On Property (Saw) and others spectral properties type Weyl-Browder theorems

An operator T acting on a Banach space X satises the property (aw) if σ(T) \ σW(T) = E0a(T), where σW (T) is the Weyl spectrum of T and E0a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two...

Full description

Autores:
Sanabria, J.
Carpintero, C.
Rosas, E.
García, O.
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66429
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66429
http://bdigital.unal.edu.co/67457/
Palabra clave:
51 Matemáticas / Mathematics
Semi B-Fredholm operator
a-Weyl's theorem
property (Saw)
property (Sab)
Operador semi-B-Fredholm
teorema de a-Weyl
propiedad (Saw)
propiedad (Sab)
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:An operator T acting on a Banach space X satises the property (aw) if σ(T) \ σW(T) = E0a(T), where σW (T) is the Weyl spectrum of T and E0a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF-+ (T) = σW (T), where σSBF-+ (T) is the upper semi B-Weyl spectrum of T.