Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo

The injection of water to oil fields is a technique that allows to increase the energy of this, favoring the efficiency of oil recovery. Although, water injection is one of the most used techniques, recently the use of low salinity water has had great scientific attention. However, the mechanisms by...

Full description

Autores:
Causil Loaiza, María Angélica
Tipo de recurso:
Informe
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76102
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76102
Palabra clave:
330 - Economía::333 - Economía de la tierra y de la energía
Asfaltenos
Resinas
Acidos nafténicos
Inyección de agua
Baja salinidad
Iones
Recuperación mejorada de aceite
Nanopartículas
Asphaltenes
Resins
Nnaphthenic acids
Injection of water
low salinity
Smartwater
Ions
Enhanced oil recovery
Nanoparticles
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_872d1390f2233497f772a9c2f53f674f
oai_identifier_str oai:repositorio.unal.edu.co:unal/76102
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
title Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
spellingShingle Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
330 - Economía::333 - Economía de la tierra y de la energía
Asfaltenos
Resinas
Acidos nafténicos
Inyección de agua
Baja salinidad
Iones
Recuperación mejorada de aceite
Nanopartículas
Asphaltenes
Resins
Nnaphthenic acids
Injection of water
low salinity
Smartwater
Ions
Enhanced oil recovery
Nanoparticles
title_short Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
title_full Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
title_fullStr Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
title_full_unstemmed Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
title_sort Mejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleo
dc.creator.fl_str_mv Causil Loaiza, María Angélica
dc.contributor.advisor.spa.fl_str_mv Cortés Correa, Farid Bernardo
Franco Ariza, Camilo Andrés
dc.contributor.author.spa.fl_str_mv Causil Loaiza, María Angélica
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie - Michael Polanyi
dc.subject.ddc.spa.fl_str_mv 330 - Economía::333 - Economía de la tierra y de la energía
topic 330 - Economía::333 - Economía de la tierra y de la energía
Asfaltenos
Resinas
Acidos nafténicos
Inyección de agua
Baja salinidad
Iones
Recuperación mejorada de aceite
Nanopartículas
Asphaltenes
Resins
Nnaphthenic acids
Injection of water
low salinity
Smartwater
Ions
Enhanced oil recovery
Nanoparticles
dc.subject.proposal.spa.fl_str_mv Asfaltenos
Resinas
Acidos nafténicos
Inyección de agua
Baja salinidad
Iones
Recuperación mejorada de aceite
Nanopartículas
dc.subject.proposal.eng.fl_str_mv Asphaltenes
Resins
Nnaphthenic acids
Injection of water
low salinity
Smartwater
Ions
Enhanced oil recovery
Nanoparticles
description The injection of water to oil fields is a technique that allows to increase the energy of this, favoring the efficiency of oil recovery. Although, water injection is one of the most used techniques, recently the use of low salinity water has had great scientific attention. However, the mechanisms by which this method works are still not completely clear. On the other hand, the use of nanotechnology in improved oil recovery processes has gained popularity due to the performance it has had in increasing oil production. In this paper, we intend to understand the mechanism of interaction in the crude / brine of low salinity / rock interfaces and in turn, improve the injection of low salinity water with nanoparticles that positively impact the interfacial properties. To achieve what was described, in a first stage of the work the surface-active components were extracted: asphaltenes, resins and naphthenic acids for the preparation of model solutions and evaluation of their effect on the interfacial film. Interfacial tension measurements were made model solution-water and contact angle of cores of varied mineralogical composition to estimate changes in interfacial tension and wettability. These measurements were also performed for dispersions of alumina nanoparticles (nanofluid) in low salinity water. When using the designed nanofluid, a change in the water-oil interfacial tension and contact angle was observed, in addition to a significant increase in oil recovery of 25 and 44% for systems in the absence and presence of nanoparticles, respectively.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-10-29
dc.date.accessioned.spa.fl_str_mv 2020-03-17T20:15:00Z
dc.date.available.spa.fl_str_mv 2020-03-17T20:15:00Z
dc.type.spa.fl_str_mv Reporte
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTCASO
format http://purl.org/coar/resource_type/c_93fc
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76102
url https://repositorio.unal.edu.co/handle/unal/76102
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv B. Petroleum, "BP Statistical Review of World Energy 2018," 2018
V. Alvarado and E. Manrique, "Enhanced oil recovery: an update review," Energies, vol. 3, pp. 1529-1575, 2010.
A. N. Awolayo, H. K. Sarma, and L. X. Nghiem, "Brine-Dependent Recovery Processes (Smart-Water/Low-Salinity-Water) in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," 2018.
A. A. Hamouda and O. M. Valderhaug, "Investigating enhanced oil recovery from sandstone by low-salinity water and fluid/rock interaction," Energy & Fuels, vol. 28, pp. 898-908, 2014.
A. Zahid, E. H. Stenby, and A. A. Shapiro, "Improved oil recovery in chalk: wettability alteration or something else?," in Spe Europec/eage Annual Conference and Exhibition, 2010.
M. Lashkarbolooki, S. Ayatollahi, and M. Riazi, "Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir," Process Safety and Environmental Protection, vol. 105, pp. 361-372, 2017.
N. J. Hadia, T. Hansen, M. T. Tweheyo, and O. Torsæter, "Influence of crude oil components on recovery by high and low salinity waterflooding," Energy & Fuels, vol. 26, pp. 4328-4335, 2012
M. Lashkarbolooki, S. Ayatollahi, and M. Riazi, "Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system," Energy & Fuels, vol. 28, pp. 6820-6829, 2014.
S. Moosavi, M. Rayhani, M. Malayeri, and M. Riazi, "Impact of monovalent and divalent cationic and anionic ions on wettability alteration of dolomite rocks," Journal of Molecular Liquids, vol. 281, pp. 9-19, 2019.
R. Abhishek, A. Hamouda, and A. Ayoub, "Effect of Silica Nanoparticles on Fluid/Rock Interactions during Low Salinity Water Flooding of Chalk Reservoirs," Applied Sciences, vol. 8, p. 1093, 2018
P. Jadhunandan and N. R. Morrow, "Effect of wettability on waterflood recovery for crude-oil/brine/rock systems," SPE reservoir engineering, vol. 10, pp. 40-46, 1995.
N. R. Morrow, G.-q. Tang, M. Valat, and X. Xie, "Prospects of improved oil recovery related to wettability and brine composition," Journal of Petroleum science and Engineering, vol. 20, pp. 267-276, 1998.
A. Lager, K. Webb, and C. Black, "Impact of brine chemistry on oil recovery," in IOR 2007-14th European Symposium on Improved Oil Recovery, 2007.
K. Webb, C. Black, and H. Al-Ajeel, "Low salinity oil recovery-log-inject-log," in Middle East Oil Show, 2003.
P. McGuire, J. Chatham, F. Paskvan, D. Sommer, and F. Carini, "Low salinity oil recovery: An exciting new EOR opportunity for Alaska's North Slope," in SPE Western Regional Meeting, 2005.
G. G. Bernard, "Effect of floodwater salinity on recovery of oil from cores containing clays," in SPE California Regional Meeting, 1967.
H. Aksulu, D. Håmsø, S. Strand, T. Puntervold, and T. Austad, "Evaluation of low-salinity enhanced oil recovery effects in sandstone: Effects of the temperature and pH gradient," Energy & Fuels, vol. 26, pp. 3497-3503, 2012
N. Wardlaw and J. Cassan, "Oil recovery efficiency and the rock-pore properties of some sandstone reservoirs," Bulletin of Canadian Petroleum Geology, vol. 27, pp. 117-138, 1979
S. n. Llanos, L. J. Giraldo, O. Santamaria, C. A. Franco, and F. B. Cortés, "Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO2 Nanoparticles in Polymer Flooding Processes," ACS Omega, vol. 3, pp. 18673-18684, 2018
D. B. Bennion, "An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations," Journal of Canadian Petroleum Technology, vol. 41, 2002
J. Stetefeld, S. A. McKenna, and T. R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences," Biophysical reviews, vol. 8, pp. 409-427, 2016
D. López, L. J. Giraldo, J. P. Salazar, D. M. Zapata, D. C. Ortega, C. A. Franco, et al., "Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fracti ons for On-Site Upgrading," Catalysts, vol. 7, p. 319, 2017.
T. Solomon, "The definition and unit of ionic strength," Journal of Chemical Education, vol. 78, p. 1691, 2001
J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.
A. Restrepo, M. Lastre, A. W. Milne, S. J. Penaloza, and E. Castro, "Effective kaolinite damage control under unfavorable chemical environment: field case," in SPE International Symposium and Exhibition on Formation Damage Control, 2012.
R. Kagel and R. Nyguist, "Infrared Spectra of Inorganic Compounds," Chemical Physics Research Laboratory. The dow Chemical Company. ed: Academic Press, Inc, 1971.
L. A. Prado, M. Sriyai, M. Ghislandi, A. Barros-Timmons, and K. Schulte, "Surface modification of alumina nanoparticles with silane coupling agents," Journal of the Brazilian Chemical Society, vol. 21, pp. 2238-2245, 2010.
C.-L. Chang and H. S. Fogler, "Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 1. Effect of the chemical structure of amphiphiles on asphaltene stabilization," Langmuir, vol. 10, pp. 1749-1757, 1994
Y. Mikami, Y. Liang, T. Matsuoka, and E. S. Boek, "Molecular dynamics simulations of asphaltenes at the oil–water interface: from nanoaggregation to thin-film formation," Energy & Fuels, vol. 27, pp. 1838-1845, 2013.
J. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, pp. 3659-3665, 2013.
A. Roustaei, S. Saffarzadeh, and M. Mohammadi, "An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs," Egyptian Journal of Petroleum, vol. 22, pp. 427- 433, 2013.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 82
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias y Medo Ambiente
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76102/1/1017224287.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/76102/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/76102/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/76102/4/1017224287.2019.pdf.jpg
bitstream.checksum.fl_str_mv 27f9fd724dbfeb6e346eca8a154e09bc
6f3f13b02594d02ad110b3ad534cd5df
42fd4ad1e89814f5e4a476b409eb708c
a6570cb97a00e6932ed309555f293237
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886279040729088
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid Bernardo5e4f89db-3f69-4437-8508-59179eeeda9b-1Franco Ariza, Camilo Andrés87f601b6-020c-4371-841c-916ed0e2ccbd-1Causil Loaiza, María Angélica820dc712-7335-4e81-be2e-41d201efb2e5Universidad Nacional de Colombia - Sede MedellínFenómenos de Superficie - Michael Polanyi2020-03-17T20:15:00Z2020-03-17T20:15:00Z2019-10-29https://repositorio.unal.edu.co/handle/unal/76102The injection of water to oil fields is a technique that allows to increase the energy of this, favoring the efficiency of oil recovery. Although, water injection is one of the most used techniques, recently the use of low salinity water has had great scientific attention. However, the mechanisms by which this method works are still not completely clear. On the other hand, the use of nanotechnology in improved oil recovery processes has gained popularity due to the performance it has had in increasing oil production. In this paper, we intend to understand the mechanism of interaction in the crude / brine of low salinity / rock interfaces and in turn, improve the injection of low salinity water with nanoparticles that positively impact the interfacial properties. To achieve what was described, in a first stage of the work the surface-active components were extracted: asphaltenes, resins and naphthenic acids for the preparation of model solutions and evaluation of their effect on the interfacial film. Interfacial tension measurements were made model solution-water and contact angle of cores of varied mineralogical composition to estimate changes in interfacial tension and wettability. These measurements were also performed for dispersions of alumina nanoparticles (nanofluid) in low salinity water. When using the designed nanofluid, a change in the water-oil interfacial tension and contact angle was observed, in addition to a significant increase in oil recovery of 25 and 44% for systems in the absence and presence of nanoparticles, respectively.La inyección de agua a yacimientos de petróleo es una técnica que permite incrementar la energía de este, favoreciendo la eficiencia de recuperación de aceite. Aunque, la inyección de agua es una de las técnicas más usadas, recientemente el uso de agua de baja salinidad ha tenido una gran atención científica. No obstante, los mecanismos por los que este método funciona todavía no son completamente claros. Por otro lado, el uso de nanotecnología en los procesos de recuperación mejorada de crudo ha ganado popularidad debido al desempeño que ha tenido en el incremento de la producción de aceite. En el presente trabajo se pretende comprender el mecanismo de interacción en las interfases crudo/salmuera de baja salinidad/roca y a su vez, mejorar la inyección de agua baja de salinidad con nanopartículas que impacten positivamente las propiedades interfaciales. Para lograr lo descrito, en una primera etapa del trabajo se extrajeron los componentes activos superficiales: asfaltenos, resinas y ácidos nafténicos para la preparación de soluciones modelos y evaluación de su efecto en la película interfacial. Se realizaron mediciones de tensión interfacial soluciones modelo-agua y ángulo de contacto de núcleos de variada composición mineralógica para estimar los cambios en tensión interfacial y en mojabilidad. Estas medidas también se realizaron para dispersiones de nanopartículas de alúmina (nanofluido) en el agua de baja salinidad. Al utilizar el nanofluido diseñado se observó un cambio en la tensión interfacial agua-aceite y ángulo de contacto, además de un incremento importante en la recuperación de petróleo del 25 y 44% para los sistemas en ausencia y presencia de nanopartículas, respectivamente.Colciencias, ANH y Universidad Nacional de Colombia. Convenio 273-201Magister en Medio Ambiente y DesarrolloMaestría82application/pdfspa330 - Economía::333 - Economía de la tierra y de la energíaAsfaltenosResinasAcidos nafténicosInyección de aguaBaja salinidadIonesRecuperación mejorada de aceiteNanopartículasAsphaltenesResinsNnaphthenic acidsInjection of waterlow salinitySmartwaterIonsEnhanced oil recoveryNanoparticlesMejoramiento de la inyección de agua de baja salinidad mediante nanopartículas aplicado al recobro mejorado de petróleoReporteinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fcTexthttp://purl.org/redcol/resource_type/ARTCASODepartamento de Geociencias y Medo AmbienteUniversidad Nacional de Colombia - Sede MedellínB. Petroleum, "BP Statistical Review of World Energy 2018," 2018V. Alvarado and E. Manrique, "Enhanced oil recovery: an update review," Energies, vol. 3, pp. 1529-1575, 2010.A. N. Awolayo, H. K. Sarma, and L. X. Nghiem, "Brine-Dependent Recovery Processes (Smart-Water/Low-Salinity-Water) in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," 2018.A. A. Hamouda and O. M. Valderhaug, "Investigating enhanced oil recovery from sandstone by low-salinity water and fluid/rock interaction," Energy & Fuels, vol. 28, pp. 898-908, 2014.A. Zahid, E. H. Stenby, and A. A. Shapiro, "Improved oil recovery in chalk: wettability alteration or something else?," in Spe Europec/eage Annual Conference and Exhibition, 2010.M. Lashkarbolooki, S. Ayatollahi, and M. Riazi, "Mechanistical study of effect of ions in smart water injection into carbonate oil reservoir," Process Safety and Environmental Protection, vol. 105, pp. 361-372, 2017.N. J. Hadia, T. Hansen, M. T. Tweheyo, and O. Torsæter, "Influence of crude oil components on recovery by high and low salinity waterflooding," Energy & Fuels, vol. 26, pp. 4328-4335, 2012M. Lashkarbolooki, S. Ayatollahi, and M. Riazi, "Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system," Energy & Fuels, vol. 28, pp. 6820-6829, 2014.S. Moosavi, M. Rayhani, M. Malayeri, and M. Riazi, "Impact of monovalent and divalent cationic and anionic ions on wettability alteration of dolomite rocks," Journal of Molecular Liquids, vol. 281, pp. 9-19, 2019.R. Abhishek, A. Hamouda, and A. Ayoub, "Effect of Silica Nanoparticles on Fluid/Rock Interactions during Low Salinity Water Flooding of Chalk Reservoirs," Applied Sciences, vol. 8, p. 1093, 2018P. Jadhunandan and N. R. Morrow, "Effect of wettability on waterflood recovery for crude-oil/brine/rock systems," SPE reservoir engineering, vol. 10, pp. 40-46, 1995.N. R. Morrow, G.-q. Tang, M. Valat, and X. Xie, "Prospects of improved oil recovery related to wettability and brine composition," Journal of Petroleum science and Engineering, vol. 20, pp. 267-276, 1998.A. Lager, K. Webb, and C. Black, "Impact of brine chemistry on oil recovery," in IOR 2007-14th European Symposium on Improved Oil Recovery, 2007.K. Webb, C. Black, and H. Al-Ajeel, "Low salinity oil recovery-log-inject-log," in Middle East Oil Show, 2003.P. McGuire, J. Chatham, F. Paskvan, D. Sommer, and F. Carini, "Low salinity oil recovery: An exciting new EOR opportunity for Alaska's North Slope," in SPE Western Regional Meeting, 2005.G. G. Bernard, "Effect of floodwater salinity on recovery of oil from cores containing clays," in SPE California Regional Meeting, 1967.H. Aksulu, D. Håmsø, S. Strand, T. Puntervold, and T. Austad, "Evaluation of low-salinity enhanced oil recovery effects in sandstone: Effects of the temperature and pH gradient," Energy & Fuels, vol. 26, pp. 3497-3503, 2012N. Wardlaw and J. Cassan, "Oil recovery efficiency and the rock-pore properties of some sandstone reservoirs," Bulletin of Canadian Petroleum Geology, vol. 27, pp. 117-138, 1979S. n. Llanos, L. J. Giraldo, O. Santamaria, C. A. Franco, and F. B. Cortés, "Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO2 Nanoparticles in Polymer Flooding Processes," ACS Omega, vol. 3, pp. 18673-18684, 2018D. B. Bennion, "An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations," Journal of Canadian Petroleum Technology, vol. 41, 2002J. Stetefeld, S. A. McKenna, and T. R. Patel, "Dynamic light scattering: a practical guide and applications in biomedical sciences," Biophysical reviews, vol. 8, pp. 409-427, 2016D. López, L. J. Giraldo, J. P. Salazar, D. M. Zapata, D. C. Ortega, C. A. Franco, et al., "Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fracti ons for On-Site Upgrading," Catalysts, vol. 7, p. 319, 2017.T. Solomon, "The definition and unit of ionic strength," Journal of Chemical Education, vol. 78, p. 1691, 2001J. D. Guzmán, S. Betancur, F. Carrasco-Marín, C. A. Franco, N. N. Nassar, and F. B. Cortés, "Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments," Energy & Fuels, vol. 30, pp. 2052-2059, 2016.A. Restrepo, M. Lastre, A. W. Milne, S. J. Penaloza, and E. Castro, "Effective kaolinite damage control under unfavorable chemical environment: field case," in SPE International Symposium and Exhibition on Formation Damage Control, 2012.R. Kagel and R. Nyguist, "Infrared Spectra of Inorganic Compounds," Chemical Physics Research Laboratory. The dow Chemical Company. ed: Academic Press, Inc, 1971.L. A. Prado, M. Sriyai, M. Ghislandi, A. Barros-Timmons, and K. Schulte, "Surface modification of alumina nanoparticles with silane coupling agents," Journal of the Brazilian Chemical Society, vol. 21, pp. 2238-2245, 2010.C.-L. Chang and H. S. Fogler, "Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 1. Effect of the chemical structure of amphiphiles on asphaltene stabilization," Langmuir, vol. 10, pp. 1749-1757, 1994Y. Mikami, Y. Liang, T. Matsuoka, and E. S. Boek, "Molecular dynamics simulations of asphaltenes at the oil–water interface: from nanoaggregation to thin-film formation," Energy & Fuels, vol. 27, pp. 1838-1845, 2013.J. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, "Wettability alteration of sandstone cores by alumina-based nanofluids," Energy & Fuels, vol. 27, pp. 3659-3665, 2013.A. Roustaei, S. Saffarzadeh, and M. Mohammadi, "An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs," Egyptian Journal of Petroleum, vol. 22, pp. 427- 433, 2013.ORIGINAL1017224287.2019.pdf1017224287.2019.pdfTesis de Maestría en Medio Ambiente y Desarrolloapplication/pdf2420826https://repositorio.unal.edu.co/bitstream/unal/76102/1/1017224287.2019.pdf27f9fd724dbfeb6e346eca8a154e09bcMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/76102/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/76102/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAIL1017224287.2019.pdf.jpg1017224287.2019.pdf.jpgGenerated Thumbnailimage/jpeg5366https://repositorio.unal.edu.co/bitstream/unal/76102/4/1017224287.2019.pdf.jpga6570cb97a00e6932ed309555f293237MD54unal/76102oai:repositorio.unal.edu.co:unal/761022024-07-05 23:10:24.441Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==