Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico
ilustraciones, gráficas, tablas
- Autores:
-
Alarcón Castiblanco, Juan David
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82989
- Palabra clave:
- 610 - Medicina y salud::612 - Fisiología humana
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Presión Intraocular
Medidas del Movimiento Ocular
Nervio Óptico/fisiología
Intraocular Pressure
Eye Movement Measurements
Optic Nerve /physiology
Biomecánica
Movimientos oculares
Nervio óptico
Elementos finitos
Ojo
Eye
Optic nerve
Biomechanics
Eye movements
Finite element method
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_858d1aadd5d80bdaf278a022b5cce7d9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82989 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
dc.title.translated.eng.fl_str_mv |
Influence of the ocular movements on the biomechanics of the optic nerve head |
title |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
spellingShingle |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico 610 - Medicina y salud::612 - Fisiología humana 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Presión Intraocular Medidas del Movimiento Ocular Nervio Óptico/fisiología Intraocular Pressure Eye Movement Measurements Optic Nerve /physiology Biomecánica Movimientos oculares Nervio óptico Elementos finitos Ojo Eye Optic nerve Biomechanics Eye movements Finite element method |
title_short |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
title_full |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
title_fullStr |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
title_full_unstemmed |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
title_sort |
Influencia de los movimientos oculares en la biomecánica de la cabeza del nervio óptico |
dc.creator.fl_str_mv |
Alarcón Castiblanco, Juan David |
dc.contributor.advisor.spa.fl_str_mv |
Cortés Rodríguez, Carlos Julio Rodríguez Montaño, Óscar Libardo |
dc.contributor.author.spa.fl_str_mv |
Alarcón Castiblanco, Juan David |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb |
dc.contributor.orcid.spa.fl_str_mv |
Alarcón-Castiblanco, Juan David [0000-0001-8506-0130] |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::612 - Fisiología humana 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
610 - Medicina y salud::612 - Fisiología humana 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Presión Intraocular Medidas del Movimiento Ocular Nervio Óptico/fisiología Intraocular Pressure Eye Movement Measurements Optic Nerve /physiology Biomecánica Movimientos oculares Nervio óptico Elementos finitos Ojo Eye Optic nerve Biomechanics Eye movements Finite element method |
dc.subject.decs.spa.fl_str_mv |
Presión Intraocular Medidas del Movimiento Ocular Nervio Óptico/fisiología |
dc.subject.decs.eng.fl_str_mv |
Intraocular Pressure Eye Movement Measurements Optic Nerve /physiology |
dc.subject.proposal.spa.fl_str_mv |
Biomecánica Movimientos oculares Nervio óptico Elementos finitos Ojo |
dc.subject.proposal.eng.fl_str_mv |
Eye Optic nerve Biomechanics Eye movements Finite element method |
description |
ilustraciones, gráficas, tablas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-12 |
dc.date.accessioned.none.fl_str_mv |
2023-01-17T19:41:24Z |
dc.date.available.none.fl_str_mv |
2023-01-17T19:41:24Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82989 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82989 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Ayyalasomayajula, A., Park, R. I., Simon, B. R., and Vande Geest, J. P. (2015). A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Computer Methods in Biomechanics and Biomedical Engineering, 5842(November):1–12. Band, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H., and Foss, A. J. E. (2009). Intracellular Flow in Optic Nerve Axons: A Mechanism for Cell Death in Glaucoma. Investigative Opthalmology & Visual Science, 50(8):3750. Bellezza, A. J., Hart, R. T., and Burgoyne, C. F. (2000). The optic nerve head as a biomechanical structure: Initial finite element modeling. Investigative Ophthalmology and Visual Science, 41(10):2991–3000. Berdahl, J. P., Allingham, R. R., and Johnson, D. H. (2008). Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology, 115(5):763–8. Burgoyne, C. F., Crawford Downs, J., Bellezza, A. J., Francis Suh, J. K., and Hart, R. T. (2005). The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Campbell, I. C., Coudrillier, B., and Ross Ethier, C. (2014). Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. Journal of Biomechanical Engineering, 136(2):021005. Chen, K., Rowley, A. P., Weiland, J. D., and Humayun, M. S. (2014). Elastic properties of human posterior eye. Journal of biomedical materials research. Part A, 102(6):2001– 7. Chen, K. and Weiland, J. D. (2011). Mechanical properties of orbital fat and its encapsulating connective tissue. Journal of biomechanical engineering, 133(6):064505. Dechow, P. C., Nail, G. A., Schwartz-Dabney, C. L., and Ashman, R. B. (1993). Elastic properties of human supraorbital and mandibular bone. American Journal of Physical Anthropology, 90(3):291–306. Demer, J. L., Clark, R. A., Suh, S. Y., Giaconi, J. A., Nouri-Mahdavi, K., Law, S. K., Bonelli, L., Coleman, A. L., and Caprioli, J. (2020). Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Current Eye Research, 45(2):199–210. Dongqi, H. and Zeqin, R. (1999). A biomathematical model for pressuredependent lamina cribrosa behavior. Journal of Biomechanics, 32(6):579–584. Downs, J. C., Roberts, M. D., and Burgoyne, C. F. (2008). The Mechanical Environment of the Optic Nerve Head in Glaucoma. Optom Vis Sci, 85(6):425–435. Downs, J. C., Roberts, M. D., Hart, R. T., and Burgoyne, C. F. (2009). Multiscale Finite Element Modeling of the Lamina Cribrosa Microarchitecture in the Eye. In Conf Proc IEEE Eng Med Biol Soc., number I, pages 4277–4280. Feola, A. J., Myers, J. G., Raykin, J., Mulugeta, L., Nelson, E. S., Samuels, B. C., and Ethier, C. R. (2016). Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Investigative ophthalmology & visual science, 57(4):1901–11. Girard, M. J. A., Downs, J. C., Bottlang, M., Burgoyne, C. F., and Suh, J.-k. F. (2009a). Peripapillary and Posterior Scleral Mechanics, Part II – Experimental and Inverse Finite Element Characterization. Journal of Biomechanical Engineering, 131(5):1–25. Girard, M. J. A., Downs, J. C., Burgoyne, C. F., and Suh, J.-K. F. (2009b). Peripapillary and posterior scleral mechanics–part I: development of an anisotropic hyperelastic constitutive model. Journal of biomechanical engineering, 131(5):051011. Grytz, R., Krishnan, K., Whitley, R., Libertiaux, V., Sigal, I. A., Girkin, C. A., and Downs, J. C. (2020). A mesh-free approach to incorporate complex anisotropic and heterogeneous material properties into eye-specific finite element models. Computer Methods in Applied Mechanics and Engineering, 358:112654. Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., and Kurtcuoglu, V. (2009). Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Journal of biomechanical engineering, 131(2):021010. Jafari, S., Lu, Y., Park, J., and Demer, J. L. (2021). Finite element model of ocular adduction by active extraocular muscle contraction. Investigative Ophthalmology and Visual Science, 62(1):3–5. Jonas, J. B., Berenshtein, E., and Holbach, L. (2003). Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and Cerebrospinal Fluid Space. Investigative Opthalmology & Visual Science, 44(12):5189. Kass, M. A. (1994). The ocular hypertension treatment study. Journal of Glaucoma, 3(2):97–100. Kels, B. D., Grzybowski, A., and Grant-Kels, J. M. (2015). Human ocular anatomy. Clinics in Dermatology, 33(2):140–146. Killer, H. E., Laeng, H. R., Flammer, J., and Groscurth, P. (2003). Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. The British journal of ophthalmology, 87(6):777–81. Knepper, P. A. and Samples, J. R. (2016). Glaucoma Research and Clinical Advances 2016 to 2018, volume 1. Kugler Publications. Landau, L. D. and Lifshitx, E. M. (1994). Theory of elasticity. Institute of physical problems, U.S.S.R. academy of sciences. Le, A. (2020). Optic Nerve Deformation by Eye Movements. PhD thesis, UCLA. Maas, S. A., Ellis, B. J., Ateshian, G. A., and Weiss, J. A. (2012). FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 134(1):1–10. Mackenzie,W. (1830). A Practical Treatise of the Diseases of the Eye. Longman & Company. Muñoz-Sarmiento, D. M. D., Rodríguez-Montaño, Ó. L. Ó., Alarcón-Castiblanco, J. D. J., Gamboa-Márquez, M. A. M., Corredor-Gómez, J. J. P., and Cortés- Rodríguez, C. C. J. (2019). A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space and meninges. Informatics in Medicine Unlocked, 15:100185. Norman, R. E., Flanagan, J. G., Rausch, S. M., Sigal, I. A., Tertinegg, I., Eilaghi, A., Portnoy, S., Sled, J. G., and Ethier, C. R. (2010). Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Experimental Eye Research, 90(2):277–284. Norman, R. E., Flanagan, J. G., Sigal, I. a., Rausch, S. M. K., Tertinegg, I., and Ethier, C. R. (2011). Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma. Experimental Eye Research, 93(1):4–12. Qian, X., Zhang, K., and Liu, Z. (2015). A method to determine the mechanical properties of the retina based on an experiment in vivo. Bio-Medical Materials and Engineering, 26(s1):S287–S297. Rogers, K., editor (2011). The Eye thephysiology of human perception. Britannica Educational Publishing, New York, NY, 1st ed edition. Rosario Hernandez, M. and Pena, J. D. (1997). The optic nerve head in glaucomatous optic neuropathy. Archives of Ophthalmology, 115(3):389–395. Ross, M. and Pawlina, W. (2007). Histologia: Texto Y Atlas. Médica Panamericana. Saboori, P. and Sadegh, a. (2011). Material modeling of the head’s subarachnoid space. Scientia Iranica, 18(6):1492–1499. Salvetat, M. L., Zeppieri, M., Tosoni, C., and Brusini, P. (2016). Baseline factors predicting the risk of conversion from ocular hypertension to primary open-angle glaucoma during a 10-year follow-up. Eye (Basingstoke), 30(6):784–795. Schwaner, S. A., Feola, A. J., and Ethier, C. R. (2020). Factors affecting optic nerve head biomechanics in a rat model of glaucoma. Journal of The Royal Society Interface, 17(165):20190695. Shahzad, M., Kamran, A., Siddiqui, M. Z., and Farhan, M. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research, 18(5):918–924. Sigal, I. A., Flanagan, J. G., and Ethier, C. R. (2005a). Factors Influencing Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 46(11):4189. Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2004). Finite Element Modeling of Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 45(12):4378. Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2005b). Reconstruction of human optic nerve heads for finite element modeling. Technology and health care : official journal of the European Society for Engineering and Medicine, 13(4):313–29. Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp, United States. Stamper, R. L. (1984). The effect of glaucoma on central visual function. Transactions of the American Ophthalmological Society, VOL. 82:792–826. Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology, 121(11):2081–2090. Vurgese, S., Panda-Jonas, S., and Jonas, J. B. (2012). Scleral thickness in human eyes. PloS one, 7(1):e29692. Wang, X., Fisher, L. K., Milea, D., Jonas, J. B., and Girard, M. J. (2017). Predictions of optic nerve traction forces and peripapillary tissue stresses following horizontal eye movements. Investigative Ophthalmology and Visual Science, 58(4):2044–2053. Wang, X., Rumpel, H., Lim, W. E. H., Baskaran, M., Perera, S. A., Nongpiur, M. E., Aung, T., Milea, D., and Girard, M. J. A. (2016). Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements. Investigative Opthalmology & Visual Science, 57(6):2452–2462. Weinreb, R. N., Aung, T., and Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: A review. JAMA - Journal of the American Medical Association, 311(18):1901–1911. Wollensak, G., Spoerl, E., and Seiler, T. (2003). Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. Journal of Cataract and Refractive Surgery, 29(9):1780–1785. Woo, S. L., Kobayashi, A. S., Lawrence, C., and Schlegel, W. A. (1972). Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Annals of Biomedical Engineering, 1(1):87–98. Yeoh, O. (1997). Hyperelastic material models for finite element analysis of rubber. Journal of Natural Rubber Research, 12:142–153. Zhang, L., Albon, J., Jones, H., Gouget, C. L. M., Ethier, C. R., Goh, J. C. H., and Girard, M. J. A. (2015). Collagen microstructural factors influencing optic nerve head biomechanics. Investigative ophthalmology & visual science, 56(3):2031–42. Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method: The basis. Butterworth-Heinemann, Oxford. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
57 páginas, vi |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82989/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/82989/4/1032430705.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82989/5/1032430705.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a dc739f1a993e192b78233e267571f7dc cb0550027ad5c618dbfb3e8460f52fc5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089268030603264 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Rodríguez, Carlos Julio48fe60e7734d42e4e2cd46b83acff1c3Rodríguez Montaño, Óscar Libardo2b17b615d7065adabcfe96a6c08fe92d600Alarcón Castiblanco, Juan David310f4641f5cef71af2b205e7e2ad44f9600Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-UncbAlarcón-Castiblanco, Juan David [0000-0001-8506-0130]2023-01-17T19:41:24Z2023-01-17T19:41:24Z2022-12-12https://repositorio.unal.edu.co/handle/unal/82989Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl ojo, como órgano de la visión, tiene en su interior tejidos nerviosos muy frágiles que, al ser dañados, pueden derivar en trastornos graves en la visión. Dada la imposibilidad de realizar ensayos invasivos sobre estos tejidos, se ha acudido en los últimos años a la modelación en computador y la simulación usando métodos numéricos. Distintos autores han estudiado la influencia de una elevada presión intraocular como principal determinador mecánico que podría dañar estos tejidos. Sin embargo, existen otros factores que podrían afectar estos tejidos, como los movimientos oculares, en los que se profundiza en este trabajo. Se compara la influencia que tienen estos movimientos con respecto a la que ejerce la presión intraocular (PIO), usando un modelo tridimensional ajustado a la anatomía, y los elementos finitos. Se obtuvo como resultado que, en el movimiento de abducción para el tejido nervioso prelaminar y la retina peripapilar, el valor de la deformación principal máxima y mínima se duplica, si se compara con los valores normales (PIO 15 mmHg). Asimismo, para el tejido nervioso preliminar el valor de esfuerzo y deformación tangencial en el plano del movimiento es noventa veces mayor con respecto al estado normal, y en la lámina cribosa este valor es 18 veces mayor. (Texto tomado de la fuente).The eye, as the vision organ, contains fragile nervous tissues, and if they get injured, it could generate serious troubles in the vision. Considering the impossibility to carry on test on these tissues, the modelling and studies on computer using numercial methods have emerged in the last years as an alternative. In this work we explore the influence of the eye movements on the optic nerve head biomechanics. We compare the impact these movements of the eye have regarding the one that have the intraocular pression (IOP), using an anatomical-fitting tridimensional model of the eye and a finite element software. We get that the maximum and minimum principal deformation increase two times when we have an 12° abduction movement, compared with the normal state (IOP 15 mmHg) in the prelaminar neural tissue and the peripapillary retina; and we have ninety times the value of shear stress and strain on the movement plane, making the same comparission, regarding the prelaminar neural tissue; and in the lamina cribosa this value is eighteen times greater.Incluye anexosMaestríaMagíster en Ingeniería MecánicaBiomecánica computacional57 páginas, viapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humana620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaPresión IntraocularMedidas del Movimiento OcularNervio Óptico/fisiologíaIntraocular PressureEye Movement MeasurementsOptic Nerve /physiologyBiomecánicaMovimientos ocularesNervio ópticoElementos finitosOjoEyeOptic nerveBiomechanicsEye movementsFinite element methodInfluencia de los movimientos oculares en la biomecánica de la cabeza del nervio ópticoInfluence of the ocular movements on the biomechanics of the optic nerve headTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAyyalasomayajula, A., Park, R. I., Simon, B. R., and Vande Geest, J. P. (2015). A porohyperelastic finite element model of the eye: the influence of stiffness and permeability on intraocular pressure and optic nerve head biomechanics. Computer Methods in Biomechanics and Biomedical Engineering, 5842(November):1–12.Band, L. R., Hall, C. L., Richardson, G., Jensen, O. E., Siggers, J. H., and Foss, A. J. E. (2009). Intracellular Flow in Optic Nerve Axons: A Mechanism for Cell Death in Glaucoma. Investigative Opthalmology & Visual Science, 50(8):3750.Bellezza, A. J., Hart, R. T., and Burgoyne, C. F. (2000). The optic nerve head as a biomechanical structure: Initial finite element modeling. Investigative Ophthalmology and Visual Science, 41(10):2991–3000.Berdahl, J. P., Allingham, R. R., and Johnson, D. H. (2008). Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology, 115(5):763–8.Burgoyne, C. F., Crawford Downs, J., Bellezza, A. J., Francis Suh, J. K., and Hart, R. T. (2005). The optic nerve head as a biomechanical structure: A new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage.Campbell, I. C., Coudrillier, B., and Ross Ethier, C. (2014). Biomechanics of the Posterior Eye: A Critical Role in Health and Disease. Journal of Biomechanical Engineering, 136(2):021005.Chen, K., Rowley, A. P., Weiland, J. D., and Humayun, M. S. (2014). Elastic properties of human posterior eye. Journal of biomedical materials research. Part A, 102(6):2001– 7.Chen, K. and Weiland, J. D. (2011). Mechanical properties of orbital fat and its encapsulating connective tissue. Journal of biomechanical engineering, 133(6):064505.Dechow, P. C., Nail, G. A., Schwartz-Dabney, C. L., and Ashman, R. B. (1993). Elastic properties of human supraorbital and mandibular bone. American Journal of Physical Anthropology, 90(3):291–306.Demer, J. L., Clark, R. A., Suh, S. Y., Giaconi, J. A., Nouri-Mahdavi, K., Law, S. K., Bonelli, L., Coleman, A. L., and Caprioli, J. (2020). Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Current Eye Research, 45(2):199–210.Dongqi, H. and Zeqin, R. (1999). A biomathematical model for pressuredependent lamina cribrosa behavior. Journal of Biomechanics, 32(6):579–584.Downs, J. C., Roberts, M. D., and Burgoyne, C. F. (2008). The Mechanical Environment of the Optic Nerve Head in Glaucoma. Optom Vis Sci, 85(6):425–435.Downs, J. C., Roberts, M. D., Hart, R. T., and Burgoyne, C. F. (2009). Multiscale Finite Element Modeling of the Lamina Cribrosa Microarchitecture in the Eye. In Conf Proc IEEE Eng Med Biol Soc., number I, pages 4277–4280.Feola, A. J., Myers, J. G., Raykin, J., Mulugeta, L., Nelson, E. S., Samuels, B. C., and Ethier, C. R. (2016). Finite Element Modeling of Factors Influencing Optic Nerve Head Deformation Due to Intracranial Pressure. Investigative ophthalmology & visual science, 57(4):1901–11.Girard, M. J. A., Downs, J. C., Bottlang, M., Burgoyne, C. F., and Suh, J.-k. F. (2009a). Peripapillary and Posterior Scleral Mechanics, Part II – Experimental and Inverse Finite Element Characterization. Journal of Biomechanical Engineering, 131(5):1–25.Girard, M. J. A., Downs, J. C., Burgoyne, C. F., and Suh, J.-K. F. (2009b). Peripapillary and posterior scleral mechanics–part I: development of an anisotropic hyperelastic constitutive model. Journal of biomechanical engineering, 131(5):051011.Grytz, R., Krishnan, K., Whitley, R., Libertiaux, V., Sigal, I. A., Girkin, C. A., and Downs, J. C. (2020). A mesh-free approach to incorporate complex anisotropic and heterogeneous material properties into eye-specific finite element models. Computer Methods in Applied Mechanics and Engineering, 358:112654.Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., and Kurtcuoglu, V. (2009). Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Journal of biomechanical engineering, 131(2):021010.Jafari, S., Lu, Y., Park, J., and Demer, J. L. (2021). Finite element model of ocular adduction by active extraocular muscle contraction. Investigative Ophthalmology and Visual Science, 62(1):3–5.Jonas, J. B., Berenshtein, E., and Holbach, L. (2003). Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and Cerebrospinal Fluid Space. Investigative Opthalmology & Visual Science, 44(12):5189.Kass, M. A. (1994). The ocular hypertension treatment study. Journal of Glaucoma, 3(2):97–100.Kels, B. D., Grzybowski, A., and Grant-Kels, J. M. (2015). Human ocular anatomy. Clinics in Dermatology, 33(2):140–146.Killer, H. E., Laeng, H. R., Flammer, J., and Groscurth, P. (2003). Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. The British journal of ophthalmology, 87(6):777–81.Knepper, P. A. and Samples, J. R. (2016). Glaucoma Research and Clinical Advances 2016 to 2018, volume 1. Kugler Publications.Landau, L. D. and Lifshitx, E. M. (1994). Theory of elasticity. Institute of physical problems, U.S.S.R. academy of sciences.Le, A. (2020). Optic Nerve Deformation by Eye Movements. PhD thesis, UCLA.Maas, S. A., Ellis, B. J., Ateshian, G. A., and Weiss, J. A. (2012). FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 134(1):1–10.Mackenzie,W. (1830). A Practical Treatise of the Diseases of the Eye. Longman & Company.Muñoz-Sarmiento, D. M. D., Rodríguez-Montaño, Ó. L. Ó., Alarcón-Castiblanco, J. D. J., Gamboa-Márquez, M. A. M., Corredor-Gómez, J. J. P., and Cortés- Rodríguez, C. C. J. (2019). A finite element study of posterior eye biomechanics: The influence of intraocular and cerebrospinal pressure on the optic nerve head, peripapillary region, subarachnoid space and meninges. Informatics in Medicine Unlocked, 15:100185.Norman, R. E., Flanagan, J. G., Rausch, S. M., Sigal, I. A., Tertinegg, I., Eilaghi, A., Portnoy, S., Sled, J. G., and Ethier, C. R. (2010). Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Experimental Eye Research, 90(2):277–284.Norman, R. E., Flanagan, J. G., Sigal, I. a., Rausch, S. M. K., Tertinegg, I., and Ethier, C. R. (2011). Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma. Experimental Eye Research, 93(1):4–12.Qian, X., Zhang, K., and Liu, Z. (2015). A method to determine the mechanical properties of the retina based on an experiment in vivo. Bio-Medical Materials and Engineering, 26(s1):S287–S297.Rogers, K., editor (2011). The Eye thephysiology of human perception. Britannica Educational Publishing, New York, NY, 1st ed edition.Rosario Hernandez, M. and Pena, J. D. (1997). The optic nerve head in glaucomatous optic neuropathy. Archives of Ophthalmology, 115(3):389–395.Ross, M. and Pawlina, W. (2007). Histologia: Texto Y Atlas. Médica Panamericana.Saboori, P. and Sadegh, a. (2011). Material modeling of the head’s subarachnoid space. Scientia Iranica, 18(6):1492–1499.Salvetat, M. L., Zeppieri, M., Tosoni, C., and Brusini, P. (2016). Baseline factors predicting the risk of conversion from ocular hypertension to primary open-angle glaucoma during a 10-year follow-up. Eye (Basingstoke), 30(6):784–795.Schwaner, S. A., Feola, A. J., and Ethier, C. R. (2020). Factors affecting optic nerve head biomechanics in a rat model of glaucoma. Journal of The Royal Society Interface, 17(165):20190695.Shahzad, M., Kamran, A., Siddiqui, M. Z., and Farhan, M. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research, 18(5):918–924.Sigal, I. A., Flanagan, J. G., and Ethier, C. R. (2005a). Factors Influencing Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 46(11):4189.Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2004). Finite Element Modeling of Optic Nerve Head Biomechanics. Investigative Opthalmology & Visual Science, 45(12):4378.Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R. (2005b). Reconstruction of human optic nerve heads for finite element modeling. Technology and health care : official journal of the European Society for Engineering and Medicine, 13(4):313–29.Smith, M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp, United States.Stamper, R. L. (1984). The effect of glaucoma on central visual function. Transactions of the American Ophthalmological Society, VOL. 82:792–826.Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., and Cheng, C. Y. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology, 121(11):2081–2090.Vurgese, S., Panda-Jonas, S., and Jonas, J. B. (2012). Scleral thickness in human eyes. PloS one, 7(1):e29692.Wang, X., Fisher, L. K., Milea, D., Jonas, J. B., and Girard, M. J. (2017). Predictions of optic nerve traction forces and peripapillary tissue stresses following horizontal eye movements. Investigative Ophthalmology and Visual Science, 58(4):2044–2053.Wang, X., Rumpel, H., Lim, W. E. H., Baskaran, M., Perera, S. A., Nongpiur, M. E., Aung, T., Milea, D., and Girard, M. J. A. (2016). Finite Element Analysis Predicts Large Optic Nerve Head Strains During Horizontal Eye Movements. Investigative Opthalmology & Visual Science, 57(6):2452–2462.Weinreb, R. N., Aung, T., and Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: A review. JAMA - Journal of the American Medical Association, 311(18):1901–1911.Wollensak, G., Spoerl, E., and Seiler, T. (2003). Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. Journal of Cataract and Refractive Surgery, 29(9):1780–1785.Woo, S. L., Kobayashi, A. S., Lawrence, C., and Schlegel, W. A. (1972). Mathematical model of the corneo-scleral shell as applied to intraocular pressure-volume relations and applanation tonometry. Annals of Biomedical Engineering, 1(1):87–98.Yeoh, O. (1997). Hyperelastic material models for finite element analysis of rubber. Journal of Natural Rubber Research, 12:142–153.Zhang, L., Albon, J., Jones, H., Gouget, C. L. M., Ethier, C. R., Goh, J. C. H., and Girard, M. J. A. (2015). Collagen microstructural factors influencing optic nerve head biomechanics. Investigative ophthalmology & visual science, 56(3):2031–42.Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method: The basis. Butterworth-Heinemann, Oxford.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82989/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1032430705.2022.pdf1032430705.2022.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf9979948https://repositorio.unal.edu.co/bitstream/unal/82989/4/1032430705.2022.pdfdc739f1a993e192b78233e267571f7dcMD54THUMBNAIL1032430705.2022.pdf.jpg1032430705.2022.pdf.jpgGenerated Thumbnailimage/jpeg3725https://repositorio.unal.edu.co/bitstream/unal/82989/5/1032430705.2022.pdf.jpgcb0550027ad5c618dbfb3e8460f52fc5MD55unal/82989oai:repositorio.unal.edu.co:unal/829892024-08-15 23:14:15.859Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |