Aplicaciones no conmutativas y puntos fijos
If f, g are continuous maps of a complete metric space X such that fg = gf, d(g(x),g(y) ∝d(f (x),f (y) for some 0 and lt; ∝ and lt; 1, and g(X) ⊑ f(X) ) ⊑ X, then f, g have a common fixed point. This is a result of G. Jungck; K.M. Das and K. Viswanatha Naik have generalized this ~esult by deleting t...
- Autores:
-
Rodríguez Montes, Jaime
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1987
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43163
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43163
http://bdigital.unal.edu.co/33261/
- Palabra clave:
- Jungck theorems
metric space / Teoremas de Jungck
espacio metrico
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | If f, g are continuous maps of a complete metric space X such that fg = gf, d(g(x),g(y) ∝d(f (x),f (y) for some 0 and lt; ∝ and lt; 1, and g(X) ⊑ f(X) ) ⊑ X, then f, g have a common fixed point. This is a result of G. Jungck; K.M. Das and K. Viswanatha Naik have generalized this ~esult by deleting the continuity of f but assuming instead that of f2. A result that generalizes those above, but does not assume thecontinuity of either f or f2 or the commutativity of f and g is proposed. The impossed conditions are that for some non empty complete subset K of X, g(K) ) ⊑ f(K) ~ K, that d(g(x), g(y)) ad(f(x),f(y)), 0 and lt; ∝ and lt; 1, x,y ∈ K, and that if x ∈ X, the existence of a sequence {xn} of K such that lím f(xn) = lím g(xn) = x ensures that f(x) = g(x). |
---|