Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana

ilustraciones, fotografías a color, gráficas, mapas

Autores:
Tejedor Bonilla, Cristian Andres
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82828
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82828
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Cementación
Endurecimiento superficial
Cementation
Case hardening
Compresión unidimensional
Estructura
Suelo cementado
Desestructuración
Suelo reconstituido
Línea de compresión generalizada extendida (EGCL)
One-dimensional compression
Structure
Cemented soil
Destructuring
Reconstitued soil
Extended generalized compression line (EGCL)
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8727c0d661ce805d7e89e5c611c85d62
oai_identifier_str oai:repositorio.unal.edu.co:unal/82828
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
dc.title.translated.eng.fl_str_mv Effect of cementation on the one-dimensional volumetric behavior of a soil from the Colombian Orinoquia region
title Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
spellingShingle Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Cementación
Endurecimiento superficial
Cementation
Case hardening
Compresión unidimensional
Estructura
Suelo cementado
Desestructuración
Suelo reconstituido
Línea de compresión generalizada extendida (EGCL)
One-dimensional compression
Structure
Cemented soil
Destructuring
Reconstitued soil
Extended generalized compression line (EGCL)
title_short Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
title_full Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
title_fullStr Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
title_full_unstemmed Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
title_sort Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana
dc.creator.fl_str_mv Tejedor Bonilla, Cristian Andres
dc.contributor.advisor.none.fl_str_mv Colmenares Montañez, Julio Esteban
dc.contributor.author.none.fl_str_mv Tejedor Bonilla, Cristian Andres
dc.contributor.researchgroup.spa.fl_str_mv Geotechnical Engineering Knowledge and Innovation Genki
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Cementación
Endurecimiento superficial
Cementation
Case hardening
Compresión unidimensional
Estructura
Suelo cementado
Desestructuración
Suelo reconstituido
Línea de compresión generalizada extendida (EGCL)
One-dimensional compression
Structure
Cemented soil
Destructuring
Reconstitued soil
Extended generalized compression line (EGCL)
dc.subject.lemb.spa.fl_str_mv Cementación
Endurecimiento superficial
dc.subject.lemb.eng.fl_str_mv Cementation
Case hardening
dc.subject.proposal.spa.fl_str_mv Compresión unidimensional
Estructura
Suelo cementado
Desestructuración
Suelo reconstituido
Línea de compresión generalizada extendida (EGCL)
dc.subject.proposal.eng.fl_str_mv One-dimensional compression
Structure
Cemented soil
Destructuring
Reconstitued soil
Extended generalized compression line (EGCL)
description ilustraciones, fotografías a color, gráficas, mapas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-30T19:09:12Z
dc.date.available.none.fl_str_mv 2022-11-30T19:09:12Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82828
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82828
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Al-Rawas, A.A. (2002). Microgabric and mineralogical studies on the stabilization of an expansive soil using cement bypass dust and some types of slags. Can. Geotech. J., 39 (5), 1150-116
Aleva, G. J. J. (1994). LATERITES concepts, geology, morphology and chemistry. Wageningen: ISRIC.
Alpan, I. (1967). The empirical evaluation of the coefficient K0 and K0R. Soils and Foundations Volume 7, Issue 1, 1967, Pages 31-40.
ARGOS (2015). Estabilización de Suelos con Cemento: Alternativa Sostenible. 360º en Concreto - Blog Argos. https://www.youtube.com/watch?v=Zpx8TH8upr4
Ballinas (2006). Suelos expansivos. Tesis de maestría. Universidad Nacional Autónoma de México.
Basto (2022). Efecto de la cementación en la resistencia al corte de un suelo de la Orinoquía Colombiana. Trabajo final de maestría. Universidad Nacional de Colombia.
Baudet, B. y Stallebrass, S. (2004). A constitutive model for structured clays. Geotéchnique 54, No. 4, 269–278
Becker, D. E., Crooks, J. H. A., Been, K. y Jefferies, M. G. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal 24(4):549-564
Bergado, D.T., Anderson, L.R, Miura, N. y Balasubramaniam, A.S. (1996). Soft Ground Improvement in Lowland and Other Environments. American Society of Civil Engineers (ASCE) Press, New York, U.S.A. (1996)
Bergado, D. T. & Lorenzo, G. A. (2001). Recent developments of ground improvement in soft Bangkok clay. Proceedings of the international symposium on lowland technology, Saga, Vol. 1, pp. 17–26.
Biru, A. (2022). Novel theoretical considerations of the coefficient of earth pressure at rest. Norwegian Geotechnical Institute.
Bishop, A. W. (1957). Some factors controlling the pore pressures set up during the construction of earth dams, Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 2, pp. 294–300.
Brooker, E. W. e Ireland, H. O. (1965). Earth pressure at rest related to stress history. Canadian Geotechnical Journal, 2(1), 1-15
Brousseau, P. (1983). Génélalisarion des états limites et de la déstructurartion des argiles naturelles. MS thesis, Laval Univ., Quebec City, Quebec, Canada.
Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotéchnique 40, No. 3, 329-378
Cifuentes, M. (2018). Vía Yopal – Orocué intransitable. Marta Cifuentes Noticias y Contenidos. En línea: https://marthacifuentes.com/portada/2018/07/11/via-yopal-orocue-intransitable/
Coop, M. R., Atkinson, J. H. y Taylor, R. N. (1995). Strength and stiffness of structured and unstructured soils. Proc. 11th Eur.Conf. Soil Mech. Found. Engng, Copenhagen 1, 55–62
Corecchia, F. y Chandler, R. J. (2000). A general framework for mechanical behaviour of clays. Geotécnique 50(4): 431-447.
Coronilla, N. (2015). Estudio de la mejora de terreno mediante columnas suelo-cemento tipo mixpile. Tesis doctoral, Universidad de Málaga, España.
Croft, J. B. (1967). The structures of soils stabilized with cementitious agents. Engineering Geology. Volume 2, Issue 2, August 1967, Pages 63-80
Daniel, D. E. y Benson, C. H. (1990) Water Content-Density Criteria for Compacted Soil Liners, Journal of Geotechnical Engineering, Vol. 116, No. 12, pp. 1811-1830.
De Medina, J. (1964). Laterite and their Application to Highway Construction. Rev. Gén. Routes, 362: 81 – 94.
Diccionario Geotecnia (2020). Curva de compresibilidad. En línea: https://www.diccionario.geotecnia.online/palabra/curva-de-compresibilidad/
Eberemu, A. O. (2015). Compressibility characteristics of compacted lateritic soil treated with bagasse ash. Jordan Journal of Civil Engineering, Volume 9, No. 2, 2015.
Espinel, F. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. Trabajo Final de Maestría. Universidad Nacional de Colombia.
Fraser, A. M. (1957). The Influence of Stress Ratio on Compressibility and Pore pressure Coefficients in Compacted Soils. Ph. D. Thesis. London University.
Fredlund, D., Rahardjo, G. H., Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., Hoboken, New Jersey.
Horpibulsuk, S. (2001). Analysis and assessment of engineering behavior of cement stabilized clays. PhD dissertation, Saga University, Japan.
Horpibulsuk, S., Bergado, D. T., & Lorenzo, G. A. (2004). Compressibility of cement-admixed clays at high water content. Géotechnique, 54(2), 151-154.
Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. y Katkan, W. (2007): Assessment of engineering properties of Bangkok clay, Canadian Geotechnical Journal, 44(2), 173–187.
Horpibulsuk, S., Suebsuk, J., Chinkulkijniwat y A. Liu, M. D. (2009). A study of the compression behaviour of structured clays. In F. Oka, A. Murakami S. Kimoto (Eds.), Prediction and Simulation Methods for Geohazard Mitigation (pp. 269-272). London, UK: CRC Press.
Holm, G. (2003). “State of practice in dry deep mixing methods”, Geotechnical Special Publication, n 1201, p 145-163.
Hwang, J. (2006). Effects of cement treatment on the 1-D consolidation behavior of a highly organic soil.
Ingeominas, Universidad Industrial de Santander (2010), Geología del piedemonte llanero en la Cordillera Oriental, Departamentos de Arauca y Casanare: Memoria explicativa del Mapa geológico Plancha 233 – Orocué. Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear.
Jaky, J. (1944). The coefficient of earth pressure at-rest, Journal of the Society of Hungarian Architects and Engineers, Vol. 78, No. 22, pp. 355–358.
Lambe, T. W. (1958). The permeability of fine-grained soils. Special Technical Pub. 163, ASTM, Philadelphia, Pa., 55-67.
Lavalle, E. d. (2013). Suelo-Cemento. Sus usos, propiedades y aplicaciones. México, D.F.: Instituto Mexicano del Cemento y del Concreto, A. C.
Lea, F.M. (1956). The Chemistry of Cement and Concrete, St. Martin’s press Inc.
Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. y Roy, M. (1979). Behaviour of destructured natural clays. Proc. Am. Sot. Ciu. Engrs 105, GT6, 759-778.
Leroueil, S. y Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488.
Liu, M.D. y Carter, J.P. (1999). Virgin compression of structured soils. Geotéchnique, 49 (4), 43-57.
Liu, M.D. y Carter, J.P. (2000). Modeling the destructuring of soils during virgin compression. Geotéchnique, 50 (4), 479-483.
Liu, M.D. y Carter, J.P. (2002). A structured Cam Clay model. Can Geotech. J., 39 (6), 1313-1332.
Locat, J. Tremblay, H. y Leroueil, S. (1996). Mechanical and hydraulic behavior of a soft inorganic clay treated with lime, Can Geotech. J., 33 (4), 654-669.
Lorenzo, G. A., and Bergado, D.T. (2004). Fundamental parameters of cement-admixed clay: New approach, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 130, n 10, p 1042-1050.
Maccarini, M. (1987). Laboratory studies of weakly bonded artificial soil. PhD thesis, University of London.
Mayne, P. W. y Kulhawy, F. H. (1982). K0-OCR Relationships in Soil. Journal of the Soil Mechanics and Foundations Division, 108(6), 851–872.
Mesri, G., Rokhsar, A. y Bohor, B. F. (1975). Composition and compressibility of typical samples of Mexico City clay. Geotéchnique 25. No. 3, 527-554.
Mesri, G. and Hayat T.M. (1993). The coefficient of earth pressure at rest. Can. Geotech. J. 30, 647-666 (1993)
Ministerio de Minas y Energía. (2013). Explotación de materiales de construcción: Canteras y material de arrastre.
Mitchell, J. K. y Soga, K. (1976). Fundamentals of soil behavior (3rd ed.), John Wiley & Sons, Hoboken, New Jersey
Mitchell, J. K. y Solymar, Z. V. (1984). Time-dependent strength gain in freshly deposited or densified sand. J. Geotech. Div., Am. Soc. Civ. Engrs 110. GT11, 1559-1576.
Nagaraj, T. S. y Srinivasa Murthy, B. R. (1987). A critical reappraisal of compression index equations. Géotechnique, Volume 37, Issue 1, 135–136.
Nagaraj, T.S., Pandian, N.S., Narasimha Raju, P.S.R., (1993). Stress state–permeability relationships for fine-grained soils. Geotechnique 43 (2), 333–336.
Nagaraj, T. S., Pandain, N. S. y Narasimha Raju, P. S. R. (1998). Compressibility behaviour of soft cemented soils. Geótechnique, 48, No. 2, 281–287.
Noble, D.F., Plaster, R.W. (1970). Reactions in Portland Cement–Clay Mixtures. Final report, Virginia Highway Research Council, Charlottesville
Nogami, J. y Villibor, D., (1995) Pavimentação de baixo custo com solos lateríticos. Brasil. Ed. Vilibor, São Paulo, SP.
Noirum, R. N. y Orozco, L. F. (1993). Sistema de cimentación y comportamiento de los suelos de los nuevos edificios de la Embajada de los Estados Unidos. Segundo Encuentro Nacional de Ingenieros de Suelos y Estructuras. Escuela Colombiana de Ingeniería.
Olsen, R. E. y Daniel, D. E. (1981). Measurement of the hydraulic conductivity of fine-grained soils. Permeability and Groundwater Contaminant Transport, ASTM, STP 746, T. F. Zimmie and C.I. Riggs, Eds., ASTM, Philadelphia, pp. 18-64.
Orjuela, A. M. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. Trabajo final de maestría. Universidad Nacional de Colombia.
Porbaha, A., Shibuya, S. y Kishida, T. (2000). State of the art in deep mixing technology. Part II: Geomaterial characterization. Ground Improvement 3, 91–100.
Prensa Libre Casanare (2016). En pésimas condiciones vía a Orocué. En línea: https://prensalibrecasanare.com/casanare/21524-en-pysimas-condiciones-vna-a-orocuy.html
Prusinski J. y Bhattacharja, S. (1999) Effectiveness of Portland cement and lime in stabilizing clay soils. Transp Res Rec J Transp Res Board 1652:215–227
Rao, S.N. y Rajasekaran, G. (1996). Reaction products formed in lime-stabilized marine clays, J. Geotech. Engrg., 122 (5), 329-336
Rotta, G. V., Prietto, P. D. M., Coop, M. R., Graham, J., y Consoli, N. C. (2003). Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique, 53(5), 493–501
Ruffing, D. G. y Moran, A. R. (2016). In-situ soil-cement mixtures: Definitions, properties and design considerations. Geo-Solutions.
Sandroni, S. S. (1981). Solos residuals pesquisas realizades na PCC-RJ. Brazilian Symp. Engng Tropical Soils, Rio de Janerio 2, 30-65.
Sariosseiri, F. y Muhunthan, B. (2009). Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology 104, 119–125
Sasanian, S. y Newson, T.A. (2014). Basic parameters governing the behaviour of cement-treated clays. Soils and Foundations; 54(2), 209–224
Schmidt, B. (1966). Earth pressures at rest related to stress history. Discussion. Can. Geo. Journal, 3(4), 239-242.
Seed, H.B. y Chan, C.K. (1959), Structure and strength characteristics of compacted clays, Journal of the Soil Mechanics and Foundations Division, ASCE, pag. 87-128.
Schmertmann, J. H. (1969). Swell sensitivity. Geotéchnique 19, No. 4, 530-533.
Schmertmann, J. H. (1985). Measure and use of the in situ lateral stress.
Servicio Geológico Colombiano (2014), Estudios de Cartografía Geológica a Escala 1:100.000 Bloque 8 en el Vichada: Memoria explicativa de la Plancha 233 – Orocué. Dirección de Geociencias Básicas.
Sharma, H. D. y Lewis, S. P. (1994). Waste containment systems, waste stabilization and landfills: Design and evaluation. John Wiley & Sons, Inc.
Simons, N. (1958). Discussion: Measurements of the pressures of filling materials against walls, Proceedings of Brussels Conference on Earth Pressure Problems, Brussels, Vol. 3, pp. 50–53.
Skempton, A. W. (1953). The colloidal activity of clays. Londres: Universidad de Londres.
Skempton, A. W. (1970). The consolidation of clays by gravitational compaction. Q. J. Geol. Sot. 125, 373-411.
Tan, K. H., y Troth, P. S. (1982). Silica-sesquioxide ratios as aids in characterization of some temperate region and tropical soil clays. Soil Sci. Soc. Am. J. 46:1109-1114.
Taylor, H. F. W. (1997). Cement Chemistry (3rd Rev. ed.). London: Thomas Telford.
Terzaghi, K. (1925). Erdbaumechanik auf bodenphysika lischer Grundlage. Vienna: Deuticke.
Teerachaikulpanich, N., Okumura, S., Matsunaga, K. y Ohtha, H. (2007). Estimation of coefficient of earth pressure at rest using modified oedometer test. Japanese Geotechnical Society. Soils and Foundations Vol. 47, No. 2, 349-360
Terashi, M., Tanaka, H., Mitsumoto, T., Niidome, Y. y Honma, S. (1979). Fundamental properties of lime and cement treated soils (2nd report). Report of Port and Harbour Research Institute 19, No. 1, 33–62 (in Japanese).
Tremblay, H, Leroueil, S. y Locat, J. (2001). Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech. J., 38, 567-579.
Wesley, L. D. (1974). Discussion of Wallace (1973). Geotéchnique 24, No. 1, 101-105.
Villareal, H., Mendoza, H., Quintero, I., Osorio, D., Castillo, R., Higeria, M., Umaña, A., Alvares, M., Parra, J., Maldonado, J. & Bogotá, J. J. (2007). Caracterización biológica del Parque Nacional Natural El Tuparro (sector noreste), Vichada, Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.
Zhao, H., Zhoua, K., Zhaob, C., Gongc, B. y Jun Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized handan clay. European Journal of Environmental and Civil Engineering.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 152 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Orinoco, Colombia
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82828/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82828/2/1032465738.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82828/3/1032465738.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b6b8396126507b184ff411b1cd9e9da1
848a7542b28d0479d39417da39d390af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089382876938240
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colmenares Montañez, Julio Estebancc92ffe792a53c34a8258076fac18bbbTejedor Bonilla, Cristian Andres4763770b9a1083cbd9df886fee679211Geotechnical Engineering Knowledge and Innovation Genki2022-11-30T19:09:12Z2022-11-30T19:09:12Z2022https://repositorio.unal.edu.co/handle/unal/82828Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a color, gráficas, mapasEsta investigación estudió el efecto de la cementación, como parte fundamental de la estructura del suelo, en el comportamiento volumétrico de un suelo tropical (no laterítico) limo arcilloso con alto contenido de arena proveniente de los llanos orientales colombianos. El estudio incluyó ensayos, de carga controlada y con tasa de deformación constante, para evaluar el comportamiento del suelo en compresión unidimensional en estado compactado y reconstituido. Para investigar los efectos de la estructura en el comportamiento del suelo, se ensayaron muestras con diferente contenido de cemento (2%, 5% y 8% respecto a la masa seca del suelo). El tiempo de curado mínimo de 28 días fue establecido con base en los resultados de ensayos de resistencia a la compresión inconfinada. Las curvas de compresibilidad de las diferentes mezclas de suelo – cemento y la del suelo reconstituido permitieron determinar el grado de estructuración de las muestras de suelo. En el caso de las mezclas de 2% de contenido de cemento, la desestructuración fue tan alta que sus curvas de compresibilidad cruzaron la del suelo reconstituido, indicando una degradación de la fábrica de los materiales. En el suelo reconstituido se observó un crecimiento del índice de expansión de la muestra que fue llevada a un esfuerzo vertical efectivo más alto. En general no fue evidente una aproximación asintótica de la curva de compresibilidad del material estructurado con la del material reconstituido. Los cambios en el comportamiento volumétrico fueron evidentes luego de producirse la hidratación del cemento y las reacciones puzolánicas durante el tiempo de curado mínimo establecido. Un mayor grado de estructura representó un esfuerzo de cedencia mayor, determinando un comportamiento rígido en la zona de recompresión y un incremento en el índice de compresión. La degradación de la estructura generó un incremento en el índice de expansión del material, el cual fue evaluado mediante la ejecución de tres ciclos de carga - descarga. Se propone la Línea de Compresión Generalizada Extendida (EGCL), con la cual puede predecirse la línea de compresión virgen de otros suelos cementados. Los resultados sobre la caracterización del coeficiente de presión lateral de tierras en reposo, evaluado antes y después de la cedencia indican cómo, después de la cedencia, el K0 del material con cemento tiende al valor del material menos estructurado. (Texto tomado de la fuente)The effect of cementation, as a fundamental part of the soil structure, in the volumetric behavior of a tropical (non-lateritic) clayey silt soil with high content of sand from the Colombian eastern planes was studied. This study included incremental loading (IL) and constant rate of strain (CRS) tests to evaluate the one-dimensional compression behavior of the soil, in compacted and reconstituted condition. Soil samples with different cement contents (2%, 5% and 8% of the dry mass of the soil) were tested. A minimum curing time of 28 days was stablished based on the unconfined compressive strength test results. It was possible to establish the structuring degree of the soil samples. In the case of mixtures of 2% cement content, the soil destructuring was as high that their compressibility curves crossed the curve of the reconstituted soil, indicating fabric degradation. For the reconstituted soil, an increase in the expansion index of the soil sample that reached the highest vertical effective stress was observed. In general, it was not evident an asymptotic approximation between the compressibility curve of the structured materials with of the reconstituted soil. Changes in volumetric behavior were evident after cement hydration and pozzolanic reactions occurred during the stablished curing time. A higher degree of structure led to a higher yield stress, determining a stiff behavior in the recompression zone and an increase in the compression index. The structure degradation led to an increase in the material expansion index, which was assessed by the execution of three load-unload cycles. The Extended Generalized Compression Line (EGCL) is proposed, with which it is possible to predict the virgin compression line of other cemented soils. The characterization of the coefficient of lateral earth pressure at rest (K0) indicate how, after yielding, the K0 of a cemented material tends to the less-structured material value.MaestríaMagister en GeotecniaInvestigación mediante plan experimental de ensayos de laboratorioRelaciones constitutivas de suelos, rocas y materiales afinesxxiii, 152 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::624 - Ingeniería civilCementaciónEndurecimiento superficialCementationCase hardeningCompresión unidimensionalEstructuraSuelo cementadoDesestructuraciónSuelo reconstituidoLínea de compresión generalizada extendida (EGCL)One-dimensional compressionStructureCemented soilDestructuringReconstitued soilExtended generalized compression line (EGCL)Efecto de la cementación en el comportamiento volumétrico unidimensional de un suelo de la Orinoquía ColombianaEffect of cementation on the one-dimensional volumetric behavior of a soil from the Colombian Orinoquia regionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMOrinoco, ColombiaColombiaAl-Rawas, A.A. (2002). Microgabric and mineralogical studies on the stabilization of an expansive soil using cement bypass dust and some types of slags. Can. Geotech. J., 39 (5), 1150-116Aleva, G. J. J. (1994). LATERITES concepts, geology, morphology and chemistry. Wageningen: ISRIC.Alpan, I. (1967). The empirical evaluation of the coefficient K0 and K0R. Soils and Foundations Volume 7, Issue 1, 1967, Pages 31-40.ARGOS (2015). Estabilización de Suelos con Cemento: Alternativa Sostenible. 360º en Concreto - Blog Argos. https://www.youtube.com/watch?v=Zpx8TH8upr4Ballinas (2006). Suelos expansivos. Tesis de maestría. Universidad Nacional Autónoma de México.Basto (2022). Efecto de la cementación en la resistencia al corte de un suelo de la Orinoquía Colombiana. Trabajo final de maestría. Universidad Nacional de Colombia.Baudet, B. y Stallebrass, S. (2004). A constitutive model for structured clays. Geotéchnique 54, No. 4, 269–278Becker, D. E., Crooks, J. H. A., Been, K. y Jefferies, M. G. (1987). Work as a criterion for determining in situ and yield stresses in clays. Canadian Geotechnical Journal 24(4):549-564Bergado, D.T., Anderson, L.R, Miura, N. y Balasubramaniam, A.S. (1996). Soft Ground Improvement in Lowland and Other Environments. American Society of Civil Engineers (ASCE) Press, New York, U.S.A. (1996)Bergado, D. T. & Lorenzo, G. A. (2001). Recent developments of ground improvement in soft Bangkok clay. Proceedings of the international symposium on lowland technology, Saga, Vol. 1, pp. 17–26.Biru, A. (2022). Novel theoretical considerations of the coefficient of earth pressure at rest. Norwegian Geotechnical Institute.Bishop, A. W. (1957). Some factors controlling the pore pressures set up during the construction of earth dams, Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 2, pp. 294–300.Brooker, E. W. e Ireland, H. O. (1965). Earth pressure at rest related to stress history. Canadian Geotechnical Journal, 2(1), 1-15Brousseau, P. (1983). Génélalisarion des états limites et de la déstructurartion des argiles naturelles. MS thesis, Laval Univ., Quebec City, Quebec, Canada.Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotéchnique 40, No. 3, 329-378Cifuentes, M. (2018). Vía Yopal – Orocué intransitable. Marta Cifuentes Noticias y Contenidos. En línea: https://marthacifuentes.com/portada/2018/07/11/via-yopal-orocue-intransitable/Coop, M. R., Atkinson, J. H. y Taylor, R. N. (1995). Strength and stiffness of structured and unstructured soils. Proc. 11th Eur.Conf. Soil Mech. Found. Engng, Copenhagen 1, 55–62Corecchia, F. y Chandler, R. J. (2000). A general framework for mechanical behaviour of clays. Geotécnique 50(4): 431-447.Coronilla, N. (2015). Estudio de la mejora de terreno mediante columnas suelo-cemento tipo mixpile. Tesis doctoral, Universidad de Málaga, España.Croft, J. B. (1967). The structures of soils stabilized with cementitious agents. Engineering Geology. Volume 2, Issue 2, August 1967, Pages 63-80Daniel, D. E. y Benson, C. H. (1990) Water Content-Density Criteria for Compacted Soil Liners, Journal of Geotechnical Engineering, Vol. 116, No. 12, pp. 1811-1830.De Medina, J. (1964). Laterite and their Application to Highway Construction. Rev. Gén. Routes, 362: 81 – 94.Diccionario Geotecnia (2020). Curva de compresibilidad. En línea: https://www.diccionario.geotecnia.online/palabra/curva-de-compresibilidad/Eberemu, A. O. (2015). Compressibility characteristics of compacted lateritic soil treated with bagasse ash. Jordan Journal of Civil Engineering, Volume 9, No. 2, 2015.Espinel, F. (2019). Efecto de la estructura sobre la contracción volumétrica de suelos sometidos a procesos de desecación. Trabajo Final de Maestría. Universidad Nacional de Colombia.Fraser, A. M. (1957). The Influence of Stress Ratio on Compressibility and Pore pressure Coefficients in Compacted Soils. Ph. D. Thesis. London University.Fredlund, D., Rahardjo, G. H., Fredlund, M. D. (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc., Hoboken, New Jersey.Horpibulsuk, S. (2001). Analysis and assessment of engineering behavior of cement stabilized clays. PhD dissertation, Saga University, Japan.Horpibulsuk, S., Bergado, D. T., & Lorenzo, G. A. (2004). Compressibility of cement-admixed clays at high water content. Géotechnique, 54(2), 151-154.Horpibulsuk, S., Shibuya, S., Fuenkajorn, K. y Katkan, W. (2007): Assessment of engineering properties of Bangkok clay, Canadian Geotechnical Journal, 44(2), 173–187.Horpibulsuk, S., Suebsuk, J., Chinkulkijniwat y A. Liu, M. D. (2009). A study of the compression behaviour of structured clays. In F. Oka, A. Murakami S. Kimoto (Eds.), Prediction and Simulation Methods for Geohazard Mitigation (pp. 269-272). London, UK: CRC Press.Holm, G. (2003). “State of practice in dry deep mixing methods”, Geotechnical Special Publication, n 1201, p 145-163.Hwang, J. (2006). Effects of cement treatment on the 1-D consolidation behavior of a highly organic soil.Ingeominas, Universidad Industrial de Santander (2010), Geología del piedemonte llanero en la Cordillera Oriental, Departamentos de Arauca y Casanare: Memoria explicativa del Mapa geológico Plancha 233 – Orocué. Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear.Jaky, J. (1944). The coefficient of earth pressure at-rest, Journal of the Society of Hungarian Architects and Engineers, Vol. 78, No. 22, pp. 355–358.Lambe, T. W. (1958). The permeability of fine-grained soils. Special Technical Pub. 163, ASTM, Philadelphia, Pa., 55-67.Lavalle, E. d. (2013). Suelo-Cemento. Sus usos, propiedades y aplicaciones. México, D.F.: Instituto Mexicano del Cemento y del Concreto, A. C.Lea, F.M. (1956). The Chemistry of Cement and Concrete, St. Martin’s press Inc.Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. y Roy, M. (1979). Behaviour of destructured natural clays. Proc. Am. Sot. Ciu. Engrs 105, GT6, 759-778.Leroueil, S. y Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Géotechnique, 40(3), 467–488.Liu, M.D. y Carter, J.P. (1999). Virgin compression of structured soils. Geotéchnique, 49 (4), 43-57.Liu, M.D. y Carter, J.P. (2000). Modeling the destructuring of soils during virgin compression. Geotéchnique, 50 (4), 479-483.Liu, M.D. y Carter, J.P. (2002). A structured Cam Clay model. Can Geotech. J., 39 (6), 1313-1332.Locat, J. Tremblay, H. y Leroueil, S. (1996). Mechanical and hydraulic behavior of a soft inorganic clay treated with lime, Can Geotech. J., 33 (4), 654-669.Lorenzo, G. A., and Bergado, D.T. (2004). Fundamental parameters of cement-admixed clay: New approach, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 130, n 10, p 1042-1050.Maccarini, M. (1987). Laboratory studies of weakly bonded artificial soil. PhD thesis, University of London.Mayne, P. W. y Kulhawy, F. H. (1982). K0-OCR Relationships in Soil. Journal of the Soil Mechanics and Foundations Division, 108(6), 851–872.Mesri, G., Rokhsar, A. y Bohor, B. F. (1975). Composition and compressibility of typical samples of Mexico City clay. Geotéchnique 25. No. 3, 527-554.Mesri, G. and Hayat T.M. (1993). The coefficient of earth pressure at rest. Can. Geotech. J. 30, 647-666 (1993)Ministerio de Minas y Energía. (2013). Explotación de materiales de construcción: Canteras y material de arrastre.Mitchell, J. K. y Soga, K. (1976). Fundamentals of soil behavior (3rd ed.), John Wiley & Sons, Hoboken, New JerseyMitchell, J. K. y Solymar, Z. V. (1984). Time-dependent strength gain in freshly deposited or densified sand. J. Geotech. Div., Am. Soc. Civ. Engrs 110. GT11, 1559-1576.Nagaraj, T. S. y Srinivasa Murthy, B. R. (1987). A critical reappraisal of compression index equations. Géotechnique, Volume 37, Issue 1, 135–136.Nagaraj, T.S., Pandian, N.S., Narasimha Raju, P.S.R., (1993). Stress state–permeability relationships for fine-grained soils. Geotechnique 43 (2), 333–336.Nagaraj, T. S., Pandain, N. S. y Narasimha Raju, P. S. R. (1998). Compressibility behaviour of soft cemented soils. Geótechnique, 48, No. 2, 281–287.Noble, D.F., Plaster, R.W. (1970). Reactions in Portland Cement–Clay Mixtures. Final report, Virginia Highway Research Council, CharlottesvilleNogami, J. y Villibor, D., (1995) Pavimentação de baixo custo com solos lateríticos. Brasil. Ed. Vilibor, São Paulo, SP.Noirum, R. N. y Orozco, L. F. (1993). Sistema de cimentación y comportamiento de los suelos de los nuevos edificios de la Embajada de los Estados Unidos. Segundo Encuentro Nacional de Ingenieros de Suelos y Estructuras. Escuela Colombiana de Ingeniería.Olsen, R. E. y Daniel, D. E. (1981). Measurement of the hydraulic conductivity of fine-grained soils. Permeability and Groundwater Contaminant Transport, ASTM, STP 746, T. F. Zimmie and C.I. Riggs, Eds., ASTM, Philadelphia, pp. 18-64.Orjuela, A. M. (2021). Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0. Trabajo final de maestría. Universidad Nacional de Colombia.Porbaha, A., Shibuya, S. y Kishida, T. (2000). State of the art in deep mixing technology. Part II: Geomaterial characterization. Ground Improvement 3, 91–100.Prensa Libre Casanare (2016). En pésimas condiciones vía a Orocué. En línea: https://prensalibrecasanare.com/casanare/21524-en-pysimas-condiciones-vna-a-orocuy.htmlPrusinski J. y Bhattacharja, S. (1999) Effectiveness of Portland cement and lime in stabilizing clay soils. Transp Res Rec J Transp Res Board 1652:215–227Rao, S.N. y Rajasekaran, G. (1996). Reaction products formed in lime-stabilized marine clays, J. Geotech. Engrg., 122 (5), 329-336Rotta, G. V., Prietto, P. D. M., Coop, M. R., Graham, J., y Consoli, N. C. (2003). Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique, 53(5), 493–501Ruffing, D. G. y Moran, A. R. (2016). In-situ soil-cement mixtures: Definitions, properties and design considerations. Geo-Solutions.Sandroni, S. S. (1981). Solos residuals pesquisas realizades na PCC-RJ. Brazilian Symp. Engng Tropical Soils, Rio de Janerio 2, 30-65.Sariosseiri, F. y Muhunthan, B. (2009). Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology 104, 119–125Sasanian, S. y Newson, T.A. (2014). Basic parameters governing the behaviour of cement-treated clays. Soils and Foundations; 54(2), 209–224Schmidt, B. (1966). Earth pressures at rest related to stress history. Discussion. Can. Geo. Journal, 3(4), 239-242.Seed, H.B. y Chan, C.K. (1959), Structure and strength characteristics of compacted clays, Journal of the Soil Mechanics and Foundations Division, ASCE, pag. 87-128.Schmertmann, J. H. (1969). Swell sensitivity. Geotéchnique 19, No. 4, 530-533.Schmertmann, J. H. (1985). Measure and use of the in situ lateral stress.Servicio Geológico Colombiano (2014), Estudios de Cartografía Geológica a Escala 1:100.000 Bloque 8 en el Vichada: Memoria explicativa de la Plancha 233 – Orocué. Dirección de Geociencias Básicas.Sharma, H. D. y Lewis, S. P. (1994). Waste containment systems, waste stabilization and landfills: Design and evaluation. John Wiley & Sons, Inc.Simons, N. (1958). Discussion: Measurements of the pressures of filling materials against walls, Proceedings of Brussels Conference on Earth Pressure Problems, Brussels, Vol. 3, pp. 50–53.Skempton, A. W. (1953). The colloidal activity of clays. Londres: Universidad de Londres.Skempton, A. W. (1970). The consolidation of clays by gravitational compaction. Q. J. Geol. Sot. 125, 373-411.Tan, K. H., y Troth, P. S. (1982). Silica-sesquioxide ratios as aids in characterization of some temperate region and tropical soil clays. Soil Sci. Soc. Am. J. 46:1109-1114.Taylor, H. F. W. (1997). Cement Chemistry (3rd Rev. ed.). London: Thomas Telford.Terzaghi, K. (1925). Erdbaumechanik auf bodenphysika lischer Grundlage. Vienna: Deuticke.Teerachaikulpanich, N., Okumura, S., Matsunaga, K. y Ohtha, H. (2007). Estimation of coefficient of earth pressure at rest using modified oedometer test. Japanese Geotechnical Society. Soils and Foundations Vol. 47, No. 2, 349-360Terashi, M., Tanaka, H., Mitsumoto, T., Niidome, Y. y Honma, S. (1979). Fundamental properties of lime and cement treated soils (2nd report). Report of Port and Harbour Research Institute 19, No. 1, 33–62 (in Japanese).Tremblay, H, Leroueil, S. y Locat, J. (2001). Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech. J., 38, 567-579.Wesley, L. D. (1974). Discussion of Wallace (1973). Geotéchnique 24, No. 1, 101-105.Villareal, H., Mendoza, H., Quintero, I., Osorio, D., Castillo, R., Higeria, M., Umaña, A., Alvares, M., Parra, J., Maldonado, J. & Bogotá, J. J. (2007). Caracterización biológica del Parque Nacional Natural El Tuparro (sector noreste), Vichada, Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt.Zhao, H., Zhoua, K., Zhaob, C., Gongc, B. y Jun Liu, J. (2015). A long-term investigation on microstructure of cement-stabilized handan clay. European Journal of Environmental and Civil Engineering.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82828/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032465738.2022.pdf1032465738.2022.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf5847673https://repositorio.unal.edu.co/bitstream/unal/82828/2/1032465738.2022.pdfb6b8396126507b184ff411b1cd9e9da1MD52THUMBNAIL1032465738.2022.pdf.jpg1032465738.2022.pdf.jpgGenerated Thumbnailimage/jpeg5176https://repositorio.unal.edu.co/bitstream/unal/82828/3/1032465738.2022.pdf.jpg848a7542b28d0479d39417da39d390afMD53unal/82828oai:repositorio.unal.edu.co:unal/828282024-08-13 23:38:08.883Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=