & Yasufuku, N. (2012). Analytical model for the end-bearing capacity of tapered piles using cavity expansion theory. Advances in Civil Engineering, 2012.Xi, P. S., Zhang, X. T., & Liu, B. (2014). Numerical simulation of load transfer mechanism of T-shaped soil-cement deep mixing column. In Applied Mechanics and Materials (Vol. 580, pp. 118-122). Trans Tech Publications LtdSingh, S., & Patra, N. R. (2020). Axial behavior of tapered piles using cavity expansion theory. Acta Geotechnica, 15(6), 1619-1636.Ghazavi, M. (2008). Response of tapered piles to axial harmonic loading. Canadian Geotechnical Journal, 45(11), 1622-1628.Nassef, A. (2022). Non-prismatic model for laterally loaded pile in granular soil resisted by ultimate lateral reaction. International Journal of Geotechnical Engineering, 16(4), 400- 407.Vega-Posada, C. A., Gallant, A. P., & Carvajal-Muñoz, J. S. (2022). Simplified analytical method for static and stability analysis of circular tapered friction piles. Engineering Structures, 251, 113498.Mahmoud Ghazavi and Arash Alimardani Lavasan. Bearing capacity of tapered and step-tapered piles subjected to axial compressive loading. In The 7th international conference on coasts. Ports & marine structures, ICOPMAS, Tehran, Iran, 2006.Ghazavi, M., & Tavassoli, O. (2008). Numerical analysis for pile geometry effect on drivability. In Proceedings of the 8th International Conference on the Application of Stress Wave Theory to Piles, Lisbon, Portugal (pp. 271-276).Higgins, W., Vasquez, C., Basu, D., & Griffiths, D. V. (2013). Elastic solutions for laterally loaded piles. Journal of Geotechnical and Geoenvironmental Engineering, 139(7), 1096-1103Kampitsis, A. E., Giannakos, S., Gerolymos, N., & Sapountzakis, E. J. (2015). Soil – pile interaction considering structural yielding: Numerical modeling and experimental validation. Engineering structures, 99, 319–333. https://doi.org/10.1016/j.engstruct.2015.05.004Xi, P. S., Zhang, X. T., & Liu, B. (2014). Numerical simulation of load transfer mechanism of T-shaped soil-cement deep mixing column. In Applied Mechanics and Materials (Vol. 580, pp. 118-122). Trans Tech Publications Ltd.Jamali, N., & Dehghani, M. FEM Analysis of Bearing Capacity with Constant Section Piles Compared to Variable Section Piles Under Vertical Loads in Sandy Soils. 2017Vali, R., Mehrinejad Khotbehsara, E., Saberian, M., Li, J., Mehrinejad, M., & Jahandari, S. (2019). A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. International Journal of Geotechnical Engineering, 13(3), 236-248Jian-Hong Wan, Si-Wei Liu, Xue-You Li, Li-Min Zhang, and Hai-Peng Zhao. Buckling analysis of tapered piles using non-prismatic beam column element model. Computers and Geotechnics, 139:104370, 2021Kodikara, J., Kong, K. H., & Haque, A. (2006). Numerical evaluation of side resistance of tapered piles in mudstone. Geotechnique, 56(7), 505-510Wan, J. H., Liu, S. W., Li, X. Y., Zhang, L. M., & Zhao, H. P. (2021). Buckling analysis of tapered piles using non-prismatic beam-column element model. Computers and Geotechnics, 139, 104370Nasrollahzadeh, E., & Hataf, N. (2022). Experimental and numerical study on the bearing capacity of single and groups of tapered and cylindrical piles in sand. International Journal of Geotechnical Engineering, 16(4), 426-437.Gotman, A. L. (2000). Finite-element analysis of tapered piles under combined vertical and horizontal loadings. Soil Mechanics and Foundation Engineering, 37(1), 5-12.Hajisafari, M., & Saboteh, E. (2019). Compare the axial bearing capacity piles cylindrical, tapered and semi-tapered in the sand by finite element method. Journal of Structural and Construction Engineering, 6(4), 162-175.Rybnikov, A. M. (1990). Experimental investigations of bearing capacity of bored-cast in-place tapered piles. Soil Mechanics and Foundation Engineering, 27(2), 48-52.Sakr, M., El Naggar, M. H., & Nehdi, M. (2005). Lateral behaviour of composite tapered piles in dense sand. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 158(3), 145-157Manandhar, S., Yasufuku, N., Omine, K., & Kobayashi, T. (2010). Response of tapered piles in cohesionless soil based on model tests. Journal of Nepal Geological Society, 40, 85-92.Naggar, M. H. E., & Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308.Khan, M. K., El Naggar, M. H., & Elkasabgy, M. (2008). Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil. Canadian Geotechnical Journal, 45(3), 377-392Paik, K., Lee, J., & Kim, D. (2013). Calculation of the axial bearing capacity of tapered bored piles. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(5), 502-514.Fahmy, A., & El Naggar, M. H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576.Tavasoli, O., & Ghazavi, M. (2020). Effect of tapered and semi-tapered geometry on the offshore piles driving performance. Ocean Engineering, 201, 107147Shabanpour, A., & Ghazavi, M. (2022). Centrifuge tests on axially loaded tapered piles with different cross-sections under compressive and tensile loading. Canadian Geotechnical Journal, 99(999), 1-10Senm, R., Kausel, E., & Banerjee, P. K. (1985). Dynamic analysis of piles and pile groups embedded in non‐homogeneous soils. International journal for numerical and analytical methods in geomechanics, 9(6), 507-524.Chow, Y. K., & Teh, C. I. (1991). Pile-cap-pile-group interaction in nonhomogeneous soil. Journal of Geotechnical Engineering, 117(11), 1655-1668Abed, Y., Bouzid, D. A., Bhattacharya, S., & Aissa, M. H. (2016). Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics. Earthquakes and Structures, 10(5), 1143-1179.Kitiyodom, P., & Matsumoto, T. (2003). A simplified analysis method for piled raft foundations in non‐homogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 27(2), 85-109.Karatzia, X., & Mylonakis, G. (2012, May). Horizontal response of piles in inhomogeneous soil: Simple analysis. In Proceedings of the Second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, Taormina, Italy. Paper (No. 1117).Di Laora, R., Mandolini, A., & Mylonakis, G. (2012). Insight on kinematic bending of flexible piles in layered soil. Soil Dynamics and Earthquake Engineering, 43, 309-322.Gupta, P., & Sharma, J. K. (2018). Settlement analysis of non-homogeneous single granular pile. Indian Geotechnical Journal, 48(1), 92-101Guo, W. D., Chow, Y. K., & Randolph, M. F. (2007). Torsional piles in two-layered nonhomogeneous soil. International Journal of Geomechanics, 7(6), 410-422Miura, K., Kaynia, A. M., Masuda, K., Kitamura, E., & Seto, Y. (1994). Dynamic behaviour of pile foundations in homogeneous and non‐homogeneous media. Earthquake engineering & structural dynamics, 23(2), 183-192.Di Laora, R., & Rovithis, E. (2015). Kinematic bending of fixed-head piles in nonhomogeneous soil. Journal of Geotechnical and Geoenvironmental Engineering, 141(4), 04014126.Anoyatis, G., Mylonakis, G., & Tsikas, A. (2019). An analytical continuum model for axially loaded end‐bearing piles in inhomogeneous soil. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1162-1183.Zou, X., Zhao, L., Zhou, M., & Tian, Y. (2020). Investigation of the torsional behaviour of circular piles in double-layered nonhomogeneous soil. Applied Ocean Research, 98, 102110.Crispin, J. J., Leahy, C. P., & Mylonakis, G. (2018). Winkler model for axially loaded piles in inhomogeneous soil. Géotechnique Letters, 8(4), 290-297.Cai, Y., Liu, Z., Li, T., Yu, J., & Wang, N. (2020). Vertical dynamic response of a pile embedded in radially inhomogeneous soil based on fictitious soil pile model. Soil Dynamics and Earthquake Engineering, 132, 106038Carvajal-Muñoz, J. S., Vega-Posada, C. A., & Saldarriaga-Molina, J. C. (2022). Analysis of beam-column elements on non-homogeneous soil using the differential transformation method. Revista Facultad de Ingeniería Universidad de Antioquia, (103), 67- 76LEE, K., & XIAO, Z. (1999). A new analytical model for settlement analysis of a single pile in multi-layered soil. Soils and foundations, 39(5), 131-143.Seo, H., Basu, D., Prezzi, M., & Salgado, R. (2009). Load-settlement response of rectangular and circular piles in multilayered soil. Journal of geotechnical and geoenvironmental engineering, 135(3), 420-430.Ai, Z. Y., & Yue, Z. (2009). Elastic analysis of axially loaded single pile in multilayered soils. International Journal of Engineering Science, 47(11-12), 1079-1088Zhang, Q. Q., Zhang, Z. M., & He, J. Y. (2010). A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Computers and Geotechnics, 37(7-8), 969-976.Ai, Z. Y., & Cheng, Y. C. (2013). Analysis of vertically loaded piles in multilayered transversely isotropic soils by BEM. Engineering Analysis with Boundary Elements, 37(2), 327-335.Salgado, R., Seo, H., & Prezzi, M. (2013). Variational elastic solution for axially loaded piles in multilayered soil. International Journal for Numerical and Analytical Methods in Geomechanics, 37(4), 423-440Zhang, L., Zhao, M., & Zou, X. (2015). Behavior of laterally loaded piles in multilayered soils. International Journal of Geomechanics, 15(2), 06014017.Hu, Q., Han, F., Prezzi, M., Salgado, R., & Zhao, M. (2022). Finite-Element Analysis of the Lateral Load Response of Monopiles in Layered Sand. Journal of Geotechnical and Geoenvironmental Engineering, 148(4), 04022001.Basu, D., Salgado, R., & Prezzi, M. (2009). A continuum-based model for analysis of laterally loaded piles in layered soils. Geotechnique, 59(2), 127-140.Zhang, Q. Q., Zhang, Z. M., & He, J. Y. (2010). A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Computers and Geotechnics, 37(7-8), 969-976.Gupta, B. K., & Basu, D. (2017). Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil. Soils and Foundations, 57(1), 92-110Catal, S., & Catal, H. H. (2006). Buckling analysis of partially embedded pile in elastic soil using differential transform method. Structural Engineering and Mechanics, 24(2), 247- 268.Zhu, M. X., Zhang, Y., Gong, W. M., Wang, L., & Dai, G. L. (2017). Generalized solutions for axially and laterally loaded piles in multilayered soil deposits with transfer matrix method. International Journal of Geomechanics, 17(4), 04016104.J Dario Aristizabal-Ochoa. First-and second-order stiffness matrices and load vector of beam-columns with semirigid connections. Journal of Structural Engineering, 123(5):669– 678, 1997.JK Zhou. Differential transformation and its applications for electrical circuits, 1986.Ming-Jyi Jang and Chieh-Li Chen. Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Applied Mathematics and Computation, 88(2-3):137–151, 1997.Jang, M. J., & Chen, C. L. (1997). Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Applied Mathematics and Computation, 88(2-3), 137-151.Ho, S. H., & Chen, C. O. K. (1998). Analysis of general elastically end restrained non uniform beams using differential transform. Applied Mathematical Modelling, 22(4-5), 219- 234Catal, S. (2008). Solution of free vibration equations of beam on elastic soil by using differential transform method. Applied Mathematical Modelling, 32(9), 1744-1757.Gallant, A. P., Vega-Posada, C. A., & Areiza-Hurtado, M. (2021). Assessing the influence of side friction and intermediate end-boundary conditions on the critical buckling load in piles using the differential transform method. Engineering Structures, 239, 112269.Vega-Posada, C. A., Gallant, A. P., & Carvajal-Muñoz, J. S. (2022). Simplified analytical method for static and stability analysis of circular tapered friction piles. Engineering Structures, 251, 113498.Ertürk, V. S. (2007). Differential transformation method for solving differential equations of Lane-Emden type. Mathematical and computational Applications, 12(3), 135-139.Odibat, Z. M. (2008). Differential transform method for solving Volterra integral equation with separable kernels. Mathematical and Computer Modelling, 48(7-8), 1144-1149.Joseph E Bowles. Foundation analysis and design. McGraw-Hill International Edition, Illinois, 1997.Aleksandar B Vesić. Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division, 87(2):35–53, 1961EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82869/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1037672954.2022.pdf1037672954.2022.pdfTesis Maestría en Ingeniería - Geotécnicaapplication/pdf2944283https://repositorio.unal.edu.co/bitstream/unal/82869/4/1037672954.2022.pdfab73b6b4fddc2934091f0a77cd2c8694MD54THUMBNAIL1037672954.2022.pdf.jpg1037672954.2022.pdf.jpgGenerated Thumbnailimage/jpeg4851https://repositorio.unal.edu.co/bitstream/unal/82869/5/1037672954.2022.pdf.jpg8f68b5c1c533e7075dbedffdc093c3f6MD55unal/82869oai:repositorio.unal.edu.co:unal/828692024-08-14 23:41:24.188Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=