On Property (Saw) and others spectral properties type Weyl-Browder theorems
An operator T acting on a Banach space X satises the property (aw) if σ(T) \ σW(T) = E0a(T), where σW (T) is the Weyl spectrum of T and E0a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two...
- Autores:
-
Sanabria, J.
Carpintero, C.
Rosas, E.
García, O.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66429
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66429
http://bdigital.unal.edu.co/67457/
- Palabra clave:
- 51 Matemáticas / Mathematics
Semi B-Fredholm operator
a-Weyl's theorem
property (Saw)
property (Sab)
Operador semi-B-Fredholm
teorema de a-Weyl
propiedad (Saw)
propiedad (Sab)
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | An operator T acting on a Banach space X satises the property (aw) if σ(T) \ σW(T) = E0a(T), where σW (T) is the Weyl spectrum of T and E0a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF-+ (T) = σW (T), where σSBF-+ (T) is the upper semi B-Weyl spectrum of T. |
---|