The l2-order of magnitude of vilenkin-fourier coefficients
Let G be a compact, metrizable, zero-dimensional, abelian gruop, i.e ., a Vilenkin group. It is well known ([2], [6] for example) that if f belongs to the Lipschitz class Lip (∝, p, G), 0 ≤ ∝ ≤ 1, 1 and lt; p ≤ 2, then its Fourier transform f belongs to ℓB (Ĝ) for p/(p + ∝p - 1) and lt; β ≤ p´ =...
- Autores:
-
Younis, Mohammed S.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1996
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43650
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43650
http://bdigital.unal.edu.co/33748/
- Palabra clave:
- Vilenkin groups
Lipschitz functions
Fourier transforms
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let G be a compact, metrizable, zero-dimensional, abelian gruop, i.e ., a Vilenkin group. It is well known ([2], [6] for example) that if f belongs to the Lipschitz class Lip (∝, p, G), 0 ≤ ∝ ≤ 1, 1 and lt; p ≤ 2, then its Fourier transform f belongs to ℓB (Ĝ) for p/(p + ∝p - 1) and lt; β ≤ p´ = p/(p - 1), where Ĝ is the dual of G. For Lipschitz functions on the real line ℝ and on the circle group T ([3], Theorem 85, p. 117; [5], Theorem (1.3) c, p. 108), the special case p = 2, 0 and lt; ∝ and lt;1, reveals some reversibility between the conditions on f and f. In the present work we extend, among other things, this reversibility to the L2 Lipschitz functions on Vilenkin groups. |
---|