Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct

ilustraciones, diagramas, fotografías, tablas

Autores:
Quevedo Blandón, Lis Angélica
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86687
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86687
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Células Musculares
Muscle Cells
Estimulación Eléctrica
Electric Stimulation
Técnicas de Cultivo Tridimensional de Células
Cell Culture Techniques, Three Dimensional
Estimulación eléctrica
modelo computacional
tejido muscular esquelético
distrofia miotónica tipo 1
ingeniería de tejidos
Electric stimulation
computational model
skeletal muscle tissue
dystrophy myotonic type I
tissue engineering
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_86751f9588936536b7553d483f541b56
oai_identifier_str oai:repositorio.unal.edu.co:unal/86687
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
dc.title.translated.spa.fl_str_mv Modelo computacional de la distribución de campo eléctrico dentro de un dispositivo muscle-on-a-chip utilizado para estimular células musculares encapsuladas en un constructo tridimensional
title Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
spellingShingle Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Células Musculares
Muscle Cells
Estimulación Eléctrica
Electric Stimulation
Técnicas de Cultivo Tridimensional de Células
Cell Culture Techniques, Three Dimensional
Estimulación eléctrica
modelo computacional
tejido muscular esquelético
distrofia miotónica tipo 1
ingeniería de tejidos
Electric stimulation
computational model
skeletal muscle tissue
dystrophy myotonic type I
tissue engineering
title_short Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
title_full Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
title_fullStr Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
title_full_unstemmed Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
title_sort Computational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional construct
dc.creator.fl_str_mv Quevedo Blandón, Lis Angélica
dc.contributor.advisor.none.fl_str_mv Vaca González, Juan Jairo
Garzón-Alvarado, Diego Alexander
dc.contributor.author.none.fl_str_mv Quevedo Blandón, Lis Angélica
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
610 - Medicina y salud::615 - Farmacología y terapéutica
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Células Musculares
Muscle Cells
Estimulación Eléctrica
Electric Stimulation
Técnicas de Cultivo Tridimensional de Células
Cell Culture Techniques, Three Dimensional
Estimulación eléctrica
modelo computacional
tejido muscular esquelético
distrofia miotónica tipo 1
ingeniería de tejidos
Electric stimulation
computational model
skeletal muscle tissue
dystrophy myotonic type I
tissue engineering
dc.subject.decs.none.fl_str_mv Células Musculares
Muscle Cells
Estimulación Eléctrica
Electric Stimulation
Técnicas de Cultivo Tridimensional de Células
Cell Culture Techniques, Three Dimensional
dc.subject.proposal.spa.fl_str_mv Estimulación eléctrica
modelo computacional
tejido muscular esquelético
distrofia miotónica tipo 1
ingeniería de tejidos
dc.subject.proposal.eng.fl_str_mv Electric stimulation
computational model
skeletal muscle tissue
dystrophy myotonic type I
tissue engineering
description ilustraciones, diagramas, fotografías, tablas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-08-02T13:35:36Z
dc.date.available.none.fl_str_mv 2024-08-02T13:35:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86687
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86687
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Monebhurrun V. IEEE Standard 211-2018: IEEE Standard Definitions of Terms for Radio Wave Propagation [Stand on Standards]. IEEE Antennas Propag Mag. 2019 Jun;61(3):126–126.
Braslavsky SE. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry. 2007 Jan 1;79(3):293–465.
David M, Feldman Y, Ben Ishai P. Dielectric spectroscopy and techniques. In: Non-Destructive Material Characterization Methods. Elsevier; 2024. p. 587–619
Hook JR, & HHE. Solid state physic. John Wiley & Sons. 2013.
Huray PG. Maxwell’s equations. John Wiley & Sons. 2009.
Archie GE. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME. 1942 Dec 1;146(01):54–62.
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer New York; 2014.
Ponce FA. Electrostimulation. In: Encyclopedia of the Neurological Sciences. Elsevier; 2014. p. 1110–1.
Tasu JP, Vesselle G, Herpe G, Richer JP, Boucecbi S, Vélasco S, et al. Irreversible electroporation for locally advanced pancreatic cancer. Diagn Interv Imaging. 2016 Dec;97(12):1297–304.
Ianowski JP, O’Donnell MJ. Electrochemical gradients for Na+, K+,Cl– and H+ across the apical membrane in Malpighian (renal) tubule cells of Rhodnius prolixus. Journal of Experimental Biology. 2006 May 15;209(10):1964–75.
Arfken GB, Griffing DF, Kelly DC, Priest J. ELECTRIC FIELD AND GAUSS’ LAW. In: University Physics. Elsevier; 1984. p. 490–513.
Ginn C, Patel B, Walker R. Existing and emerging applications for the neuromodulation of nerve activity through targeted delivery of electric stimuli. International Journal of Neuroscience. 2019 Oct 3;129(10):1013–23.
Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020 Dec 24;19(1):34.
Lou F, Chen D. Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry. 2015 Sep;24(5):559–86.
Shiraishi S. Electric Double Layer Capacitors. In: Carbon Alloys. Elsevier; 2003. p. 447–57.
McCuller C, Jessu R, Callahan AL. Physiology, Skeletal Muscle. In StatPearls; 2024 [cited 2024 Apr 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537139/
Dao TT, Tho MCHB. A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations. Appl Bionics Biomech. 2018 Dec 6;2018:1–17.
Chiego DJ, Avery JK. Principios de histología y embriología bucal con orientación clínica. In: 5th edition. Madrid, Spain: Elsevier Mosby; 2007 [cited 2023 Dec 23]. Available from: https://www.berri.es/pdf/PRINCIPIOS%20DE%20HISTOLOGIA%20Y%20EMBRIOLOGIA%20BUCAL/9788413820231
Dissertations OD, Russell RP. Retinoic Acid Receptor Signaling During Paraxial Mesoderm Differentiation of Pluripotent Stem Cells [Internet]. 2018. Available from: https://opencommons.uconn.edu/dissertations
D. Dave H, Shook M, Varacallo M. Anatomy, Skeletal Muscle. StatPearls Publishing [Internet]. 2023 Aug 28 [cited 2023 Dec 27]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK537236/
Lamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.
Oregon State University. Skeletal Muscle.
E. Hall J, Guyton AC. Tratado de Fisiología médica. 11th edition. Barcelona, España: Elseiver; 2011.
Pham S, Puckett Y. StatPearls. 2023 [cited 2023 Nov 23]. Physiology, Skeletal Muscle Contraction. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559006/#:~:text=Skeletal%20muscle%20contraction%20begins%20first,channels%20of%20the%20presynaptic%20membrane.
Bravo-Sagua R, Parra V, Muñoz-Cordova F, Sanchez-Aguilera P, Garrido V, Contreras-Ferrat A, et al. Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. Int Rev Cell Mol Biol. 2020;350:197–264.
Barrett KE, Ganong WF. Fisiología Médica: 24a edición. 24th ed. Ciudad de México, México: McGraw-Hill Interamericana; 2013.
Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. Elife [Internet]. 2022 May 23 [cited 2024 Apr 23];11. Available from: https://elifesciences.org/articles/77204
Shiels HA. DESIGN AND PHYSIOLOGY OF THE HEART | Cardiac Excitation–Contraction Coupling: Routes of Cellular Calcium Flux. In: Encyclopedia of Fish Physiology. Manchester, UK: Elsevier; 2011. p. 1045–53.
Rosero D, Moreno F. Aspectos histológicos y moleculares del tendón como matriz extracelular extramuscular. Salutem Scientia Spiritus [Internet]. 2016 [cited 2023 Nov 23];2(1):26–39. Available from: https://www.researchgate.net/publication/304782689_Aspectos_histologicos_y_moleculares_del_tendon_como_matriz_extracelular_extramuscular
Ozimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews [Internet]. 2021 Apr 2 [cited 2023 Oct 23];96(2):716–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33269537/
Bird TD. Myotonic Dystrophy Type 1. In: GeneReviews [Internet]. University of Washington, Seattle; : GeneReviews®; 1999 [cited 2023 Oct 23]. p. 1993–2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1165/
Muscular Dystrophy Association (MDA). Myotonic Dystrophy (DM) - Medical Management [Internet]. [cited 2023 Sep 21]. Available from: https://www.mda.org/disease/myotonic-dystrophy/medical-management
Smith CA, Gutmann L. Myotonic Dystrophy Type 1 Management and Therapeutics. Curr Treat Options Neurol [Internet]. 2016 Dec 8 [cited 2023 Sep 23];18(12):52. Available from: https://link.springer.com/article/10.1007/s11940-016-0434-1
Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry [Internet]. 2010 Apr 1 [cited 2023 Aug 23];81(4):358–67. Available from: https://pubmed.ncbi.nlm.nih.gov/20176601/
Bird TD. Myotonic Dystrophy Type 1. 1993.
Foff EP, Mahadevan MS. Therapeutics development in myotonic dystrophy type 1. Muscle Nerve [Internet]. 2011 Aug 23 [cited 2023 Sep 23];44(2):160–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mus.22090
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol [Internet]. 2012 Oct [cited 2023 Aug 23];11(10):891–905. Available from: https://pubmed.ncbi.nlm.nih.gov/22995693/
Fernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).
Okano T, Matsuda T. Tissue Engineered Skeletal Muscle: Preparation of Highly Dense, Highly Oriented Hybrid Muscular Tissues. Cell Transplant [Internet]. 1998 Jan 22 [cited 2023 Nov 23];7(1):71–82. Available from: https://pubmed.ncbi.nlm.nih.gov/9489765/
Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology [Internet]. 1988 Mar [cited 2023 Oct 23];24(3):166–74. Available from: https://pubmed.ncbi.nlm.nih.gov/3350785/
Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, et al. Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication. 2021 Jul 1;13(3):035035.
Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife [Internet]. 2015 Jan 9 [cited 2023 Aug 23];4. Available from: https://pubmed.ncbi.nlm.nih.gov/25575180/
Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, et al. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep. 2018 Apr;23(3):899–908.
Shahriyari M, Islam MR, Sakib SM, Rinn M, Rika A, Krüger D, et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle. 2022 Dec 18;13(6):3106–21.
Serena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N. Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integrative Biology. 2010;2(4):193.
Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, et al. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021 Sep;132:227–44.
Nguyen CT, Ebrahimi M, Gilbert PM, Stewart BA. Electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues. American Journal of Physiology-Cell Physiology. 2021 Oct 1;321(4):C749–59.
Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB Journal. 2009 Oct;23(10):3325–34.
Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.
Rose N, Estrada Chavez B, Sonam S, Nguyen T, Grenci G, Bigot A, et al. Bioengineering a miniaturized in vitro 3D myotube contraction monitoring chip to model muscular dystrophies. Biomaterials. 2023 Feb;293:121935.
Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife. 2019 May 14;8.
Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, et al. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell. 2020 Feb;26(2):172-186.e6.
Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol. 2022 Jul 11;10.
Cudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.
Chisari C, Bertolucci F, Dalise S, Rossi B. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in Myotonic Dystrophy: a pilot study. J Neuroeng Rehabil. 2013;10(1):94.
Leone E, Pandyan A, Rogers A, Kulshrestha R, Hill J, Philp F. Effectiveness of conservative non-pharmacological interventions in people with muscular dystrophies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023 Dec 12;jnnp-2023-331988.
Cudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.
Bultot L, Jensen TE, Lai YC, Madsen ALB, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2016 Oct 1;311(4):E706–19.
Esposito F, Cè E, Rampichini S, Limonta E, Venturelli M, Monti E, et al. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscular Disorders. 2016 Jan;26(1):60–72.
Magar HS, Hassan RYA, Mulchandani A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors. 2021 Oct 1;21(19):6578.
Lazanas ACh, Prodromidis MI. Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au. 2023 Jun 21;3(3):162–93.
Metrohm AG [Internet]. 2023 [cited 2023 Jul 23]. Application note AN-EIS-001 electrochemical impedance spectroscopy. Available from: https://www.metrohm.com/content/metrohm/en_us/applications/application-notes/autolab-applikationen-anautolab/an-eis-001.download.pdf
Cheng J, Yu P, Huang Y, Zhang G, Lu C, Jiang X. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture. 2022 Sep 22;12(10):1525.
Akay M, Miklavcic D, Pavselj N, Hart F. Electric properties of tissues. In: Wiley-Interscience, editor. Wiley Encyclopedia of biomedical engineering [Internet]. Hoboken, New Jersey; 2006 [cited 2024 Apr 24]. Available from: https://www.novocontrol.de/pdf_s/Accuracy_of_Measurements.pdf
Kwon H, Nagy JA, Taylor R, Rutkove SB, Sanchez B. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues. Phys Med Biol. 2017 Nov 1;62(22):8616–33.
Mazzoleni AP, Sisken BF, Kahler RL. Conductivity values of tissue culture medium from 20°C to 40°C. Bioelectromagnetics. 1986 Jan 19;7(1):95–9.
Park S, Zhang Y, Wang TH, Yang S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip. 2011;11(17):2893.
Simon MG. Microfluidic Tools for Stem Cell Biology [Internet]. University of California; 2014 [cited 2024 Apr 23]. 1–118 p. Available from: https://escholarship.org/content/qt5fx1z5q3/qt5fx1z5q3_noSplash_dadbea65bc236a51e3842f2baf17bcda.pdf
Huang Y, Wang XB, Becker FF, Gascoyne PR. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997 Aug;73(2):1118–29.
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani A Bin, Mohamed MA, et al. A correlation of conductivity medium and bioparticle viability on dielectrophoresis‐based biomedical applications. Electrophoresis. 2023 Mar 16;44(5–6):573–620.
Pan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens Bioelectron. 2019 Apr;130:344–51.
Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 2009 Aug 21;54(16):4863–78.
Carbone F, Mazzulla A, Ciuchi F, Scaramuzza N. Dielectric relaxation in non-polar nematic liquid crystal devices. The European Physical Journal Plus. 2015 Jul 29;130(7):151.
Nobre MAL, Lanfredi S. Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater Lett. 2001 Feb;47(6):362–6.
Pervaiz E, Gul IH. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J Magn Magn Mater. 2012 Nov;324(22):3695–703.
Joshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull. 2017 Sep;93:63–73.
Fanari F, Iacob C, Carboni G, Desogus F, Grosso M, Wilhelm M. Broadband Dielectric Spectroscopy (BDS) investigation of molecular relaxations in durum wheat dough at low temperatures and their relationship with rheological properties. LWT. 2022 May;161:113345.
Mei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.
Choi W, Shin HC, Kim JM, Choi JY, Yoon WS. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology. 2020 Feb 29;11(1):1–13.
Mei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.
Vaca González JJ, Escobar Huertas JF, Garzón Alvarado DA. The effect of frequency in the electrical stimulation of chondrocytes. Visión electrónica. 2020 Jan 31;14(1):6–18.
Zhadobov M, Augustine R, Sauleau R, Alekseev S, Di Paola A, Le Quément C, et al. Complex permittivity of representative biological solutions in the 2–67 GHz range. Bioelectromagnetics. 2012 May 19;33(4):346–55.
Tsai HF, Cheng JY, Chang HF, Yamamoto T, Shen AQ. Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Sci Rep. 2016 May 19;6(1):26222.
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020 May 27;5(7):539–51.
Kangasmaa O, Laakso I. Estimation method for the anisotropic electrical conductivity of in vivo human muscles and fat between 10 kHz and 1 MHz. Phys Med Biol. 2022 Nov 21;67(22):225002.
Qiu Y, Liu X, Zhu Y, Jiang D, Li F, Yu W, et al. Vertical impedance electrode array for spatiotemporal dynamics monitoring of 3D cells under drug diffusion effect. iScience. 2023 Dec;26(12):107962.
Scarlat AI. Animal-free matrix for organoids culturing [Internet]. Utretch University; 2023 [cited 2024 Apr 24]. Available from: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/43842/AdrianScarlat_Thesis_0559121.pdf?sequence=1
Schaumburg G, Wilmer D. Novocontrol Technologies. 2018. p. 1 Improving the Accuracy of Dielectric Measurements. Novocontrol Technologies.
Hughes MP. Understanding the Dielectric Constant in Organic Photovoltaic Materials . [Santa Barbara, California]; 2019.
Veal BW, Baldo PM, Paulikas AP, Eastman JA. Understanding Artifacts in Impedance Spectroscopy. J Electrochem Soc. 2015 Nov 22;162(1):H47–57.
PSTrace5. User manual version 5.9. In 2021 [cited 2024 Apr 24]. Available from: https://idm-instrumentos.es/wp-content/uploads/2019/04/PSTrace-5.9-Manual.pdf
Le Floch P, Molinari N, Nan K, Zhang S, Kozinsky B, Suo Z, et al. Fundamental Limits to the Electrochemical Impedance Stability of Dielectric Elastomers in Bioelectronics. Nano Lett. 2020 Jan 8;20(1):224–33.
Kyle AH, Chan CTO, Minchinton AI. Characterization of Three-Dimensional Tissue Cultures Using Electrical Impedance Spectroscopy. Biophys J [Internet]. 1999 May [cited 2024 Jan 24];76(5):2640–8. Available from: https://www.thermofisher.com/co/en/home/technical-resources/media-formulation.178.html
Metrohm AG. Electrochemical Impedance Spectroscopy (EIS) Part 5 – Parameter Estimation. [Internet]. 2019 [cited 2024 Apr 24]. Available from: https://metrohm.com/en/applications/application-notes/autolab-applikationen-anautolab/an-eis-005.html
MERCK. 1X Phosphate-Buffered Saline (PBS) Recipe Calculator [Internet]. [cited 2024 Apr 24]. Available from: https://www.sigmaaldrich.com/CO/es/support/calculators-and-apps/1x-phosphate-buffered-saline?&msclkid=fddcbad4b34114984ba7de5d51e08ade&utm_source=bing&utm_medium=cpc&utm_campaign=all%20product_dsa_WW_(bing%20ebizpfs)&utm_term=product%20&utm_content=all%2
ThermoFisher. 61965 - DMEM, high glucose, GlutaMAX(TM).
Zhang Y, Le Friec A, Chen M. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm. 2021 Sep;606:120841.
Dokos S. Modelling organs, tissues, cells and devices using MATLAB and Comsol Multiphysics. First Edition. Berlin, Germany: Springer Berlin; 2017.
Teklemariam A. A finite element approach to study skeletal muscle tissue [Internet]. [Manchester]: Manchester Metropolitan University; 2016 [cited 2024 Jan 24]. Available from: https://e-space.mmu.ac.uk/617509/1/PhD_Thesis_Aron_Teklemariam.pdf
Röhrle O, Davidson JB, Pullan AJ. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function. Front Physiol. 2012;3.
Hernández-Gascón B, Grasa J, Calvo B, Rodríguez JF. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J Theor Biol. 2013 Oct;335:108–18.
Böl M, Weikert R, Weichert C. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed Mater. 2011 Oct;4(7):1299–310.
Röhrle O, Davidson JB, Pullan AJ. Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle. SIAM Journal on Scientific Computing. 2008 Jan;30(6):2882–904.
von Wegner F, Schurmann S, Fink R, Vogel M, Friedrich O. Motor Protein Function in Skeletal Muscle—A Multiple Scale Approach to Contractility. IEEE Trans Med Imaging. 2009 Oct;28(10):1632–42.
Lamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.
Stefanati M, Villa C, Torrente Y, Rodriguez Matas JF. A mathematical model of healthy and dystrophic skeletal muscle biomechanics. J Mech Phys Solids. 2020 Jan;134:103747.
Shamoon D. Multiscale and Multiphysics analysis of the deformation of cellular arrangements under an electric-field excitation : application to electroporation [Internet]. Université de Bretagne occidentale ; 2020 [cited 2023 Apr 24]. Available from: https://theses.hal.science/tel-03274239/document
Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2011;11(3):513–7.
Jo B, Morimoto Y, Takeuchi S. Skeletal muscle‐adipose cocultured tissue fabricated using cell‐laden microfibers and a hydrogel sheet. Biotechnol Bioeng. 2022 Feb 23;119(2):636–43.
Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, et al. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol. 2019 Feb 14;7.
Nagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C 2 C 12 myotubes embedded in a fibrin gel. Biotechnol Bioeng. 2010 Apr 15;105(6):1161–7.
Nagamine K, otani S, Takeda M, Kanzaki M, Nishizawa M. Hydrogel-supported skeletal muscle cell-based bioassay system. In: 2011 International Symposium on Micro-NanoMechatronics and Human Science. IEEE; 2011. p. 180–5.
Fleming JW, Capel AJ, Rimington RP, Player DJ, Stolzing A, Lewis MP. Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins. Cytoskeleton. 2019 Jun 19;76(6):371–82.
Zhang C, Shi J, Wang W, Xi N, Wang Y, Liu L. Fabrication and Characterization of Muscle Rings Using Circular Mould and Rotary Electrical Stimulation for Bio-Syncretic Robots. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019. p. 4825–30.
Sato M, Ito A, Kawabe Y, Nagamori E, Kamihira M. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng. 2011 Sep;112(3):273–8.
Wang J, Zhang X, Park J, Park I, Kilicarslan E, Kim Y, et al. Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines. Advanced Intelligent Systems. 2021 May 29;3(5).
Elhebeary M, Emon MAB, Aydin O, Saif MTA. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. Lab Chip. 2019;19(7):1153–61.
García-Lizarribar A, Villasante A, Lopez-Martin JA, Flandez M, Soler-Vázquez MC, Serra D, et al. 3D Bioprinted Functional Skeletal Muscle Models Have Potential Applications for Studies of Cancer Cachexia. SSRN Electronic Journal. 2022
Fernández‐Costa JM, Ortega MA, Rodríguez‐Comas J, Lopez‐Muñoz G, Yeste J, Mangas‐Florencio L, et al. Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro. Adv Mater Technol. 2023 Apr 23;8(7).
Livermore C, Voldman J. MIT. 2004 [cited 2024 Apr 24]. Material Property Database . Available from: https://www.mit.edu/~6.777/matprops/pdms.htm
Izdihar K, Abdul Razak HR, Supion N, Karim MKA, Osman NH, Norkhairunnisa M. Structural, Mechanical, and Dielectric Properties of Polydimethylsiloxane and Silicone Elastomer for the Fabrication of Clinical-Grade Kidney Phantom. Applied Sciences. 2021 Jan 27;11(3):1172.
Müller A, Wapler MC, Wallrabe U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter. 2019;15(4):779–84.
Fukushima J, Tsubaki S, Matsuzawa T, Kashimura K, Mitani T, Namioka T, et al. Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating. Materials. 2018 Jan 22;11(1):169.
Ravikumar K, Palanivelu K, Ravichandran K. Dielectric Properties of Natural Rubber Composites filled with Graphite. Mater Today Proc. 2019;16:1338–43.
Boylan J. 2023. [cited 2024 Apr 24]. Properties: Carbon - graphite materials . Available from: https://www.azom.com/properties.aspx?ArticleID=516
Chen S. Dielectric constant measurement of P3HT, polystyrene, and polyethylene. [Groningen, Netherlands]
Qi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, et al. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Appl Mater Interfaces. 2011 Aug 24;3(8):3130–3.
Oral I, Guzel H, Ahmetli G. Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method. Polymer Bulletin. 2011 Dec 8;67(9):1893–906.
Modulus of elasticity and Poisson’s coefficient of polymeric materials [Internet]. [cited 2024 Apr 24]. Available from: https://www.sonelastic.com/en/fundamentals/tables-of-materials-properties/polymers.html
Gadonna K, Leroy O, Leprince P, Alves LL, Boisse-Laporte C. Study of Gas Heating by a Microwave Plasma Torch. Journal of Modern Physics. 2012;03(10):1603–15.
Seran E, Godefroy M, Pili E, Michielsen N, Bondiguel S. What we can learn from measurements of air electric conductivity in 222 Rn‐rich atmosphere. Earth and Space Science. 2017 Feb 23;4(2):91–106.
Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.
COMSOL. Stress and Equations of Motion [Internet]. Multiphysics ciclopedia. 2018 [cited 2024 Apr 24]. Available from: https://www.comsol.com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202
COMSOL documentation. Linear Elastic Material [Internet]. [cited 2024 Mar 24]. Available from: https://doc.comsol.com/5.4/doc/com.comsol.help.sme/sme_ug_solid.07.06.html
COMSOL documentation. Hyperelastic Material Models [Internet]. [cited 2024 Feb 24]. Available from: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.28.html
COMSOL. Introduction to MEMS Module [Internet]. 2018 [cited 2024 Jan 24]. Available from: https://doc.comsol.com//5.4/doc/com.comsol.help.mems/IntroductionToMEMSModule.pdf
Tejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication. 2023 Oct 1;15(4):045024.
Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 2015 Jul 2;5(1):11800.
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.
Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.
Šmerc R, Ramirez DA, Mahnič-Kalamiza S, Dermol-Černe J, Sigg DC, Mattison LM, et al. A Multiscale Computational Model of Skeletal Muscle Electroporation Validated Using In Situ Porcine Experiments. IEEE Trans Biomed Eng. 2023 Jun;70(6):1826–37.
Torii R, Velliou RI, Hodgson D, Mudera V. Modelling multi-scale cell–tissue interaction of tissue-engineered muscle constructs. J Tissue Eng. 2018 Jan 13;9:204173141878714.
Carter S, Solomon TPJ. In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch. 2019 Mar 5;471(3):413–29.
Abati E, Sclarandi E, Comi G Pietro, Parente V, Corti S. Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci. 2021 Sep 6;22(17):9630.
Mondragon-Gonzalez R, Perlingeiro RCR. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 iPS cells: a tool for disease modeling and drug discovery. Dis Model Mech. 2018 Jan 1;
Kawada R, Jonouchi T, Kagita A, Sato M, Hotta A, Sakurai H. Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs. Sci Rep. 2023 Jan 11;13(1):94.
Ludovic A, Micaela PE, Magdalena M, Audrey B, Damily DDD, Naïra N, et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech. 2017 Jan 1;
Ozimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews. 2021 Apr 2;96(2):716–30.
Culligan KG, Ohlendieck K. Abnormal Calcium Handling in Muscular Dystrophy . Basic Appl Myol [Internet]. 2002 [cited 2024 Apr 24];12(4):147–57. Available from: http://www.bio.unipd.it/bam/PDF/12-4/02491Culligan.pdf
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol. 2021 Apr 9;12.
Fernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).
Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip. 2017;17(20):3447–61.
Shoji J, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ‐on‐Chip Research. Adv Healthc Mater. 2023 Aug 7
Farhang Doost N, Srivastava SK. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors (Basel). 2024 May 1;14(5):225.
Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, et al. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci. 2019 Sep 16;99(3):375–403.
Ma H, Xing F, Yu P, Xu J, Wu X, Luo R, et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: Current status and future perspectives. Mater Des. 2023 Jan;225:111591.
Sung B. In silico modeling of endocrine organ-on-a-chip systems. Math Biosci. 2022 Oct;352:108900.
Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.
Kodzius R, Schulze F, Gao X, Schneider MR. Organ-on-Chip Technology: Current State and Future Developments. Genes (Basel). 2017 Oct 11;8(10):266.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 114 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86687/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86687/2/1122138389.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86687/3/1122138389.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e2910c7d343b7b898c76b85b272ad21c
c9d279e5dc6892d5bb0991e11a82daee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090143324176384
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vaca González, Juan Jairoc0cf94a51fb9b402f66de8d4af9de08eGarzón-Alvarado, Diego Alexanderdb74d4d3aa05741185b52707f5016cb5Quevedo Blandón, Lis Angélica129da70b1eaf5aba3700fcf560243e332024-08-02T13:35:36Z2024-08-02T13:35:36Z2023https://repositorio.unal.edu.co/handle/unal/86687Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasNowadays, there is no consensus about the range of electrical parameters that should be used when applying them to three-dimensional muscle constructs, this variability presents a huge difficulty in recreating and comparing results between the studies. Electrical stimulation (ES) has been used in muscle tissue as a technique to replace electric potentials and preserve muscular tissue functions, on the other hand, human-based three-dimensional cell culture methods have appeared to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscles. Therefore, determining the optimal electrical parameters for use in a muscle construct is essential for ensuring correct experimental models. One way to achieve this is the use of theoretical and computational models, which are cost-efficient tools such as the finite elements method. This work presents a combined computational and experimental approach to better understand the physiology of skeletal muscle and its response to electrical stimulation under healthy and diseased conditions. To achieve this first the electrical properties of the three-dimensional tissues (electrical conductivity and permittivity) were obtained using electrochemical spectroscopy impedance, and then a multi-physical computational model was developed and validated in a patient-derived functional three-dimensional skeletal muscle model. The computational model calculates the intensity of the electric field in the domains of interest and the displacement of the biomaterial. Experimentally, was measured the calcium flux signals. In general, the evaluation of electrical stimulation in skeletal muscle tissues is a useful tool that can contribute to the current knowledge of the pathophysiological process and therapies focused on the function of these tissues.La contracción del músculo esquelético que se produce durante el movimiento se imita con la aplicación de estimulación eléctrica (EE) in vitro. La EE se ha utilizado en el tejido muscular como una técnica útil para reemplazar los potenciales eléctricos y preservar las funciones del tejido muscular. Los métodos de cultivo celular tridimensionales de origen humano aparecen como un enfoque novedoso para acelerar la investigación al mejorar la reproducción de procesos fisiopatológicos en el músculo con la aplicación de estímulos físicos como la EE. Sin embargo, determinar los parámetros eléctricos óptimos a usar es esencial. El uso de modelos teóricos y computacionales son herramientas rentables, específicamente el método de elementos finitos es una de las opciones más precisas. Este trabajo presenta un enfoque computacional y experimental para comprender la fisiología del músculo esquelético y su respuesta a la EE en condiciones de salud y enfermedad. Las propiedades eléctricas del modelo fueron medidas con impedancia de espectroscopía electroquímica y de la literatura, luego con esta información se desarrolló y validó un modelo computacional multifísico sobre un modelo 3D de músculo esquelético. El modelo computacional calculó la intensidad del campo eléctrico en los dominios de interés, además, se cuantificó cómo respondían al desplazamiento EE del biomaterial. El cultivo in vitro de la enfermedad presentó flujo de calcio, pero no desplazamiento. En general, la evaluación de las EE en tejidos del músculo esquelético es una herramienta útil que puede contribuir al conocimiento actual del proceso fisiopatológico y de las terapias enfocadas a la función de estos tejidos (Texto tomado de la fuente).MaestríaMagíster en Ingeniería BiomédicaCOMSOL Multiphysics software version 5.4xiii, 114 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados610 - Medicina y salud::615 - Farmacología y terapéutica610 - Medicina y salud::612 - Fisiología humana610 - Medicina y salud::616 - EnfermedadesCélulas MuscularesMuscle CellsEstimulación EléctricaElectric StimulationTécnicas de Cultivo Tridimensional de CélulasCell Culture Techniques, Three DimensionalEstimulación eléctricamodelo computacionaltejido muscular esqueléticodistrofia miotónica tipo 1ingeniería de tejidosElectric stimulationcomputational modelskeletal muscle tissuedystrophy myotonic type Itissue engineeringComputational model of the electrical field distribution within a muscle-on-a-chip device used to stimulate muscle cells encapsulated in a three-dimensional constructModelo computacional de la distribución de campo eléctrico dentro de un dispositivo muscle-on-a-chip utilizado para estimular células musculares encapsuladas en un constructo tridimensionalTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMonebhurrun V. IEEE Standard 211-2018: IEEE Standard Definitions of Terms for Radio Wave Propagation [Stand on Standards]. IEEE Antennas Propag Mag. 2019 Jun;61(3):126–126.Braslavsky SE. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry. 2007 Jan 1;79(3):293–465.David M, Feldman Y, Ben Ishai P. Dielectric spectroscopy and techniques. In: Non-Destructive Material Characterization Methods. Elsevier; 2024. p. 587–619Hook JR, & HHE. Solid state physic. John Wiley & Sons. 2013.Huray PG. Maxwell’s equations. John Wiley & Sons. 2009.Archie GE. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME. 1942 Dec 1;146(01):54–62.Lasia A. Electrochemical Impedance Spectroscopy and its Applications. New York, NY: Springer New York; 2014.Ponce FA. Electrostimulation. In: Encyclopedia of the Neurological Sciences. Elsevier; 2014. p. 1110–1.Tasu JP, Vesselle G, Herpe G, Richer JP, Boucecbi S, Vélasco S, et al. Irreversible electroporation for locally advanced pancreatic cancer. Diagn Interv Imaging. 2016 Dec;97(12):1297–304.Ianowski JP, O’Donnell MJ. Electrochemical gradients for Na+, K+,Cl– and H+ across the apical membrane in Malpighian (renal) tubule cells of Rhodnius prolixus. Journal of Experimental Biology. 2006 May 15;209(10):1964–75.Arfken GB, Griffing DF, Kelly DC, Priest J. ELECTRIC FIELD AND GAUSS’ LAW. In: University Physics. Elsevier; 1984. p. 490–513.Ginn C, Patel B, Walker R. Existing and emerging applications for the neuromodulation of nerve activity through targeted delivery of electric stimuli. International Journal of Neuroscience. 2019 Oct 3;129(10):1013–23.Marquez-Chin C, Popovic MR. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. Biomed Eng Online. 2020 Dec 24;19(1):34.Lou F, Chen D. Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry. 2015 Sep;24(5):559–86.Shiraishi S. Electric Double Layer Capacitors. In: Carbon Alloys. Elsevier; 2003. p. 447–57.McCuller C, Jessu R, Callahan AL. Physiology, Skeletal Muscle. In StatPearls; 2024 [cited 2024 Apr 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537139/Dao TT, Tho MCHB. A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations. Appl Bionics Biomech. 2018 Dec 6;2018:1–17.Chiego DJ, Avery JK. Principios de histología y embriología bucal con orientación clínica. In: 5th edition. Madrid, Spain: Elsevier Mosby; 2007 [cited 2023 Dec 23]. Available from: https://www.berri.es/pdf/PRINCIPIOS%20DE%20HISTOLOGIA%20Y%20EMBRIOLOGIA%20BUCAL/9788413820231Dissertations OD, Russell RP. Retinoic Acid Receptor Signaling During Paraxial Mesoderm Differentiation of Pluripotent Stem Cells [Internet]. 2018. Available from: https://opencommons.uconn.edu/dissertationsD. Dave H, Shook M, Varacallo M. Anatomy, Skeletal Muscle. StatPearls Publishing [Internet]. 2023 Aug 28 [cited 2023 Dec 27]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK537236/Lamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.Oregon State University. Skeletal Muscle.E. Hall J, Guyton AC. Tratado de Fisiología médica. 11th edition. Barcelona, España: Elseiver; 2011.Pham S, Puckett Y. StatPearls. 2023 [cited 2023 Nov 23]. Physiology, Skeletal Muscle Contraction. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559006/#:~:text=Skeletal%20muscle%20contraction%20begins%20first,channels%20of%20the%20presynaptic%20membrane.Bravo-Sagua R, Parra V, Muñoz-Cordova F, Sanchez-Aguilera P, Garrido V, Contreras-Ferrat A, et al. Sarcoplasmic reticulum and calcium signaling in muscle cells: Homeostasis and disease. Int Rev Cell Mol Biol. 2020;350:197–264.Barrett KE, Ganong WF. Fisiología Médica: 24a edición. 24th ed. Ciudad de México, México: McGraw-Hill Interamericana; 2013.Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. Elife [Internet]. 2022 May 23 [cited 2024 Apr 23];11. Available from: https://elifesciences.org/articles/77204Shiels HA. DESIGN AND PHYSIOLOGY OF THE HEART | Cardiac Excitation–Contraction Coupling: Routes of Cellular Calcium Flux. In: Encyclopedia of Fish Physiology. Manchester, UK: Elsevier; 2011. p. 1045–53.Rosero D, Moreno F. Aspectos histológicos y moleculares del tendón como matriz extracelular extramuscular. Salutem Scientia Spiritus [Internet]. 2016 [cited 2023 Nov 23];2(1):26–39. Available from: https://www.researchgate.net/publication/304782689_Aspectos_histologicos_y_moleculares_del_tendon_como_matriz_extracelular_extramuscularOzimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews [Internet]. 2021 Apr 2 [cited 2023 Oct 23];96(2):716–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33269537/Bird TD. Myotonic Dystrophy Type 1. In: GeneReviews [Internet]. University of Washington, Seattle; : GeneReviews®; 1999 [cited 2023 Oct 23]. p. 1993–2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1165/Muscular Dystrophy Association (MDA). Myotonic Dystrophy (DM) - Medical Management [Internet]. [cited 2023 Sep 21]. Available from: https://www.mda.org/disease/myotonic-dystrophy/medical-managementSmith CA, Gutmann L. Myotonic Dystrophy Type 1 Management and Therapeutics. Curr Treat Options Neurol [Internet]. 2016 Dec 8 [cited 2023 Sep 23];18(12):52. Available from: https://link.springer.com/article/10.1007/s11940-016-0434-1Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry [Internet]. 2010 Apr 1 [cited 2023 Aug 23];81(4):358–67. Available from: https://pubmed.ncbi.nlm.nih.gov/20176601/Bird TD. Myotonic Dystrophy Type 1. 1993.Foff EP, Mahadevan MS. Therapeutics development in myotonic dystrophy type 1. Muscle Nerve [Internet]. 2011 Aug 23 [cited 2023 Sep 23];44(2):160–9. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/mus.22090Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol [Internet]. 2012 Oct [cited 2023 Aug 23];11(10):891–905. Available from: https://pubmed.ncbi.nlm.nih.gov/22995693/Fernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).Okano T, Matsuda T. Tissue Engineered Skeletal Muscle: Preparation of Highly Dense, Highly Oriented Hybrid Muscular Tissues. Cell Transplant [Internet]. 1998 Jan 22 [cited 2023 Nov 23];7(1):71–82. Available from: https://pubmed.ncbi.nlm.nih.gov/9489765/Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology [Internet]. 1988 Mar [cited 2023 Oct 23];24(3):166–74. Available from: https://pubmed.ncbi.nlm.nih.gov/3350785/Fernández-Garibay X, Ortega MA, Cerro-Herreros E, Comelles J, Martínez E, Artero R, et al. Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication. 2021 Jul 1;13(3):035035.Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife [Internet]. 2015 Jan 9 [cited 2023 Aug 23];4. Available from: https://pubmed.ncbi.nlm.nih.gov/25575180/Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L, Moyle LA, et al. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Rep. 2018 Apr;23(3):899–908.Shahriyari M, Islam MR, Sakib SM, Rinn M, Rika A, Krüger D, et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle. 2022 Dec 18;13(6):3106–21.Serena E, Zatti S, Reghelin E, Pasut A, Cimetta E, Elvassore N. Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integrative Biology. 2010;2(4):193.Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, et al. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021 Sep;132:227–44.Nguyen CT, Ebrahimi M, Gilbert PM, Stewart BA. Electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues. American Journal of Physiology-Cell Physiology. 2021 Oct 1;321(4):C749–59.Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB Journal. 2009 Oct;23(10):3325–34.Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.Rose N, Estrada Chavez B, Sonam S, Nguyen T, Grenci G, Bigot A, et al. Bioengineering a miniaturized in vitro 3D myotube contraction monitoring chip to model muscular dystrophies. Biomaterials. 2023 Feb;293:121935.Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, et al. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife. 2019 May 14;8.Faustino Martins JM, Fischer C, Urzi A, Vidal R, Kunz S, Ruffault PL, et al. Self-Organizing 3D Human Trunk Neuromuscular Organoids. Cell Stem Cell. 2020 Feb;26(2):172-186.e6.Carraro E, Rossi L, Maghin E, Canton M, Piccoli M. 3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect? Front Bioeng Biotechnol. 2022 Jul 11;10.Cudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.Chisari C, Bertolucci F, Dalise S, Rossi B. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in Myotonic Dystrophy: a pilot study. J Neuroeng Rehabil. 2013;10(1):94.Leone E, Pandyan A, Rogers A, Kulshrestha R, Hill J, Philp F. Effectiveness of conservative non-pharmacological interventions in people with muscular dystrophies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2023 Dec 12;jnnp-2023-331988.Cudia P, Weis L, Baba A, Kiper P, Marcante A, Rossi S, et al. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I. Am J Phys Med Rehabil. 2016 Nov;95(11):809–17.Bultot L, Jensen TE, Lai YC, Madsen ALB, Collodet C, Kviklyte S, et al. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2016 Oct 1;311(4):E706–19.Esposito F, Cè E, Rampichini S, Limonta E, Venturelli M, Monti E, et al. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscular Disorders. 2016 Jan;26(1):60–72.Magar HS, Hassan RYA, Mulchandani A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors. 2021 Oct 1;21(19):6578.Lazanas ACh, Prodromidis MI. Electrochemical Impedance Spectroscopy─A Tutorial. ACS Measurement Science Au. 2023 Jun 21;3(3):162–93.Metrohm AG [Internet]. 2023 [cited 2023 Jul 23]. Application note AN-EIS-001 electrochemical impedance spectroscopy. Available from: https://www.metrohm.com/content/metrohm/en_us/applications/application-notes/autolab-applikationen-anautolab/an-eis-001.download.pdfCheng J, Yu P, Huang Y, Zhang G, Lu C, Jiang X. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture. 2022 Sep 22;12(10):1525.Akay M, Miklavcic D, Pavselj N, Hart F. Electric properties of tissues. In: Wiley-Interscience, editor. Wiley Encyclopedia of biomedical engineering [Internet]. Hoboken, New Jersey; 2006 [cited 2024 Apr 24]. Available from: https://www.novocontrol.de/pdf_s/Accuracy_of_Measurements.pdfKwon H, Nagy JA, Taylor R, Rutkove SB, Sanchez B. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues. Phys Med Biol. 2017 Nov 1;62(22):8616–33.Mazzoleni AP, Sisken BF, Kahler RL. Conductivity values of tissue culture medium from 20°C to 40°C. Bioelectromagnetics. 1986 Jan 19;7(1):95–9.Park S, Zhang Y, Wang TH, Yang S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip. 2011;11(17):2893.Simon MG. Microfluidic Tools for Stem Cell Biology [Internet]. University of California; 2014 [cited 2024 Apr 23]. 1–118 p. Available from: https://escholarship.org/content/qt5fx1z5q3/qt5fx1z5q3_noSplash_dadbea65bc236a51e3842f2baf17bcda.pdfHuang Y, Wang XB, Becker FF, Gascoyne PR. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997 Aug;73(2):1118–29.Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani A Bin, Mohamed MA, et al. A correlation of conductivity medium and bioparticle viability on dielectrophoresis‐based biomedical applications. Electrophoresis. 2023 Mar 16;44(5–6):573–620.Pan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, et al. 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens Bioelectron. 2019 Apr;130:344–51.Gabriel C, Peyman A, Grant EH. Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 2009 Aug 21;54(16):4863–78.Carbone F, Mazzulla A, Ciuchi F, Scaramuzza N. Dielectric relaxation in non-polar nematic liquid crystal devices. The European Physical Journal Plus. 2015 Jul 29;130(7):151.Nobre MAL, Lanfredi S. Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater Lett. 2001 Feb;47(6):362–6.Pervaiz E, Gul IH. Enhancement of electrical properties due to Cr3+ substitution in Co-ferrite nanoparticles synthesized by two chemical techniques. J Magn Magn Mater. 2012 Nov;324(22):3695–703.Joshi JH, Kanchan DK, Joshi MJ, Jethva HO, Parikh KD. Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull. 2017 Sep;93:63–73.Fanari F, Iacob C, Carboni G, Desogus F, Grosso M, Wilhelm M. Broadband Dielectric Spectroscopy (BDS) investigation of molecular relaxations in durum wheat dough at low temperatures and their relationship with rheological properties. LWT. 2022 May;161:113345.Mei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.Choi W, Shin HC, Kim JM, Choi JY, Yoon WS. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology. 2020 Feb 29;11(1):1–13.Mei BA, Munteshari O, Lau J, Dunn B, Pilon L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 2018 Jan 11;122(1):194–206.Vaca González JJ, Escobar Huertas JF, Garzón Alvarado DA. The effect of frequency in the electrical stimulation of chondrocytes. Visión electrónica. 2020 Jan 31;14(1):6–18.Zhadobov M, Augustine R, Sauleau R, Alekseev S, Di Paola A, Le Quément C, et al. Complex permittivity of representative biological solutions in the 2–67 GHz range. Bioelectromagnetics. 2012 May 19;33(4):346–55.Tsai HF, Cheng JY, Chang HF, Yamamoto T, Shen AQ. Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Sci Rep. 2016 May 19;6(1):26222.Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020 May 27;5(7):539–51.Kangasmaa O, Laakso I. Estimation method for the anisotropic electrical conductivity of in vivo human muscles and fat between 10 kHz and 1 MHz. Phys Med Biol. 2022 Nov 21;67(22):225002.Qiu Y, Liu X, Zhu Y, Jiang D, Li F, Yu W, et al. Vertical impedance electrode array for spatiotemporal dynamics monitoring of 3D cells under drug diffusion effect. iScience. 2023 Dec;26(12):107962.Scarlat AI. Animal-free matrix for organoids culturing [Internet]. Utretch University; 2023 [cited 2024 Apr 24]. Available from: https://studenttheses.uu.nl/bitstream/handle/20.500.12932/43842/AdrianScarlat_Thesis_0559121.pdf?sequence=1Schaumburg G, Wilmer D. Novocontrol Technologies. 2018. p. 1 Improving the Accuracy of Dielectric Measurements. Novocontrol Technologies.Hughes MP. Understanding the Dielectric Constant in Organic Photovoltaic Materials . [Santa Barbara, California]; 2019.Veal BW, Baldo PM, Paulikas AP, Eastman JA. Understanding Artifacts in Impedance Spectroscopy. J Electrochem Soc. 2015 Nov 22;162(1):H47–57.PSTrace5. User manual version 5.9. In 2021 [cited 2024 Apr 24]. Available from: https://idm-instrumentos.es/wp-content/uploads/2019/04/PSTrace-5.9-Manual.pdfLe Floch P, Molinari N, Nan K, Zhang S, Kozinsky B, Suo Z, et al. Fundamental Limits to the Electrochemical Impedance Stability of Dielectric Elastomers in Bioelectronics. Nano Lett. 2020 Jan 8;20(1):224–33.Kyle AH, Chan CTO, Minchinton AI. Characterization of Three-Dimensional Tissue Cultures Using Electrical Impedance Spectroscopy. Biophys J [Internet]. 1999 May [cited 2024 Jan 24];76(5):2640–8. Available from: https://www.thermofisher.com/co/en/home/technical-resources/media-formulation.178.htmlMetrohm AG. Electrochemical Impedance Spectroscopy (EIS) Part 5 – Parameter Estimation. [Internet]. 2019 [cited 2024 Apr 24]. Available from: https://metrohm.com/en/applications/application-notes/autolab-applikationen-anautolab/an-eis-005.htmlMERCK. 1X Phosphate-Buffered Saline (PBS) Recipe Calculator [Internet]. [cited 2024 Apr 24]. Available from: https://www.sigmaaldrich.com/CO/es/support/calculators-and-apps/1x-phosphate-buffered-saline?&msclkid=fddcbad4b34114984ba7de5d51e08ade&utm_source=bing&utm_medium=cpc&utm_campaign=all%20product_dsa_WW_(bing%20ebizpfs)&utm_term=product%20&utm_content=all%2ThermoFisher. 61965 - DMEM, high glucose, GlutaMAX(TM).Zhang Y, Le Friec A, Chen M. 3D anisotropic conductive fibers electrically stimulated myogenesis. Int J Pharm. 2021 Sep;606:120841.Dokos S. Modelling organs, tissues, cells and devices using MATLAB and Comsol Multiphysics. First Edition. Berlin, Germany: Springer Berlin; 2017.Teklemariam A. A finite element approach to study skeletal muscle tissue [Internet]. [Manchester]: Manchester Metropolitan University; 2016 [cited 2024 Jan 24]. Available from: https://e-space.mmu.ac.uk/617509/1/PhD_Thesis_Aron_Teklemariam.pdfRöhrle O, Davidson JB, Pullan AJ. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function. Front Physiol. 2012;3.Hernández-Gascón B, Grasa J, Calvo B, Rodríguez JF. A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J Theor Biol. 2013 Oct;335:108–18.Böl M, Weikert R, Weichert C. A coupled electromechanical model for the excitation-dependent contraction of skeletal muscle. J Mech Behav Biomed Mater. 2011 Oct;4(7):1299–310.Röhrle O, Davidson JB, Pullan AJ. Bridging Scales: A Three-Dimensional Electromechanical Finite Element Model of Skeletal Muscle. SIAM Journal on Scientific Computing. 2008 Jan;30(6):2882–904.von Wegner F, Schurmann S, Fink R, Vogel M, Friedrich O. Motor Protein Function in Skeletal Muscle—A Multiple Scale Approach to Contractility. IEEE Trans Med Imaging. 2009 Oct;28(10):1632–42.Lamsfuss J, Bargmann S. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. J Mech Behav Biomed Mater. 2021 Oct;122:104670.Stefanati M, Villa C, Torrente Y, Rodriguez Matas JF. A mathematical model of healthy and dystrophic skeletal muscle biomechanics. J Mech Phys Solids. 2020 Jan;134:103747.Shamoon D. Multiscale and Multiphysics analysis of the deformation of cellular arrangements under an electric-field excitation : application to electroporation [Internet]. Université de Bretagne occidentale ; 2020 [cited 2023 Apr 24]. Available from: https://theses.hal.science/tel-03274239/documentNagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip. 2011;11(3):513–7.Jo B, Morimoto Y, Takeuchi S. Skeletal muscle‐adipose cocultured tissue fabricated using cell‐laden microfibers and a hydrogel sheet. Biotechnol Bioeng. 2022 Feb 23;119(2):636–43.Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, et al. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol. 2019 Feb 14;7.Nagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C 2 C 12 myotubes embedded in a fibrin gel. Biotechnol Bioeng. 2010 Apr 15;105(6):1161–7.Nagamine K, otani S, Takeda M, Kanzaki M, Nishizawa M. Hydrogel-supported skeletal muscle cell-based bioassay system. In: 2011 International Symposium on Micro-NanoMechatronics and Human Science. IEEE; 2011. p. 180–5.Fleming JW, Capel AJ, Rimington RP, Player DJ, Stolzing A, Lewis MP. Functional regeneration of tissue engineered skeletal muscle in vitro is dependent on the inclusion of basement membrane proteins. Cytoskeleton. 2019 Jun 19;76(6):371–82.Zhang C, Shi J, Wang W, Xi N, Wang Y, Liu L. Fabrication and Characterization of Muscle Rings Using Circular Mould and Rotary Electrical Stimulation for Bio-Syncretic Robots. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019. p. 4825–30.Sato M, Ito A, Kawabe Y, Nagamori E, Kamihira M. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng. 2011 Sep;112(3):273–8.Wang J, Zhang X, Park J, Park I, Kilicarslan E, Kim Y, et al. Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines. Advanced Intelligent Systems. 2021 May 29;3(5).Elhebeary M, Emon MAB, Aydin O, Saif MTA. A novel technique for in situ uniaxial tests of self-assembled soft biomaterials. Lab Chip. 2019;19(7):1153–61.García-Lizarribar A, Villasante A, Lopez-Martin JA, Flandez M, Soler-Vázquez MC, Serra D, et al. 3D Bioprinted Functional Skeletal Muscle Models Have Potential Applications for Studies of Cancer Cachexia. SSRN Electronic Journal. 2022Fernández‐Costa JM, Ortega MA, Rodríguez‐Comas J, Lopez‐Muñoz G, Yeste J, Mangas‐Florencio L, et al. Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro. Adv Mater Technol. 2023 Apr 23;8(7).Livermore C, Voldman J. MIT. 2004 [cited 2024 Apr 24]. Material Property Database . Available from: https://www.mit.edu/~6.777/matprops/pdms.htmIzdihar K, Abdul Razak HR, Supion N, Karim MKA, Osman NH, Norkhairunnisa M. Structural, Mechanical, and Dielectric Properties of Polydimethylsiloxane and Silicone Elastomer for the Fabrication of Clinical-Grade Kidney Phantom. Applied Sciences. 2021 Jan 27;11(3):1172.Müller A, Wapler MC, Wallrabe U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter. 2019;15(4):779–84.Fukushima J, Tsubaki S, Matsuzawa T, Kashimura K, Mitani T, Namioka T, et al. Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating. Materials. 2018 Jan 22;11(1):169.Ravikumar K, Palanivelu K, Ravichandran K. Dielectric Properties of Natural Rubber Composites filled with Graphite. Mater Today Proc. 2019;16:1338–43.Boylan J. 2023. [cited 2024 Apr 24]. Properties: Carbon - graphite materials . Available from: https://www.azom.com/properties.aspx?ArticleID=516Chen S. Dielectric constant measurement of P3HT, polystyrene, and polyethylene. [Groningen, Netherlands]Qi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, et al. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Appl Mater Interfaces. 2011 Aug 24;3(8):3130–3.Oral I, Guzel H, Ahmetli G. Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method. Polymer Bulletin. 2011 Dec 8;67(9):1893–906.Modulus of elasticity and Poisson’s coefficient of polymeric materials [Internet]. [cited 2024 Apr 24]. Available from: https://www.sonelastic.com/en/fundamentals/tables-of-materials-properties/polymers.htmlGadonna K, Leroy O, Leprince P, Alves LL, Boisse-Laporte C. Study of Gas Heating by a Microwave Plasma Torch. Journal of Modern Physics. 2012;03(10):1603–15.Seran E, Godefroy M, Pili E, Michielsen N, Bondiguel S. What we can learn from measurements of air electric conductivity in 222 Rn‐rich atmosphere. Earth and Space Science. 2017 Feb 23;4(2):91–106.Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.Guz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.COMSOL. Stress and Equations of Motion [Internet]. Multiphysics ciclopedia. 2018 [cited 2024 Apr 24]. Available from: https://www.comsol.com/multiphysics/stress-and-equations-of-motion?parent=structural-mechanics-0182-202COMSOL documentation. Linear Elastic Material [Internet]. [cited 2024 Mar 24]. Available from: https://doc.comsol.com/5.4/doc/com.comsol.help.sme/sme_ug_solid.07.06.htmlCOMSOL documentation. Hyperelastic Material Models [Internet]. [cited 2024 Feb 24]. Available from: https://doc.comsol.com/5.5/doc/com.comsol.help.sme/sme_ug_theory.06.28.htmlCOMSOL. Introduction to MEMS Module [Internet]. 2018 [cited 2024 Jan 24]. Available from: https://doc.comsol.com//5.4/doc/com.comsol.help.mems/IntroductionToMEMSModule.pdfTejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication. 2023 Oct 1;15(4):045024.Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD. Controlled electromechanical cell stimulation on-a-chip. Sci Rep. 2015 Jul 2;5(1):11800.Guz N, Dokukin M, Kalaparthi V, Sokolov I. If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments. Biophys J. 2014 Aug;107(3):564–75.Soofi SS, Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. The elastic modulus of MatrigelTM as determined by atomic force microscopy. J Struct Biol. 2009 Sep;167(3):216–9.Šmerc R, Ramirez DA, Mahnič-Kalamiza S, Dermol-Černe J, Sigg DC, Mattison LM, et al. A Multiscale Computational Model of Skeletal Muscle Electroporation Validated Using In Situ Porcine Experiments. IEEE Trans Biomed Eng. 2023 Jun;70(6):1826–37.Torii R, Velliou RI, Hodgson D, Mudera V. Modelling multi-scale cell–tissue interaction of tissue-engineered muscle constructs. J Tissue Eng. 2018 Jan 13;9:204173141878714.Carter S, Solomon TPJ. In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch. 2019 Mar 5;471(3):413–29.Abati E, Sclarandi E, Comi G Pietro, Parente V, Corti S. Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies. Int J Mol Sci. 2021 Sep 6;22(17):9630.Mondragon-Gonzalez R, Perlingeiro RCR. Recapitulating muscle disease phenotypes with myotonic dystrophy 1 iPS cells: a tool for disease modeling and drug discovery. Dis Model Mech. 2018 Jan 1;Kawada R, Jonouchi T, Kagita A, Sato M, Hotta A, Sakurai H. Establishment of quantitative and consistent in vitro skeletal muscle pathological models of myotonic dystrophy type 1 using patient-derived iPSCs. Sci Rep. 2023 Jan 11;13(1):94.Ludovic A, Micaela PE, Magdalena M, Audrey B, Damily DDD, Naïra N, et al. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech. 2017 Jan 1;Ozimski LL, Sabater‐Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biological Reviews. 2021 Apr 2;96(2):716–30.Culligan KG, Ohlendieck K. Abnormal Calcium Handling in Muscular Dystrophy . Basic Appl Myol [Internet]. 2002 [cited 2024 Apr 24];12(4):147–57. Available from: http://www.bio.unipd.it/bam/PDF/12-4/02491Culligan.pdfMareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol. 2021 Apr 9;12.Fernández-Costa JM, Tejedera-Vilafranca A, Fernández-Garibay X, Ramón-Azcón J. Muscle-on-a-chip devices: a new era for in vitro modelling of muscular dystrophies. Dis Model Mech. 2023 Jun 1;16(6).Agrawal G, Aung A, Varghese S. Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip. 2017;17(20):3447–61.Shoji J, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Organoid and Organ‐on‐Chip Research. Adv Healthc Mater. 2023 Aug 7Farhang Doost N, Srivastava SK. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications. Biosensors (Basel). 2024 May 1;14(5):225.Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, et al. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci. 2019 Sep 16;99(3):375–403.Ma H, Xing F, Yu P, Xu J, Wu X, Luo R, et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: Current status and future perspectives. Mater Des. 2023 Jan;225:111591.Sung B. In silico modeling of endocrine organ-on-a-chip systems. Math Biosci. 2022 Oct;352:108900.Fernández-Costa JM, Fernández-Garibay X, Velasco-Mallorquí F, Ramón-Azcón J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J Tissue Eng. 2021 Jan 10;12:204173142098133.Kodzius R, Schulze F, Gao X, Schneider MR. Organ-on-Chip Technology: Current State and Future Developments. Genes (Basel). 2017 Oct 11;8(10):266.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86687/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1122138389.2024.pdf1122138389.2024.pdfTesis de Maestría en Ingeniería Biomédica.application/pdf6747192https://repositorio.unal.edu.co/bitstream/unal/86687/2/1122138389.2024.pdfe2910c7d343b7b898c76b85b272ad21cMD52THUMBNAIL1122138389.2024.pdf.jpg1122138389.2024.pdf.jpgGenerated Thumbnailimage/jpeg4155https://repositorio.unal.edu.co/bitstream/unal/86687/3/1122138389.2024.pdf.jpgc9d279e5dc6892d5bb0991e11a82daeeMD53unal/86687oai:repositorio.unal.edu.co:unal/866872024-08-27 23:11:10.857Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=