New product forecasting demand by using neural networks and similar product analysis

This research presents a new product forecasting methodology that combines the forecast of analogous products. The quantitative part of the method uses an artificial neural network to calculate the forecast of each analogous product. These individual forecasts are combined using a qualitative approa...

Full description

Autores:
Sarmiento, Alfonso T.
Soto, Osman Camilo
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49361
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49361
http://bdigital.unal.edu.co/42818/
Palabra clave:
demand forecasting
new products
neural networks
similar products.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_872f5c0f4ba0f714e2093fae2514bd6c
oai_identifier_str oai:repositorio.unal.edu.co:unal/49361
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento, Alfonso T.2dc418ae-a749-4f18-9f99-59e0c35402a1300Soto, Osman Camilob03a37ff-3087-40fc-8b4f-513f2ccd1b623002019-06-29T08:37:50Z2019-06-29T08:37:50Z2014-08-26https://repositorio.unal.edu.co/handle/unal/49361http://bdigital.unal.edu.co/42818/This research presents a new product forecasting methodology that combines the forecast of analogous products. The quantitative part of the method uses an artificial neural network to calculate the forecast of each analogous product. These individual forecasts are combined using a qualitative approach based on a factor that measures the similarity between the analogous products and the new product. A case study of two major multinational companies in the food sector is presented to illustrate the methodology. Results from this study showed more accurate forecasts using the proposed approach in 86 percent of the cases analyzed.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/45223Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 81, núm. 186 (2014); 311-317 DYNA; Vol. 81, núm. 186 (2014); 311-317 2346-2183 0012-7353Sarmiento, Alfonso T. and Soto, Osman Camilo (2014) New product forecasting demand by using neural networks and similar product analysis. Dyna; Vol. 81, núm. 186 (2014); 311-317 DYNA; Vol. 81, núm. 186 (2014); 311-317 2346-2183 0012-7353 .New product forecasting demand by using neural networks and similar product analysisArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTdemand forecastingnew productsneural networkssimilar products.ORIGINAL45223-217215-1-PB.pdfapplication/pdf995807https://repositorio.unal.edu.co/bitstream/unal/49361/1/45223-217215-1-PB.pdf4ce3f8f64a7c7e03dc53edd65b4e2aa7MD51THUMBNAIL45223-217215-1-PB.pdf.jpg45223-217215-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9426https://repositorio.unal.edu.co/bitstream/unal/49361/2/45223-217215-1-PB.pdf.jpg9809f345fc707e2d1b4b9c616e8f7661MD52unal/49361oai:repositorio.unal.edu.co:unal/493612023-12-09 23:06:02.163Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv New product forecasting demand by using neural networks and similar product analysis
title New product forecasting demand by using neural networks and similar product analysis
spellingShingle New product forecasting demand by using neural networks and similar product analysis
demand forecasting
new products
neural networks
similar products.
title_short New product forecasting demand by using neural networks and similar product analysis
title_full New product forecasting demand by using neural networks and similar product analysis
title_fullStr New product forecasting demand by using neural networks and similar product analysis
title_full_unstemmed New product forecasting demand by using neural networks and similar product analysis
title_sort New product forecasting demand by using neural networks and similar product analysis
dc.creator.fl_str_mv Sarmiento, Alfonso T.
Soto, Osman Camilo
dc.contributor.author.spa.fl_str_mv Sarmiento, Alfonso T.
Soto, Osman Camilo
dc.subject.proposal.spa.fl_str_mv demand forecasting
new products
neural networks
similar products.
topic demand forecasting
new products
neural networks
similar products.
description This research presents a new product forecasting methodology that combines the forecast of analogous products. The quantitative part of the method uses an artificial neural network to calculate the forecast of each analogous product. These individual forecasts are combined using a qualitative approach based on a factor that measures the similarity between the analogous products and the new product. A case study of two major multinational companies in the food sector is presented to illustrate the methodology. Results from this study showed more accurate forecasts using the proposed approach in 86 percent of the cases analyzed.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-08-26
dc.date.accessioned.spa.fl_str_mv 2019-06-29T08:37:50Z
dc.date.available.spa.fl_str_mv 2019-06-29T08:37:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/49361
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/42818/
url https://repositorio.unal.edu.co/handle/unal/49361
http://bdigital.unal.edu.co/42818/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/45223
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv Dyna; Vol. 81, núm. 186 (2014); 311-317 DYNA; Vol. 81, núm. 186 (2014); 311-317 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Sarmiento, Alfonso T. and Soto, Osman Camilo (2014) New product forecasting demand by using neural networks and similar product analysis. Dyna; Vol. 81, núm. 186 (2014); 311-317 DYNA; Vol. 81, núm. 186 (2014); 311-317 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/49361/1/45223-217215-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/49361/2/45223-217215-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 4ce3f8f64a7c7e03dc53edd65b4e2aa7
9809f345fc707e2d1b4b9c616e8f7661
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089980573646848