Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana
ilustraciones, fotografías a blanco y negro, fotografías a color, gráficas
- Autores:
-
Basto Urbina, Diego Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82921
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Cementación
Endurecimiento superficial
Cementation
Case hardening
Suelos cementados artificialmente
cementación
ensayo de compresión triaxial
modelo C-CASM
Artificially cemented soils
cementation
triaxial compression test
C-CASM model
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_87402da3c0c46ab7fca5e8001f216ac8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82921 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
dc.title.translated.none.fl_str_mv |
Influence of cementation on the shear strength of a soil from the Colombian Orinoquia |
title |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
spellingShingle |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Cementación Endurecimiento superficial Cementation Case hardening Suelos cementados artificialmente cementación ensayo de compresión triaxial modelo C-CASM Artificially cemented soils cementation triaxial compression test C-CASM model |
title_short |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
title_full |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
title_fullStr |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
title_full_unstemmed |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
title_sort |
Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana |
dc.creator.fl_str_mv |
Basto Urbina, Diego Fernando |
dc.contributor.advisor.none.fl_str_mv |
Colmenares Montañez, Julio Esteban |
dc.contributor.author.none.fl_str_mv |
Basto Urbina, Diego Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Geotechnical Engineering Knowledge and Innovation Genki |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil Cementación Endurecimiento superficial Cementation Case hardening Suelos cementados artificialmente cementación ensayo de compresión triaxial modelo C-CASM Artificially cemented soils cementation triaxial compression test C-CASM model |
dc.subject.lemb.spa.fl_str_mv |
Cementación Endurecimiento superficial |
dc.subject.lemb.eng.fl_str_mv |
Cementation Case hardening |
dc.subject.proposal.spa.fl_str_mv |
Suelos cementados artificialmente cementación ensayo de compresión triaxial modelo C-CASM |
dc.subject.proposal.eng.fl_str_mv |
Artificially cemented soils cementation triaxial compression test C-CASM model |
description |
ilustraciones, fotografías a blanco y negro, fotografías a color, gráficas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-13T17:29:11Z |
dc.date.available.none.fl_str_mv |
2023-01-13T17:29:11Z |
dc.date.issued.none.fl_str_mv |
2023-01-12 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82921 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82921 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
AFCAP. (2014). Review of specification for the use of laterite in road pavements. Arroyo, M., Ciantia, M., Castellanza, R., Gens, A., & Nova, R. (2012). Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach. Computers and Geotechnics, 45, 140–150. https://doi.org/10.1016/j.compgeo.2012.05.008 Atkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils. McGRAW-HILL Book Company (UK) Limited. Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99 Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in Lowland and other environments. ASCE PRESS. Bergado, D. T., Taechakumthorn, C., Lorenzo, G. A., & Abuel-Naga, H. M. (2006). Stress-Deformation Behavior Under Anisotropic Drained Triaxial Consolidation of Cement-Treated Soft Bangkok Clay. Soils and Foundations, 46(5), 629–637. https://doi.org/10.3208/SANDF.46.629 Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378. https://doi.org/10.1680/geot.1990.40.3.329 Chai, J., & Carter, J. P. (2011). Deformation Analysis in Soft Ground Improvement (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-007-1721-3 COLLINS, I. F., & YU, H. S. (1996). UNDRAINED CAVITY EXPANSIONS IN CRITICAL STATE SOILS. International Journal for Numerical and Analytical Methods in Geomechanics, 20(7), 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-V De Medina, J. (1964). Laterite and their Application to Highway Construction. Elliott, G. M., & Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), 413–423. https://doi.org/10.1680/geot.1985.35.4.413 Endo, M. (1976). Recent development in dredged material stabilization and deep chemical mixing in Japan. Estabragh, A. R., Beytolahpour, I., & Javadi, A. A. (2011). Effect of Resin on the Strength of Soil-Cement Mixture. Journal of Materials in Civil Engineering, 23(7), 969–976. https://doi.org/10.1061/(asce)mt.1943-5533.0000252 Fernández París, J. (1975). La pasta hidratada de cemento portland. Materiales de Construcción, 157, 17–26. Fredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (Inc. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492 García Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín. Universidad Católica de Colombia. Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soil and weak rocks. International Conference on Hard Soils-Soft Rocks, 483–494. González, N. (2011). Development of a family of constitutive models for geotechnical applications (Issue May). Universidad Politécnica de Catalunya. González, N. A., Arroyo, M., & Gens, A. (2009). Identification of Bonded Clay Parameters in SBPM Tests: A Numerical Study. Soils and Foundations, 49(3), 329–340. https://doi.org/10.3208/sandf.49.329 Horpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096–1105. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1096) Huang, J. T., & Airey, D. W. (1998). Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492) Ingeominas, & UIS. (2010). Geología del Piedemonte llanero en la cordillera oriental, departamentos de Arauca y Casanare. Memoria Explicativa. Convenio UIS-INGEOMINAS. Jaky, J. (1948). Pressure in soils. 2nd International Conference on Soil Mechanics and Foundation Engineering, 103–107. Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573–589. https://doi.org/10.1061/(asce)1090-0241(2009)135:4(573) Kolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026–1036. https://doi.org/10.1016/j.conbuildmat.2013.06.008 Lefebvre, G. (1970). Contribution à l’étude de la stabilité des pentes dans les argiles cimenteés [PhD thesis]. Université Laval. Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. https://doi.org/10.1680/geot.1990.40.3.467 Lorenzo, G. A., & Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042) Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18(2), 161–174. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(161) Maher, M., & Ho, Y. (1993). Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads. Geotechnical Testing Journal, 16(3), 330. https://doi.org/10.1520/GTJ10054J Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (Inc. John Wiley & Sons, Ed.; 3rd ed.). Muhunthan, B., & Sariosseiri, F. (2008). Interpretation of Geotechnical Properties of Cement Treated Soils. Nguyen, L. (2016). Developing constitutive model to simulate behaviour of cement treated clay composite capturing effect of cementation degradation. University of Technology Sydney. Panda, A. P., & Narasimha Rao, S. (1998). Undrained strength characteristics of an artificially cemented marine clay. Marine Georesources and Geotechnology, 16(4), 335–353. https://doi.org/10.1080/10641199809379976 Porbaha, A. (1998). State of the art in deep mixing technology: part I. Basic concepts and overview. Ground Improvement, 2(2), 81–92. https://doi.org/10.1680/gi.1998.020204 Porbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III:geomaterial characterization. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(3), 91–110. https://doi.org/10.1680/grim.2000.4.3.91 Prusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record, 1(1652), 215–227. https://doi.org/10.3141/1652-28 Rios, S., Ciantia, M., González, N., Arroyo, M., & da Fonseca, A. V. (2016). Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 73, 100–108. https://doi.org/10.1016/j.compgeo.2015.11.019 Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of ‘wet’ clay. In J. Heyman & F. Leckie (Eds.), Engineering Plasticity (pp. 535–609). Cambridge University Press. Roscoe, K. H., & Schofield, A. N. (1963). Mechanical behaviour of an idealized ’wet’ clay. In Proc. 2nd Eur. Conf. Soil Mech., 1963 (pp. 47–54). Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the Yielding of Soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22 Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193 Sasanian, S. (2011). The Behaviour of Cement Stabilized Clay At High Water Contents (Issue April). University of Western Ontario. Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University. Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified Structured Cam Clay: A generalized critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37(7–8), 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002 Tan, T. S., Goh, T. L., & Yong, K. Y. (2002). Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journal, 25(4), 422–433. https://doi.org/10.1520/gtj11295j Tejedor Bonilla, C. A. (2022). Efecto de la cementación en la el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. Universidad Nacional de Colombia. Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. In Geotechnical Engineering (Vol. 28, Issue 1, pp. 89–119). UNAL. (2021). Estudio para el desarrollo de un laboratorio virtual de Ingeniería Geotécnica. Wild, K. M., Barla, M., Turinetti, G., & Amann, F. (2017). A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 519–530. https://doi.org/10.1016/j.jrmge.2017.04.003 Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139878272 Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8 Yu, H.-S. (2006). Plasticity and geotechnics. In Choice Reviews Online (Vol. 44, Issue 07). https://doi.org/10.5860/choice.44-3893 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 140 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Orinoquía - Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82921/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82921/2/1032467354.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82921/3/1032467354.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c126f6f2f1f735c2cd25ef956f428811 66f1c68d54620cb2b6ee2aa3dffa5156 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089894873530368 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colmenares Montañez, Julio Estebancc92ffe792a53c34a8258076fac18bbbBasto Urbina, Diego Fernando45368f2cc83c0c6629d5415842aa8efbGeotechnical Engineering Knowledge and Innovation Genki2023-01-13T17:29:11Z2023-01-13T17:29:11Z2023-01-12https://repositorio.unal.edu.co/handle/unal/82921Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a blanco y negro, fotografías a color, gráficasSe realizó un trabajo experimental sobre la influencia de la cementación en la resistencia al corte de un suelo limo-arcilloso, con alto contenido de arena, obtenido de la Orinoquía colombiana. La cementación se indujo artificialmente mediante la incorporación de cemento Portland. Se estudió el comportamiento del suelo base y de tres mezclas de suelo-cemento mediante ensayos de compresión inconfinada y compresión triaxial. El esfuerzo de cedencia en compresión isotrópica, la resistencia al corte y la rigidez inicial aumentaron por el efecto de la cementación. En ensayos triaxiales CD y CU, las muestras con mayor grado de cementación -y consolidadas isotrópicamente a un esfuerzo efectivo de confinamiento menor al esfuerzo de cedencia en compresión isotrópica (σ'c < p'c0)- mostraron estados de esfuerzos y picos de resistencia por encima de la línea del estado crítico (CSL). Superado el pico, las trayectorias de esfuerzos tendieron hacia la CSL, mostrando la degradación de la cementación durante el corte. A medida que se aumentó la cementación, el suelo se volvió más frágil. A bajas presiones de confinamiento se observó una transición de un comportamiento dúctil/compresivo a uno frágil/dilatante a medida que la cementación aumentaba, sin embargo, al aumentar el esfuerzo de confinamiento el comportamiento exhibió una nueva transición a dúctil/compresivo. La superficie de cedencia del material no cementado fue ajustada con los parámetros avanzados n y r del modelo CASM. A medida que la cementación (b) creció, la superficie de cedencia se agrandó conservando la forma de la superficie de cedencia del material no cementado, lo cual, permitió validar las bases conceptuales propuestas por Gens y Nova (1993) y la aplicabilidad del modelo extendido C-CASM en el material estudiado. La estabilización con cemento y su mejora en las propiedades de la resistencia al corte, mostraron que, la mezcla del suelo con un bajo contenido de cemento es una alternativa viable tanto desde el punto de vista técnico como económico, pues se obtuvieron resultados satisfactorios. (Texto tomado de la fuente)An experimental work on the influence of cementation on the shear strength of a silt-clayey soil with a high content of sand was carried out. Cementation in the soil was artificially induced by incorporating Portland cement. The behavior of the soil and three different soil-cement mixtures was studied by means of unconfined compression and triaxial compression tests. The yield stress in isotropic compression, the shear strength and the initial stiffness increased due to the effect of cementation. In drained (CD) and undrained (CU) triaxial tests, the samples with a higher degree of cementation -isotropically consolidated at effective confining stress lower than the effective yield stress in isotropic compression (σ'c < p'c0)- exhibited states of stresses and strength above the critical state line (CSL). After crossing the peak strength, the stress paths tended towards the CSL, showing the degradation of the cementation during shear. As the cementation was increased, the soil became more brittle. At low confining pressures, a transition from a ductile/compressive behavior to a brittle/dilating one was observed as the increased cementation. However, as the confining stress was increased, the behavior exhibited a new transition to ductile/compressive. The yield surface of the uncemented material was adjusted with the advanced parameters n and r of the CASM model. As cementation (b) increased, the yield surface of cemented soil was enlarged, preserving the shape of the yield surface of the uncemented material. It allowed validation of the conceptual bases proposed by Gens & Nova (1993) and the applicability of the extended C-CASM model in the studied material. The stabilization with cement and the improvement in the properties of the shear resistance, showed that the mixture of the soil with a low cement content is a viable alternative both from the technical and economic point of view, since satisfactory results were obtained.MaestríaMagíster en Ingeniería - GeotecniaRelaciones constitutivas de suelos, rocas y materiales afinesxx, 140 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilCementaciónEndurecimiento superficialCementationCase hardeningSuelos cementados artificialmentecementaciónensayo de compresión triaxialmodelo C-CASMArtificially cemented soilscementationtriaxial compression testC-CASM modelInfluencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombianaInfluence of cementation on the shear strength of a soil from the Colombian OrinoquiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMOrinoquía - ColombiaAFCAP. (2014). Review of specification for the use of laterite in road pavements.Arroyo, M., Ciantia, M., Castellanza, R., Gens, A., & Nova, R. (2012). Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach. Computers and Geotechnics, 45, 140–150. https://doi.org/10.1016/j.compgeo.2012.05.008Atkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils. McGRAW-HILL Book Company (UK) Limited.Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in Lowland and other environments. ASCE PRESS.Bergado, D. T., Taechakumthorn, C., Lorenzo, G. A., & Abuel-Naga, H. M. (2006). Stress-Deformation Behavior Under Anisotropic Drained Triaxial Consolidation of Cement-Treated Soft Bangkok Clay. Soils and Foundations, 46(5), 629–637. https://doi.org/10.3208/SANDF.46.629Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378. https://doi.org/10.1680/geot.1990.40.3.329Chai, J., & Carter, J. P. (2011). Deformation Analysis in Soft Ground Improvement (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-007-1721-3COLLINS, I. F., & YU, H. S. (1996). UNDRAINED CAVITY EXPANSIONS IN CRITICAL STATE SOILS. International Journal for Numerical and Analytical Methods in Geomechanics, 20(7), 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-VDe Medina, J. (1964). Laterite and their Application to Highway Construction.Elliott, G. M., & Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), 413–423. https://doi.org/10.1680/geot.1985.35.4.413Endo, M. (1976). Recent development in dredged material stabilization and deep chemical mixing in Japan.Estabragh, A. R., Beytolahpour, I., & Javadi, A. A. (2011). Effect of Resin on the Strength of Soil-Cement Mixture. Journal of Materials in Civil Engineering, 23(7), 969–976. https://doi.org/10.1061/(asce)mt.1943-5533.0000252Fernández París, J. (1975). La pasta hidratada de cemento portland. Materiales de Construcción, 157, 17–26.Fredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (Inc. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492García Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín. Universidad Católica de Colombia.Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soil and weak rocks. International Conference on Hard Soils-Soft Rocks, 483–494.González, N. (2011). Development of a family of constitutive models for geotechnical applications (Issue May). Universidad Politécnica de Catalunya.González, N. A., Arroyo, M., & Gens, A. (2009). Identification of Bonded Clay Parameters in SBPM Tests: A Numerical Study. Soils and Foundations, 49(3), 329–340. https://doi.org/10.3208/sandf.49.329Horpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096–1105. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1096)Huang, J. T., & Airey, D. W. (1998). Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)Ingeominas, & UIS. (2010). Geología del Piedemonte llanero en la cordillera oriental, departamentos de Arauca y Casanare. Memoria Explicativa. Convenio UIS-INGEOMINAS.Jaky, J. (1948). Pressure in soils. 2nd International Conference on Soil Mechanics and Foundation Engineering, 103–107.Kamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573–589. https://doi.org/10.1061/(asce)1090-0241(2009)135:4(573)Kolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026–1036. https://doi.org/10.1016/j.conbuildmat.2013.06.008Lefebvre, G. (1970). Contribution à l’étude de la stabilité des pentes dans les argiles cimenteés [PhD thesis]. Université Laval.Leroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. https://doi.org/10.1680/geot.1990.40.3.467Lorenzo, G. A., & Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)Lorenzo, G. A., & Bergado, D. T. (2006). Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18(2), 161–174. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(161)Maher, M., & Ho, Y. (1993). Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads. Geotechnical Testing Journal, 16(3), 330. https://doi.org/10.1520/GTJ10054JMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (Inc. John Wiley & Sons, Ed.; 3rd ed.).Muhunthan, B., & Sariosseiri, F. (2008). Interpretation of Geotechnical Properties of Cement Treated Soils.Nguyen, L. (2016). Developing constitutive model to simulate behaviour of cement treated clay composite capturing effect of cementation degradation. University of Technology Sydney.Panda, A. P., & Narasimha Rao, S. (1998). Undrained strength characteristics of an artificially cemented marine clay. Marine Georesources and Geotechnology, 16(4), 335–353. https://doi.org/10.1080/10641199809379976Porbaha, A. (1998). State of the art in deep mixing technology: part I. Basic concepts and overview. Ground Improvement, 2(2), 81–92. https://doi.org/10.1680/gi.1998.020204Porbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III:geomaterial characterization. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(3), 91–110. https://doi.org/10.1680/grim.2000.4.3.91Prusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record, 1(1652), 215–227. https://doi.org/10.3141/1652-28Rios, S., Ciantia, M., González, N., Arroyo, M., & da Fonseca, A. V. (2016). Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 73, 100–108. https://doi.org/10.1016/j.compgeo.2015.11.019Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of ‘wet’ clay. In J. Heyman & F. Leckie (Eds.), Engineering Plasticity (pp. 535–609). Cambridge University Press.Roscoe, K. H., & Schofield, A. N. (1963). Mechanical behaviour of an idealized ’wet’ clay. In Proc. 2nd Eur. Conf. Soil Mech., 1963 (pp. 47–54).Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the Yielding of Soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193Sasanian, S. (2011). The Behaviour of Cement Stabilized Clay At High Water Contents (Issue April). University of Western Ontario.Schofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified Structured Cam Clay: A generalized critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37(7–8), 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002Tan, T. S., Goh, T. L., & Yong, K. Y. (2002). Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journal, 25(4), 422–433. https://doi.org/10.1520/gtj11295jTejedor Bonilla, C. A. (2022). Efecto de la cementación en la el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. Universidad Nacional de Colombia.Uddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. In Geotechnical Engineering (Vol. 28, Issue 1, pp. 89–119).UNAL. (2021). Estudio para el desarrollo de un laboratorio virtual de Ingeniería Geotécnica.Wild, K. M., Barla, M., Turinetti, G., & Amann, F. (2017). A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 519–530. https://doi.org/10.1016/j.jrmge.2017.04.003Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139878272Yu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8Yu, H.-S. (2006). Plasticity and geotechnics. In Choice Reviews Online (Vol. 44, Issue 07). https://doi.org/10.5860/choice.44-3893EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82921/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032467354.2022.pdf1032467354.2022.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf4111470https://repositorio.unal.edu.co/bitstream/unal/82921/2/1032467354.2022.pdfc126f6f2f1f735c2cd25ef956f428811MD52THUMBNAIL1032467354.2022.pdf.jpg1032467354.2022.pdf.jpgGenerated Thumbnailimage/jpeg4996https://repositorio.unal.edu.co/bitstream/unal/82921/3/1032467354.2022.pdf.jpg66f1c68d54620cb2b6ee2aa3dffa5156MD53unal/82921oai:repositorio.unal.edu.co:unal/829212024-08-14 23:42:36.457Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |