Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods

Ilustraciones, fotografías a color, imágenes, gráficas

Autores:
Arias Vesga, Christian Leonardo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82925
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82925
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Patología
Pathology
Células - patología
Cells - pathology
Enfermedad del cáncer
histopatología
eliminación de señal de ruido
transformación Noiselet
señal de núcleos
cancer disease
histopathology
noise signal removal
nuclei signal
Noiselet transformation
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_85d30dcacca2eea3af45f48051baea91
oai_identifier_str oai:repositorio.unal.edu.co:unal/82925
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
dc.title.translated.spa.fl_str_mv Caracterización de tejidos no nucleares de imágenes histopatológicas: un paso de procesamiento para mejorar los métodos de segmentación de núcleos
title Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
spellingShingle Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Patología
Pathology
Células - patología
Cells - pathology
Enfermedad del cáncer
histopatología
eliminación de señal de ruido
transformación Noiselet
señal de núcleos
cancer disease
histopathology
noise signal removal
nuclei signal
Noiselet transformation
title_short Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
title_full Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
title_fullStr Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
title_full_unstemmed Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
title_sort Non-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation Methods
dc.creator.fl_str_mv Arias Vesga, Christian Leonardo
dc.contributor.advisor.none.fl_str_mv Romero Castro, Edgar Eduardo
dc.contributor.author.none.fl_str_mv Arias Vesga, Christian Leonardo
dc.contributor.educationalvalidator.none.fl_str_mv Moncayo Martinez Ricardo Alexander
dc.contributor.researchgroup.spa.fl_str_mv Cim@Lab
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Patología
Pathology
Células - patología
Cells - pathology
Enfermedad del cáncer
histopatología
eliminación de señal de ruido
transformación Noiselet
señal de núcleos
cancer disease
histopathology
noise signal removal
nuclei signal
Noiselet transformation
dc.subject.mesh.spa.fl_str_mv Patología
dc.subject.mesh.eng.fl_str_mv Pathology
dc.subject.lemb.spa.fl_str_mv Células - patología
dc.subject.lemb.eng.fl_str_mv Cells - pathology
dc.subject.proposal.spa.fl_str_mv Enfermedad del cáncer
histopatología
eliminación de señal de ruido
transformación Noiselet
señal de núcleos
dc.subject.proposal.eng.fl_str_mv cancer disease
histopathology
noise signal removal
nuclei signal
dc.subject.proposal.none.fl_str_mv Noiselet transformation
description Ilustraciones, fotografías a color, imágenes, gráficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-13T20:00:00Z
dc.date.available.none.fl_str_mv 2023-01-13T20:00:00Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82925
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.repo.none.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82925
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv J. Arevalo, A. Cruz-Roa, et al., “Histopathology image representation for automatic analysis: A state-of-the-art review,” Revista Med, vol. 22, no. 2, pp. 79–91, 2014.
A. Heindl, S. Nawaz, and Y. Yuan, “Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology,” Laboratory investigation, vol. 95, no. 4, pp. 377–384, 2015.
M. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Breast cancer histopathology image analysis: A review,” IEEE transactions on biomedical engineering, vol. 61, no. 5, pp. 1400–1411, 2014.
H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 2013.
S. Salsabili, A. Mukherjee, E. Ukwatta, A. D. Chan, S. Bainbridge, and D. Grynspan, “Automated segmentation of villi in histopathology images of placenta,” Computers in Biology and Medicine, vol. 113, p. 103420, 2019.
A. B. Hamida, M. Devanne, J. Weber, C. Truntzer, V. Derangère, F. Ghiringhelli, G. Forestier, and C. Wemmert, “Deep learning for colon cancer histopathological images analysis,” Computers in Biology and Medicine, vol. 136, p. 104730, 2021.
A. J. Carrigan, A. Charlton, E. Foucar, M. W. Wiggins, A. Georgiou, T. J. Palmeri, and K. M. Curby, “The role of cue-based strategies in skilled diagnosis among pathologists,” Human Factors, p. 0018720821990160, 2021.
P. Naylor, M. Laé, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE transactions on medical imaging, vol. 38, no. 2, pp. 448–459, 2018.
X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 63–72, 2006.
M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE reviews in biomedical engineering, vol. 2, pp. 147–171, 2009.
M. Salvi and F. Molinari, “Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images,” Biomedical engineering online, vol. 17, no. 1, pp. 1–13, 2018.
S. Naik, S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski, “Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology,” in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 284–287, IEEE, 2008.
H. Hiary, R. S. Alomari, M. Saadah, and V. Chaudhary, “Automated segmentation of stromal tissue in histology images using a voting bayesian model,” Signal, Image and Video Processing, vol. 7, no. 6, pp. 1229–1237, 2013.
T. Hayakawa, V. Prasath, H. Kawanaka, B. J. Aronow, and S. Tsuruoka, “Computational nuclei segmentation methods in digital pathology: a survey,” Archives of Computational Methods in Engineering, vol. 28, no. 1, pp. 1–13, 2021.
X. Li, Y. Wang, Q. Tang, Z. Fan, and J. Yu, “Dual u-net for the segmentation of overlapping glioma nuclei,” Ieee Access, vol. 7, pp. 84040–84052, 2019.
M. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Corrections to “breast cancer histopathology image analysis: A review”[may 14 1400-1411],” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2819–2819, 2014.
C. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of overlapped nuclei using bayesian classification,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2825–2832, 2010.
S. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long, S. Antani, G. Thoma, R. Zuna, and S. R. Frazier, “Deep learning nuclei detection in digitized histology images by superpixels,” Journal of pathology informatics, vol. 9, 2018.
P. Wang, X. Hu, Y. Li, Q. Liu, and X. Zhu, “Automatic cell nuclei segmentation and classification of breast cancer histopathology images,” Signal Processing, vol. 122, pp. 1– 13, 2016.
F. R. Hirsch, A. Spreafico, S. Novello, M. D. Wood, L. Simms, and M. Papotti, “The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review,” Journal of Thoracic Oncology, vol. 3, no. 12, pp. 1468–1481, 2008.
K. Dimitropoulos, P. Barmpoutis, T. Koletsa, I. Kostopoulos, and N. Grammalidis, “Automated detection and classification of nuclei in pax5 and h&e-stained tissue sections of follicular lymphoma,” Signal, Image and Video Processing, vol. 11, no. 1, pp. 145–153, 2017.
J. S. Meyer, C. Alvarez, C. Milikowski, N. Olson, I. Russo, J. Russo, A. Glass, B. A. Zehnbauer, K. Lister, and R. Parwaresch, “Breast carcinoma malignancy grading by bloom–richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index,” Modern pathology, vol. 18, no. 8, p. 1067, 2005.
S. Akbar, L. Jordan, A. M. Thompson, and S. J. McKenna, “Tumor localization in tissue microarrays using rotation invariant superpixel pyramids,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1292–1295, IEEE, 2015.
J. S. Thomas, D. Lamb, T. Ashcroft, B. Corrin, C. Edwards, A. Gibbs, W. Kenyon, R. Stephens, and W. Whimster, “How reliable is the diagnosis of lung cancer using small biopsy specimens? report of a ukcccr lung cancer working party.,” Thorax, vol. 48, no. 11, pp. 1135–1139, 1993.
E. A. Perez, V. J. Suman, N. E. Davidson, S. Martino, P. A. Kaufman, W. L. Lingle, P. J. Flynn, J. N. Ingle, D. Visscher, and R. B. Jenkins, “Her2 testing by local, central, and reference laboratories in specimens from the north central cancer treatment group n9831 intergroup adjuvant trial,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3032– 3038, 2006.
J. M. Userpater, M. D. Ferder, P. Inserta, I. Y. Stella, L. F. Ferder, and F. Inserra, “Aplicación del análisis de imágenes computarizado en la histopatología renal,” Rev. Nefrol. Diál. y Transp, vol. 23, no. 4, pp. 139–144, 2003.
P. Robbins, S. Pinder, N. De Klerk, H. Dawkins, J. Harvey, G. Sterrett, I. Ellis, and C. Elston, “Histological grading of breast carcinomas: a study of interobserver agreement,” Human pathology, vol. 26, no. 8, pp. 873–879, 1995.
A. Belsare and M. Mushrif, “Histopathological image analysis using image processing techniques: An overview,” Signal & Image Processing, vol. 3, no. 4, p. 23, 2012.
G. Meijer, J. Beliën, P. Van Diest, and J. Baak, “Origins of... image analysis in clinical pathology.,” Journal of clinical pathology, vol. 50, no. 5, p. 365, 1997.
L. Romano, M. Ferder, I. Stella, F. Inserra, and L. Ferder, “High correlation in renal tissue between computed image analysis and classical morphometric analysis,” Journal of histotechnology, vol. 19, no. 2, pp. 121–123, 1996.
P. Lambin, R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren, S. Sanduleanu, R. T. Larue, A. J. Even, A. Jochems, et al., “Radiomics: the bridge between medical imaging and personalized medicine,” Nature reviews Clinical oncology, vol. 14, no. 12, pp. 749–762, 2017.
L. Oakden-Rayner, “The rebirth of cad: how is modern ai different from the cad we know?,” 2019.
J.-M. Chen, Y. Li, J. Xu, L. Gong, L.-W. Wang, W.-L. Liu, and J. Liu, “Computeraided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review,” Tumor Biology, vol. 39, no. 3, p. 1010428317694550, 2017.
R. Dapson and R. Horobin, “Dyes from a twenty-first century perspective,” Biotechnic & Histochemistry, vol. 84, no. 4, pp. 135–137, 2009.
J. K. Chan, “The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology,” International journal of surgical pathology, vol. 22, no. 1, pp. 12–32, 2014.
D. Wittekind, “Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. value and limitations of the hematoxylin-eosin stain,” Biotechnic & histochemistry, vol. 78, no. 5, pp. 261–270, 2003.
H. Fox, “Is h&e morphology coming to an end?,” Journal of clinical pathology, vol. 53, no. 1, pp. 38–40, 2000.
K. Larson, H. H. Ho, P. L. Anumolu, and T. M. Chen, “Hematoxylin and eosin tissue stain in mohs micrographic surgery: a review,” Dermatologic surgery, vol. 37, no. 8, pp. 1089–1099, 2011.
M. H. Ross and W. Pawlina, Histology. Lippincott Williams & Wilkins, 2006.
M. Titford, “Progress in the development of microscopical techniques for diagnostic pathology,” Journal of histotechnology, vol. 32, no. 1, pp. 9–19, 2009.
D. Onder, S. Zengin, and S. Sarioglu, “A review on color normalization and color deconvolution methods in histopathology,” Applied Immunohistochemistry & Molecular Morphology, vol. 22, no. 10, pp. 713–719, 2014.
D. Grube, “Constants and variables in immunohistochemistry,” Archives of histology and cytology, vol. 67, no. 2, pp. 115–134, 2004.
S. Rashid, M. Fraz, and S. Javed, “Multiscale dilated unet for segmentation of multiorgan nuclei in digital histology images,” in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 68–72, IEEE, 2020.
C. Le Bozec, M.-C. Jaulent, E. Zapletal, D. Heudes, and P. Degoulet, “A visual coding system in histopathology and its consensual acquisition.,” in Proceedings of the AMIA Symposium, p. 306, American Medical Informatics Association, 1999.
A. M. Khan, H. ElDaly, and N. M. Rajpoot, “A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images,” Journal of pathology informatics, vol. 4, no. 1, p. 11, 2013.
M. K. K. Niazi, G. Beamer, and M. N. Gurcan, “Detecting and characterizing cellular responses to mycobacterium tuberculosis from histology slides,” Cytometry Part A, vol. 85, no. 2, pp. 151–161, 2014.
A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1729–1738, 2014.
L. He, L. R. Long, S. Antani, and G. R. Thoma, “Histology image analysis for carcinoma detection and grading,” Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 538–556, 2012.
M. Paramanandam, M. O’Byrne, B. Ghosh, J. J. Mammen, M. T. Manipadam, R. Thamburaj, and V. Pakrashi, “Automated segmentation of nuclei in breast cancer histopathology images,” PloS one, vol. 11, no. 9, p. e0162053, 2016.
J. D. Bancroft and M. Gamble, Theory and practice of histological techniques. Elsevier health sciences, 2008.
D. Komura and S. Ishikawa, “Machine learning methods for histopathological image analysis,” Computational and structural biotechnology journal, vol. 16, pp. 34–42, 2018.
S. Cascianelli, R. Bello-Cerezo, F. Bianconi, M. L. Fravolini, M. Belal, B. Palumbo, and J. N. Kather, “Dimensionality reduction strategies for cnn-based classification of histopathological images,” in International conference on intelligent interactive multimedia systems and services, pp. 21–30, Springer, 2018.
P.-Y. Tsang, “Multi-resolution image segmentation using geometric active contours,” Master’s thesis, University of Waterloo, 2004.
H. Irshad, S. Jalali, L. Roux, D. Racoceanu, L. J. Hwee, G. Le Naour, and F. Capron, “Automated mitosis detection using texture, sift features and hmax biologically inspired approach,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.
H. Fujita, “Ai-based computer-aided diagnosis (ai-cad): the latest review to read first,” Radiological physics and technology, vol. 13, no. 1, pp. 6–19, 2020.
N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE transactions on medical imaging, vol. 36, no. 7, pp. 1550–1560, 2017.
H. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE transactions on medical imaging, vol. 39, no. 11, pp. 3655–3666, 2020.
H. Sajid and S.-C. S. Cheung, “Background subtraction for static & moving camera,” in 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534, IEEE, 2015.
R. Wang and S.-i. Kamata, “Stain-refinement and boundary-enhancement weight maps for multi-organ nuclei segmentation,” in 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–7, IEEE, 2020.
S. J. Keenan, J. Diamond, W. Glenn McCluggage, H. Bharucha, D. Thompson, P. H. Bartels, and P. W. Hamilton, “An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (cin),” The Journal of pathology, vol. 192, no. 3, pp. 351–362, 2000.
S. Baheerathan, F. Albregtsen, and H. E. Danielsen, “New texture features based on the complexity curve,” Pattern Recognition, vol. 32, no. 4, pp. 605–618, 1999.
P. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi, and J. M. Sloan, “Automated location of dysplastic fields in colorectal histology using image texture analysis,” The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 182, no. 1, pp. 68–75, 1997.
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.
J.-R. Dalle, H. Li, C.-H. Huang, W. K. Leow, D. Racoceanu, and T. C. Putti, “Nuclear pleomorphism scoring by selective cell nuclei detection.,” in WACV, 2009.
O. Sertel, U. V. Catalyurek, H. Shimada, and M. N. Gurcan, “Computer-aided prognosis of neuroblastoma: Detection of mitosis and karyorrhexis cells in digitized histological images,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1433–1436, IEEE, 2009.
A. M. Khan, H. El-Daly, E. Simmons, and N. M. Rajpoot, “Hymap: A hybrid magnitudephase approach to unsupervised segmentation of tumor areas in breast cancer histology images,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.
P.-W. Huang and Y.-H. Lai, “Effective segmentation and classification for hcc biopsy images,” Pattern Recognition, vol. 43, no. 4, pp. 1550–1563, 2010.
C. Jung and C. Kim, “Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization,” IEEE transactions on biomedical engineering, vol. 57, no. 10, pp. 2600–2604, 2010.
M. Veta, A. Huisman, M. A. Viergever, P. J. van Diest, and J. P. Pluim, “Markercontrolled watershed segmentation of nuclei in h&e stained breast cancer biopsy images,” in 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp. 618–621, IEEE, 2011.
Z. Peng, S. Qu, and Q. Li, “Interactive image segmentation using geodesic appearance overlap graph cut,” Signal Processing: Image Communication, vol. 78, pp. 159–170, 2019.
M. Teena, A. Manickavasagan, A. Mothershaw, S. El Hadi, and D. Jayas, “Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review,” Food and Bioprocess Technology, vol. 6, no. 7, pp. 1621–1634, 2013.
R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, 2001.
J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images,” Neurocomputing, vol. 191, pp. 214–223, 2016.
E. M. de Kruijf, J. G. van Nes, C. J. van de Velde, H. Putter, V. T. Smit, G. J. Liefers, P. J. Kuppen, R. A. Tollenaar, and W. E. Mesker, “Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple negative carcinoma patients,” Breast cancer research and treatment, vol. 125, no. 3, pp. 687–696, 2011.
Y. Chen, L. Zhang, W. Liu, and X. Liu, “Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer,” BioMed research international, vol. 2015, 2015.
M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A cluster-then-label semisupervised learning approach for pathology image classification,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.
L. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, R. R. Gupta, Y. Gao, W. Chen, D. Foran, et al., “Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images,” Pattern recognition, vol. 86, pp. 188–200, 2019.
O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N. Gurcan, “Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading,” Journal of Signal Processing Systems, vol. 55, no. 1-3, p. 169, 2009.
B. Vandana and P. Antony, “Automated segmentation using histopathology images as a diagnostic confirmatory tool in detection of bone cancer,” International Journal of Computer Applications, vol. 57, no. 11, 2012.
B. van Ginneken, S. Kerkstra, and J. Meakin, “Grand challenges in biomedical image analysis,” 2018.
K. Tomczak, P. Czerwinska, and M. Wiznerowicz, “The cancer genome atlas (tcga): an immeasurable source of knowledge,” Contemporary oncology, vol. 19, no. 1A, p. A68, 2015.
K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, no. 6, pp. 1045–1057, 2013.
M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T.Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, IEEE, 2009.
T. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder, “The effect of principal component analysis on machine learning accuracy with high dimensional spectral data,” in International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 209–222, Springer, 2005.
M. Veta, P. J. Van Diest, R. Kornegoor, A. Huisman, M. A. Viergever, and J. P. Pluim, “Automatic nuclei segmentation in h&e stained breast cancer histopathology images,” PloS one, vol. 8, no. 7, p. e70221, 2013.
P. Tadrous, “Digital stain separation for histological images,” Journal of microscopy, vol. 240, no. 2, pp. 164–172, 2010.
N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P. A. Heng, J. Li, Z. Hu, et al., “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, 2019.
W. Hu, H. Sheng, J. Wu, Y. Li, T. Liu, Y. Wang, and Y. Wen, “Generative adversarial training for weakly supervised nuclei instance segmentation,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3649–3654, IEEE, 2020.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi. 37 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82925/4/80853178.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82925/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82925/6/80853178.2022.pdf.jpg
bitstream.checksum.fl_str_mv 68090475c051e180f9b8a5eb1ea4996a
eb34b1cf90b7e1103fc9dfd26be24b4a
c61644d202c9a27f0a79eaf95fc8fe4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089729183842304
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, Edgar Eduardod49b2499bdf2c07e42f8b4dc9715ef18Arias Vesga, Christian Leonardobcd0671454593ab47534774c86da92bcMoncayo Martinez Ricardo AlexanderCim@Lab2023-01-13T20:00:00Z2023-01-13T20:00:00Z2022https://repositorio.unal.edu.co/handle/unal/82925Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías a color, imágenes, gráficasEste estudio presenta una novedosa estrategia para caracterizar y eliminar la señal no nuclear (ruido) en las imágenes histopatológicas teñidas con hematoxilina y eosina (H&E), un paso de preprocesamiento para mejorar los métodos tradicionales de segmentación de núcleos. Cualquier estructura no nuclear es mapeada a un espacio de Noiselet a diferentes niveles de resolución, donde un clasificador es entrenado para reconocer los coeficientes de Noiselet de esta proyección. El enfoque propuesto se evaluó con dos conjuntos de datos de múltiples órganos anotados manualmente, comparando la segmentación de los núcleos obtenida por un algoritmo de Watershed más el enfoque presentado con el método de Watershed solamente. (Texto tomado de la fuente)This study presents a novel strategy to characterize and remove non-nuclei signal (noise) in histopathological images stained with hematoxylin and eosin (H&E), a preprocessing step to improve traditional nuclei segmentation methods. Any non nuclei structure is mapped to a Noiselet space at different resolution levels, where a classic classifier is trained to recognize the Noiselet coefficients of this projection. The proposed approach was evaluated with two multi-organ datasets manually annotated, comparing the nuclei segmentation obtained by a Watershed algorithm plus the presented approach against the watershed method alone.MaestríaDigital Pathologyxi. 37 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresPatologíaPathologyCélulas - patologíaCells - pathologyEnfermedad del cáncerhistopatologíaeliminación de señal de ruidotransformación Noiseletseñal de núcleoscancer diseasehistopathologynoise signal removalnuclei signalNoiselet transformationNon-Nuclei Tissue Characterization of Histopathological Images: A Processing Step to Improve Nuclei Segmentation MethodsCaracterización de tejidos no nucleares de imágenes histopatológicas: un paso de procesamiento para mejorar los métodos de segmentación de núcleosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. Arevalo, A. Cruz-Roa, et al., “Histopathology image representation for automatic analysis: A state-of-the-art review,” Revista Med, vol. 22, no. 2, pp. 79–91, 2014.A. Heindl, S. Nawaz, and Y. Yuan, “Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology,” Laboratory investigation, vol. 95, no. 4, pp. 377–384, 2015.M. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Breast cancer histopathology image analysis: A review,” IEEE transactions on biomedical engineering, vol. 61, no. 5, pp. 1400–1411, 2014.H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for nuclei detection, segmentation, and classification in digital histopathology: a review—current status and future potential,” IEEE reviews in biomedical engineering, vol. 7, pp. 97–114, 2013.S. Salsabili, A. Mukherjee, E. Ukwatta, A. D. Chan, S. Bainbridge, and D. Grynspan, “Automated segmentation of villi in histopathology images of placenta,” Computers in Biology and Medicine, vol. 113, p. 103420, 2019.A. B. Hamida, M. Devanne, J. Weber, C. Truntzer, V. Derangère, F. Ghiringhelli, G. Forestier, and C. Wemmert, “Deep learning for colon cancer histopathological images analysis,” Computers in Biology and Medicine, vol. 136, p. 104730, 2021.A. J. Carrigan, A. Charlton, E. Foucar, M. W. Wiggins, A. Georgiou, T. J. Palmeri, and K. M. Curby, “The role of cue-based strategies in skilled diagnosis among pathologists,” Human Factors, p. 0018720821990160, 2021.P. Naylor, M. Laé, F. Reyal, and T. Walter, “Segmentation of nuclei in histopathology images by deep regression of the distance map,” IEEE transactions on medical imaging, vol. 38, no. 2, pp. 448–459, 2018.X. Zhou and S. T. Wong, “Informatics challenges of high-throughput microscopy,” IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 63–72, 2006.M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and B. Yener, “Histopathological image analysis: A review,” IEEE reviews in biomedical engineering, vol. 2, pp. 147–171, 2009.M. Salvi and F. Molinari, “Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images,” Biomedical engineering online, vol. 17, no. 1, pp. 1–13, 2018.S. Naik, S. Doyle, S. Agner, A. Madabhushi, M. Feldman, and J. Tomaszewski, “Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology,” in 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 284–287, IEEE, 2008.H. Hiary, R. S. Alomari, M. Saadah, and V. Chaudhary, “Automated segmentation of stromal tissue in histology images using a voting bayesian model,” Signal, Image and Video Processing, vol. 7, no. 6, pp. 1229–1237, 2013.T. Hayakawa, V. Prasath, H. Kawanaka, B. J. Aronow, and S. Tsuruoka, “Computational nuclei segmentation methods in digital pathology: a survey,” Archives of Computational Methods in Engineering, vol. 28, no. 1, pp. 1–13, 2021.X. Li, Y. Wang, Q. Tang, Z. Fan, and J. Yu, “Dual u-net for the segmentation of overlapping glioma nuclei,” Ieee Access, vol. 7, pp. 84040–84052, 2019.M. Veta, J. P. Pluim, P. J. Van Diest, and M. A. Viergever, “Corrections to “breast cancer histopathology image analysis: A review”[may 14 1400-1411],” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2819–2819, 2014.C. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of overlapped nuclei using bayesian classification,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2825–2832, 2010.S. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long, S. Antani, G. Thoma, R. Zuna, and S. R. Frazier, “Deep learning nuclei detection in digitized histology images by superpixels,” Journal of pathology informatics, vol. 9, 2018.P. Wang, X. Hu, Y. Li, Q. Liu, and X. Zhu, “Automatic cell nuclei segmentation and classification of breast cancer histopathology images,” Signal Processing, vol. 122, pp. 1– 13, 2016.F. R. Hirsch, A. Spreafico, S. Novello, M. D. Wood, L. Simms, and M. Papotti, “The prognostic and predictive role of histology in advanced non-small cell lung cancer: a literature review,” Journal of Thoracic Oncology, vol. 3, no. 12, pp. 1468–1481, 2008.K. Dimitropoulos, P. Barmpoutis, T. Koletsa, I. Kostopoulos, and N. Grammalidis, “Automated detection and classification of nuclei in pax5 and h&e-stained tissue sections of follicular lymphoma,” Signal, Image and Video Processing, vol. 11, no. 1, pp. 145–153, 2017.J. S. Meyer, C. Alvarez, C. Milikowski, N. Olson, I. Russo, J. Russo, A. Glass, B. A. Zehnbauer, K. Lister, and R. Parwaresch, “Breast carcinoma malignancy grading by bloom–richardson system vs proliferation index: reproducibility of grade and advantages of proliferation index,” Modern pathology, vol. 18, no. 8, p. 1067, 2005.S. Akbar, L. Jordan, A. M. Thompson, and S. J. McKenna, “Tumor localization in tissue microarrays using rotation invariant superpixel pyramids,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1292–1295, IEEE, 2015.J. S. Thomas, D. Lamb, T. Ashcroft, B. Corrin, C. Edwards, A. Gibbs, W. Kenyon, R. Stephens, and W. Whimster, “How reliable is the diagnosis of lung cancer using small biopsy specimens? report of a ukcccr lung cancer working party.,” Thorax, vol. 48, no. 11, pp. 1135–1139, 1993.E. A. Perez, V. J. Suman, N. E. Davidson, S. Martino, P. A. Kaufman, W. L. Lingle, P. J. Flynn, J. N. Ingle, D. Visscher, and R. B. Jenkins, “Her2 testing by local, central, and reference laboratories in specimens from the north central cancer treatment group n9831 intergroup adjuvant trial,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3032– 3038, 2006.J. M. Userpater, M. D. Ferder, P. Inserta, I. Y. Stella, L. F. Ferder, and F. Inserra, “Aplicación del análisis de imágenes computarizado en la histopatología renal,” Rev. Nefrol. Diál. y Transp, vol. 23, no. 4, pp. 139–144, 2003.P. Robbins, S. Pinder, N. De Klerk, H. Dawkins, J. Harvey, G. Sterrett, I. Ellis, and C. Elston, “Histological grading of breast carcinomas: a study of interobserver agreement,” Human pathology, vol. 26, no. 8, pp. 873–879, 1995.A. Belsare and M. Mushrif, “Histopathological image analysis using image processing techniques: An overview,” Signal & Image Processing, vol. 3, no. 4, p. 23, 2012.G. Meijer, J. Beliën, P. Van Diest, and J. Baak, “Origins of... image analysis in clinical pathology.,” Journal of clinical pathology, vol. 50, no. 5, p. 365, 1997.L. Romano, M. Ferder, I. Stella, F. Inserra, and L. Ferder, “High correlation in renal tissue between computed image analysis and classical morphometric analysis,” Journal of histotechnology, vol. 19, no. 2, pp. 121–123, 1996.P. Lambin, R. T. Leijenaar, T. M. Deist, J. Peerlings, E. E. De Jong, J. Van Timmeren, S. Sanduleanu, R. T. Larue, A. J. Even, A. Jochems, et al., “Radiomics: the bridge between medical imaging and personalized medicine,” Nature reviews Clinical oncology, vol. 14, no. 12, pp. 749–762, 2017.L. Oakden-Rayner, “The rebirth of cad: how is modern ai different from the cad we know?,” 2019.J.-M. Chen, Y. Li, J. Xu, L. Gong, L.-W. Wang, W.-L. Liu, and J. Liu, “Computeraided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review,” Tumor Biology, vol. 39, no. 3, p. 1010428317694550, 2017.R. Dapson and R. Horobin, “Dyes from a twenty-first century perspective,” Biotechnic & Histochemistry, vol. 84, no. 4, pp. 135–137, 2009.J. K. Chan, “The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology,” International journal of surgical pathology, vol. 22, no. 1, pp. 12–32, 2014.D. Wittekind, “Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. value and limitations of the hematoxylin-eosin stain,” Biotechnic & histochemistry, vol. 78, no. 5, pp. 261–270, 2003.H. Fox, “Is h&e morphology coming to an end?,” Journal of clinical pathology, vol. 53, no. 1, pp. 38–40, 2000.K. Larson, H. H. Ho, P. L. Anumolu, and T. M. Chen, “Hematoxylin and eosin tissue stain in mohs micrographic surgery: a review,” Dermatologic surgery, vol. 37, no. 8, pp. 1089–1099, 2011.M. H. Ross and W. Pawlina, Histology. Lippincott Williams & Wilkins, 2006.M. Titford, “Progress in the development of microscopical techniques for diagnostic pathology,” Journal of histotechnology, vol. 32, no. 1, pp. 9–19, 2009.D. Onder, S. Zengin, and S. Sarioglu, “A review on color normalization and color deconvolution methods in histopathology,” Applied Immunohistochemistry & Molecular Morphology, vol. 22, no. 10, pp. 713–719, 2014.D. Grube, “Constants and variables in immunohistochemistry,” Archives of histology and cytology, vol. 67, no. 2, pp. 115–134, 2004.S. Rashid, M. Fraz, and S. Javed, “Multiscale dilated unet for segmentation of multiorgan nuclei in digital histology images,” in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), pp. 68–72, IEEE, 2020.C. Le Bozec, M.-C. Jaulent, E. Zapletal, D. Heudes, and P. Degoulet, “A visual coding system in histopathology and its consensual acquisition.,” in Proceedings of the AMIA Symposium, p. 306, American Medical Informatics Association, 1999.A. M. Khan, H. ElDaly, and N. M. Rajpoot, “A gamma-gaussian mixture model for detection of mitotic cells in breast cancer histopathology images,” Journal of pathology informatics, vol. 4, no. 1, p. 11, 2013.M. K. K. Niazi, G. Beamer, and M. N. Gurcan, “Detecting and characterizing cellular responses to mycobacterium tuberculosis from histology slides,” Cytometry Part A, vol. 85, no. 2, pp. 151–161, 2014.A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, “A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1729–1738, 2014.L. He, L. R. Long, S. Antani, and G. R. Thoma, “Histology image analysis for carcinoma detection and grading,” Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 538–556, 2012.M. Paramanandam, M. O’Byrne, B. Ghosh, J. J. Mammen, M. T. Manipadam, R. Thamburaj, and V. Pakrashi, “Automated segmentation of nuclei in breast cancer histopathology images,” PloS one, vol. 11, no. 9, p. e0162053, 2016.J. D. Bancroft and M. Gamble, Theory and practice of histological techniques. Elsevier health sciences, 2008.D. Komura and S. Ishikawa, “Machine learning methods for histopathological image analysis,” Computational and structural biotechnology journal, vol. 16, pp. 34–42, 2018.S. Cascianelli, R. Bello-Cerezo, F. Bianconi, M. L. Fravolini, M. Belal, B. Palumbo, and J. N. Kather, “Dimensionality reduction strategies for cnn-based classification of histopathological images,” in International conference on intelligent interactive multimedia systems and services, pp. 21–30, Springer, 2018.P.-Y. Tsang, “Multi-resolution image segmentation using geometric active contours,” Master’s thesis, University of Waterloo, 2004.H. Irshad, S. Jalali, L. Roux, D. Racoceanu, L. J. Hwee, G. Le Naour, and F. Capron, “Automated mitosis detection using texture, sift features and hmax biologically inspired approach,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.H. Fujita, “Ai-based computer-aided diagnosis (ai-cad): the latest review to read first,” Radiological physics and technology, vol. 13, no. 1, pp. 6–19, 2020.N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A dataset and a technique for generalized nuclear segmentation for computational pathology,” IEEE transactions on medical imaging, vol. 36, no. 7, pp. 1550–1560, 2017.H. Qu, P. Wu, Q. Huang, J. Yi, Z. Yan, K. Li, G. M. Riedlinger, S. De, S. Zhang, and D. N. Metaxas, “Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images,” IEEE transactions on medical imaging, vol. 39, no. 11, pp. 3655–3666, 2020.H. Sajid and S.-C. S. Cheung, “Background subtraction for static & moving camera,” in 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534, IEEE, 2015.R. Wang and S.-i. Kamata, “Stain-refinement and boundary-enhancement weight maps for multi-organ nuclei segmentation,” in 2020 Joint 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–7, IEEE, 2020.S. J. Keenan, J. Diamond, W. Glenn McCluggage, H. Bharucha, D. Thompson, P. H. Bartels, and P. W. Hamilton, “An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (cin),” The Journal of pathology, vol. 192, no. 3, pp. 351–362, 2000.S. Baheerathan, F. Albregtsen, and H. E. Danielsen, “New texture features based on the complexity curve,” Pattern Recognition, vol. 32, no. 4, pp. 605–618, 1999.P. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi, and J. M. Sloan, “Automated location of dysplastic fields in colorectal histology using image texture analysis,” The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 182, no. 1, pp. 68–75, 1997.R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB. Pearson Education India, 2004.J.-R. Dalle, H. Li, C.-H. Huang, W. K. Leow, D. Racoceanu, and T. C. Putti, “Nuclear pleomorphism scoring by selective cell nuclei detection.,” in WACV, 2009.O. Sertel, U. V. Catalyurek, H. Shimada, and M. N. Gurcan, “Computer-aided prognosis of neuroblastoma: Detection of mitosis and karyorrhexis cells in digitized histological images,” in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1433–1436, IEEE, 2009.A. M. Khan, H. El-Daly, E. Simmons, and N. M. Rajpoot, “Hymap: A hybrid magnitudephase approach to unsupervised segmentation of tumor areas in breast cancer histology images,” Journal of pathology informatics, vol. 4, no. Suppl, 2013.P.-W. Huang and Y.-H. Lai, “Effective segmentation and classification for hcc biopsy images,” Pattern Recognition, vol. 43, no. 4, pp. 1550–1563, 2010.C. Jung and C. Kim, “Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization,” IEEE transactions on biomedical engineering, vol. 57, no. 10, pp. 2600–2604, 2010.M. Veta, A. Huisman, M. A. Viergever, P. J. van Diest, and J. P. Pluim, “Markercontrolled watershed segmentation of nuclei in h&e stained breast cancer biopsy images,” in 2011 IEEE international symposium on biomedical imaging: from nano to macro, pp. 618–621, IEEE, 2011.Z. Peng, S. Qu, and Q. Li, “Interactive image segmentation using geodesic appearance overlap graph cut,” Signal Processing: Image Communication, vol. 78, pp. 159–170, 2019.M. Teena, A. Manickavasagan, A. Mothershaw, S. El Hadi, and D. Jayas, “Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review,” Food and Bioprocess Technology, vol. 6, no. 7, pp. 1621–1634, 2013.R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets,” Applied and Computational Harmonic Analysis, vol. 10, no. 1, pp. 27–44, 2001.J. Xu, X. Luo, G. Wang, H. Gilmore, and A. Madabhushi, “A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images,” Neurocomputing, vol. 191, pp. 214–223, 2016.E. M. de Kruijf, J. G. van Nes, C. J. van de Velde, H. Putter, V. T. Smit, G. J. Liefers, P. J. Kuppen, R. A. Tollenaar, and W. E. Mesker, “Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple negative carcinoma patients,” Breast cancer research and treatment, vol. 125, no. 3, pp. 687–696, 2011.Y. Chen, L. Zhang, W. Liu, and X. Liu, “Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer,” BioMed research international, vol. 2015, 2015.M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A cluster-then-label semisupervised learning approach for pathology image classification,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.L. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, R. R. Gupta, Y. Gao, W. Chen, D. Foran, et al., “Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images,” Pattern recognition, vol. 86, pp. 188–200, 2019.O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and M. N. Gurcan, “Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading,” Journal of Signal Processing Systems, vol. 55, no. 1-3, p. 169, 2009.B. Vandana and P. Antony, “Automated segmentation using histopathology images as a diagnostic confirmatory tool in detection of bone cancer,” International Journal of Computer Applications, vol. 57, no. 11, 2012.B. van Ginneken, S. Kerkstra, and J. Meakin, “Grand challenges in biomedical image analysis,” 2018.K. Tomczak, P. Czerwinska, and M. Wiznerowicz, “The cancer genome atlas (tcga): an immeasurable source of knowledge,” Contemporary oncology, vol. 19, no. 1A, p. A68, 2015.K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al., “The cancer imaging archive (tcia): maintaining and operating a public information repository,” Journal of digital imaging, vol. 26, no. 6, pp. 1045–1057, 2013.M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T.Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110, IEEE, 2009.T. Howley, M. G. Madden, M.-L. O’Connell, and A. G. Ryder, “The effect of principal component analysis on machine learning accuracy with high dimensional spectral data,” in International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 209–222, Springer, 2005.M. Veta, P. J. Van Diest, R. Kornegoor, A. Huisman, M. A. Viergever, and J. P. Pluim, “Automatic nuclei segmentation in h&e stained breast cancer histopathology images,” PloS one, vol. 8, no. 7, p. e70221, 2013.P. Tadrous, “Digital stain separation for histological images,” Journal of microscopy, vol. 240, no. 2, pp. 164–172, 2010.N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P. A. Heng, J. Li, Z. Hu, et al., “A multi-organ nucleus segmentation challenge,” IEEE transactions on medical imaging, 2019.W. Hu, H. Sheng, J. Wu, Y. Li, T. Liu, Y. Wang, and Y. Wen, “Generative adversarial training for weakly supervised nuclei instance segmentation,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3649–3654, IEEE, 2020.BibliotecariosEstudiantesInvestigadoresMaestrosPersonal de apoyo escolarORIGINAL80853178.2022.pdf80853178.2022.pdfTesis de Ingeniería Biomédicaapplication/pdf11638942https://repositorio.unal.edu.co/bitstream/unal/82925/4/80853178.2022.pdf68090475c051e180f9b8a5eb1ea4996aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82925/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL80853178.2022.pdf.jpg80853178.2022.pdf.jpgGenerated Thumbnailimage/jpeg4646https://repositorio.unal.edu.co/bitstream/unal/82925/6/80853178.2022.pdf.jpgc61644d202c9a27f0a79eaf95fc8fe4aMD56unal/82925oai:repositorio.unal.edu.co:unal/829252024-08-14 23:42:24.713Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=