Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno
ilustraciones, gráficas, mapas, tablas
- Autores:
-
García Espinoza, Ismael
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81199
- Palabra clave:
- 500 - Ciencias naturales y matemáticas::508 - Historia natural
Los Andes (Cordillera)
Geological time
Cronología geológica
Vegetation dynamics
Dinámica vegetal
Paleocology
Paleoecología
Ecosistemas Altoandinos
Holoceno
Colombia
Paleoecología
Fuego
Ecosistemas novedosos
High Andean Ecosystems
Holocene
Paleoecology
Fire
Novel Ecosystems
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_84e2503d4387b6519f59f45290be493e |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81199 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
dc.title.translated.eng.fl_str_mv |
Vegetation, fire and ecological novelty in the colombian Andes throughout the Holocene |
title |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
spellingShingle |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno 500 - Ciencias naturales y matemáticas::508 - Historia natural Los Andes (Cordillera) Geological time Cronología geológica Vegetation dynamics Dinámica vegetal Paleocology Paleoecología Ecosistemas Altoandinos Holoceno Colombia Paleoecología Fuego Ecosistemas novedosos High Andean Ecosystems Holocene Paleoecology Fire Novel Ecosystems |
title_short |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
title_full |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
title_fullStr |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
title_full_unstemmed |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
title_sort |
Vegetación, fuego y novedad ecológica en los Andes colombianos durante el Holoceno |
dc.creator.fl_str_mv |
García Espinoza, Ismael |
dc.contributor.advisor.none.fl_str_mv |
Armenteras, Dolors |
dc.contributor.author.none.fl_str_mv |
García Espinoza, Ismael |
dc.contributor.referee.none.fl_str_mv |
Berrío, Juan Carlos |
dc.contributor.researchgroup.spa.fl_str_mv |
Ecología del Paisaje y Modelación de Ecosistemas |
dc.contributor.subjectmatterexpert.none.fl_str_mv |
Franco Gaviria, Juan Felipe Urrego, Dunia H. |
dc.subject.ddc.spa.fl_str_mv |
500 - Ciencias naturales y matemáticas::508 - Historia natural |
topic |
500 - Ciencias naturales y matemáticas::508 - Historia natural Los Andes (Cordillera) Geological time Cronología geológica Vegetation dynamics Dinámica vegetal Paleocology Paleoecología Ecosistemas Altoandinos Holoceno Colombia Paleoecología Fuego Ecosistemas novedosos High Andean Ecosystems Holocene Paleoecology Fire Novel Ecosystems |
dc.subject.lemb.none.fl_str_mv |
Los Andes (Cordillera) Geological time Cronología geológica Vegetation dynamics Dinámica vegetal Paleocology Paleoecología |
dc.subject.proposal.spa.fl_str_mv |
Ecosistemas Altoandinos Holoceno Colombia Paleoecología Fuego Ecosistemas novedosos |
dc.subject.proposal.eng.fl_str_mv |
High Andean Ecosystems Holocene Paleoecology Fire Novel Ecosystems |
description |
ilustraciones, gráficas, mapas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-14T15:10:50Z |
dc.date.available.none.fl_str_mv |
2022-03-14T15:10:50Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81199 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81199 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa eng |
language |
spa eng |
dc.relation.references.spa.fl_str_mv |
Aceituno, F. J., Loaiza, N., Delgado-Burbano, M. E., & Barrientos, G. (2013). The initial human settlement of Northwest South America during the Pleistocene/Holocene transition: Synthesis and perspectives. Quaternary International, 301, 23–33. https://doi.org/10.1016/j.quaint.2012.05.017 Archibald, S., Lehmann, C. E. R., Belcher, C. M., Bond, W. J., Bradstock, R. A., Daniau, A. L., Dexter, K. G., Forrestel, E. J., Greve, M., He, T., Higgins, S. I., Hoffmann, W. A., Lamont, B. B., McGlinn, D. J., Moncrieff, G. R., Osborne, C. P., Pausas, J. G., Price, O., Ripley, B. S., … Zanne, A. E. (2018). Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9ead Archila, S., Groot, A. M., Ospina, J. P., Mejía, M., & Zorro, C. (2021). Dwelling the hill: Traces of increasing sedentism in hunter-gatherers societies at Checua site, Colombia (9500-5052 cal BP). Quaternary International, 578(18), 102–119. https://doi.org/10.1016/j.quaint.2020.07.040 Armenteras, D., Schneider, L., & Dávalos, L. M. (2019). Fires in protected areas reveal unforeseen costs of Colombian peace. Nature Ecology & Evolution, 3(1), 20–23. https://doi.org/10.1038/s41559-018-0727-8 Armenteras, D., Sebastian Barreto, J., Tabor, K., Molowny-Horas, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 14(11), 2755–2765. https://doi.org/10.5194/bg-14-2755-2017 Avella-M, A., Torres-R, S., Gómez-A, W., & Pardo-P, M. (2014). Los páramos y bosques altoandinos del pantano de Monquentiva o pantano de Martos (Guatavita, Cundinamarca, Colombia): caracterización ecológica y estado de conservación. Biota Colombiana, 15(1), 3–39. Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R., Grove, M., Tapia, P. M., Cross, S., Rowe, H., & Broda, J. (2001). The History of South American Tropical Precipitation for the Past 25,000 Years. Science, 291(5504), 640–643. https://doi.org/10.1126/science.291.5504.640 Barthlott, W., Rafiqpoor, D., Kier, G., & Kreft, H. (2005). Global Centers of Vascular Plant Diversity. Nova Acta Leopoldina, 92(342), 61–83. Bennett, K. D., & Willis, K. J. (2001). Pollen. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. (Vol. 3, pp. 5–32). Kluwer Academic Publishers. Bernal, R., Gradstein, S. R., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. http://catalogoplantasdecolombia.unal.edu.co/en/ Berrío, J. C., Hooghiemstra, H., Marchant, R., & Rangel, O. (2002). Late-glacial and Holocene history of the dry forest area in the south. Journal of Quaternary Science, 17(7), 667–682. https://doi.org/10.1002/jqs.701 Bird, B. W., Rudloff, O., Escobar, J., Gilhooly, W. P., Correa-Metrio, A., Vélez, M., & Polissar, P. J. (2017). Paleoclimate support for a persistent dry island effect in the Colombian Andes during the last 4700 years. The Holocene, 28(2), 217–228. https://doi.org/10.1177/0959683617721324 Birks, H. J. B., & Birks, H. H. (1980). Quaternary Palaeoecology. The Blackburn Press. Blaauw, M. (2010). Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology, 5(5), 512–518. https://doi.org/10.1016/j.quageo.2010.01.002 Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618 Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618 Bogotá-A, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., Linden, M. Van Der, & Berrio, J. C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity : implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30(23–24), 3321–3337. https://doi.org/10.1016/j.quascirev.2011.08.003 Bond, W. J., & Keeley, J. E. (2005). Fire as a global ‘ herbivore ’: the ecology and evolution of flammable ecosystems. 20(7). https://doi.org/10.1016/j.tree.2005.04.025 Boom, A., Marchant, R., Hooghiemstra, H., & Sinninghe Damsté, J. S. (2002). CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1–2), 151–168. https://doi.org/10.1016/S0031-0182(01)00357-1 Bush, M. B. (2002). Distributional change and conservation on the Andean flank: A palaeoecological perspective. Global Ecology and Biogeography, 11(6), 463–473. https://doi.org/10.1046/j.1466-822X.2002.00305.x CAR. (2007). Elaboración del Diagnostico, Prospectiva y Formulación Cuenca Hidrográfica del Río Gacheta Subcuenca Río Monquentiva. CAR. (2011). Estudios básicos para establecer la factibilidad de declarar el Páramo de Monquentiva (Municipio de Guatavita) como nueva área natural protegida. Cardale, M. (1987). En busca de los primeros agricultores del altiplano cundiboyacense. Maguaré, 5, 6. Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity hotspots. Nature, 404(6781), 990–992. https://doi.org/10.1038/35010105 Clark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30(1), 67–80. https://doi.org/10.1016/0033-5894(88)90088-9 Clark, J. S., & Hussey, T. C. (1996). Estimating the mass flux of charcoal from sedimentary records: Effects of particle size, morphology, and orientation. Holocene, 6(2), 129–144. https://doi.org/10.1177/095968369600600201 Clark, J. S., Lynch, J., Stocks, B. J., & Goldammer, J. G. (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene, 8(1), 19–29. https://doi.org/10.1191/095968398672501165 Colinvaux, P., De Oliveira, P. E., & Moreno, E. (1999). Amazon Pollen manual and Atlas (1er ed.). Harwood Academic Publishers. CONDESAN. (2012). 20 years of sustainable mountain development in the Andes - from Rio 1992 to 2012 and beyond- (C. Devenish & C. Gianella (Eds.)). http://www.mountainpartnership.org/publications/publication-detail/en/c/170308/ Correa-Metrio, A., Dechnik, Y., Lozano-García, S., & Caballero, M. (2014). Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Boletin de La Sociedad Geologica Mexicana, 66(1), 135–143. https://doi.org/10.18268/BSGM2014v66n1a10 Correal, G. (1989). Aguazuque: evidencias de cazadores, recolectores y plantadores en la altiplanicie de la Cordillera Oriental. Fundacion de Investigaciones Arqueologicas Nacionales. Banco de La República., 271. Correal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99. Correal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99. Corredor, V. E., & Terraza, R. (2015). Geología de la Plancha 228 Bogotá Noreste. In Memoria técnica. Cronk, J. K., & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. In Delta (1st ed.). CRC Press Cuatrecasas, J. (1958). Aspectos de la vegetación natural de Colombia. Parte I. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40, 221–264. https://doi.org/10.18257/raccefyn.570 Delcourt, H. R., Delcourt, P. A., & Webb III, T. (1983). Dynamic Plant Ecology: The Spectrum of Vegetational Change in Space and Time. Quaternary Science Reviews, 1, 153–175. Delgado, M. (2012). Mid and Late Holocene population changes at the Sabana de Bogotá (Northern South America) inferred from skeletal morphology and radiocarbon chronology. Quaternary International, 256, 2–11. https://doi.org/10.1016/j.quaint.2011.10.035 Delgado, M. (2018). Stable isotope evidence for dietary and cultural change over the Holocene at the Sabana de Bogotá region, Northern South America. Archaeological and Anthropological Sciences, 10(4), 817–832. https://doi.org/10.1007/s12520-016-0403-3 Etter, Andres, McAlpine, C., & Possingham, H. (2008). Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Annals of the Association of American Geographers, 98(1), 2–23. https://doi.org/10.1080/00045600701733911 Etter, Andrés, & van Wyngaarden, W. (2000). Patterns of Landscape Transformation in Colombia, with Emphasis in the Andean Region. AMBIO: A Journal of the Human Environment, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432 Faegri, K., & Iversen, J. (1964). Textbook of Pollen Analysis (Segunda Ed). Hafner Publishing Co Flantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808–1825. https://doi.org/10.1111/jbi.13607 Gagan, M. K., Hendy, E. J., Haberle, S. G., & Hantoro, W. S. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation. Quaternary International, 118–119, 127–143. https://doi.org/10.1016/S1040-6182(03)00134-4 Gardner, J. J., & Whitlock, C. (2001). Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. Holocene, 11(5), 541–549. https://doi.org/10.1191/095968301680223495 Gedye, S. J., Jones, R. T., Tinner, W., Ammann, B., & Oldfield, F. (2000). The use of mineral magnetism in the reconstruction of fire history: A case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 101–110. https://doi.org/10.1016/S0031-0182(00)00178-4 Gentry, A. H. (1992). Tropical Forest Biodiversity: Distributional Patterns and Their Conservational Significance. Oikos, 63(1), 19. https://doi.org/10.2307/3545512 Gnecco, C. (2003). Against ecological reductionism: Late Pleistocene hunter-gatherers in the tropical forests of northern South America. Quaternary International, 109–110, 13–21. https://doi.org/10.1016/S1040-6182(02)00199-4 Gnecco, C., & Mora, S. (1997). Late Pleistocene/early Holocene tropical forest occupations at San Isidro and Peña Roja, Colombia. Antiquity, 71(273), 683–690. https://doi.org/10.1017/S0003598X00085409 Gómez, A., Berrío, J. C., Hooghiemstra, H., Becerra, M., & Marchant, R. (2007). A Holocene pollen record of vegetation change and human impact from Pantano de Vargas, an intra-Andean basin of Duitama, Colombia. Review of Palaeobotany and Palynology, 145(1–2), 143–157. https://doi.org/10.1016/j.revpalbo.2006.10.002 Gomez, B., Carter, L., Trustrum, N. A., Palmer, A. S., & Roberts, A. P. (2004). El Nino-Southern Oscillation signal associated with middle Holocene climate change in intercorrelated terrestrial and marine sediment cores, North Island, New Zealand. Geology, 32(8), 653–656. https://doi.org/10.1130/G20720.1 González-Carranza, Z., Hooghiemstra, H., & Vélez, M. I. (2012). Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. Holocene, 22(11), 1227–1241. https://doi.org/10.1177/0959683612451183 Gornitz, V. (Ed.). (2008). Encyclopedia of paleoclimatology and Ancient Environments. Springer Grimm, E. C. (1987). CONISS : A FORTRAN 77 PROGRAM FOR STRATIGRAPHICALLY CONSTRAINED CLUSTER ANALYSIS BY THE METHOD OF INCREMENTAL SUM OF SQUARES *. Computers & Geosciences, 13(I), 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 Groot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van Der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., … Westerhoff, W. (2011). Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past, 7(1), 299–316. https://doi.org/10.5194/cp-7-299-2011 Hagemans, K., Nooren, K., de Haas, T., Córdova, M., Hennekam, R., Stekelenburg, M. C. A., Rodbell, D. T., Middelkoop, H., & Donders, T. H. (2021). Patterns of alluvial deposition in Andean lake consistent with ENSO trigger. Quaternary Science Reviews, 259. https://doi.org/10.1016/j.quascirev.2021.106900 Hagemans, K., Tóth, C. D., Ormaza, M., Gosling, W. D., Urrego, D. H., León-Yánez, S., Wagner-Cremer, F., & Donders, T. H. (2019). Modern pollen-vegetation relationships along a steep temperature gradient in the tropical andes of Ecuador. Quaternary Research (United States), 92(1), 1–13. https://doi.org/10.1017/qua.2019.4 Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Röhl, U. (2001). Southward migration of the intertropical convergence zone through the holocene. Science, 293(5533), 1304–1308. https://doi.org/10.1126/science.1059725 Hill, M. O., & Gauch, H. G. J. (1980). Detrended Correspondence Analysis : An Improved Ordination Technique. Vegetatio, 42(1), 47–58. https://doi.org/10.2307/20145789 Hooghiemstra, H. (2006). Immigration of Oak into Northern South America: a Paleo-Ecological Document. In Ecology and Conservation of Neotropical Montane Oak Forests (Vol. 185, pp. 17–28). https://doi.org/10.1007/3-540-28909-7_2 Hooghiemstra, Henry. (1984). Vegetation and climatic history of the High Plain of Bogotá: A continuous record of the last 3.5 million years (J. Cramer Vaduz (Ed.)). Dissertationes Botanicae, Vol. 79. Hooghiemstra, Henry, & Flantua, S. G. A. (2019). Colombia in the Quaternary: An Overview of Environmental and Climatic Change. 4(September). Hooghiemstra, Henry, & van der Hammen, T. (1993). Late quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology, 77(3–4), 235–262. https://doi.org/10.1016/0034-6667(93)90006-G Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia Through Time : Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(November), 927–931. Horn, S. P., & Kappelle, M. (2009). Fire in the páramo ecosystems of Central and South America. In Tropical Fire Ecology (1st ed., Issue January, pp. 505–539). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_18 IAvH. (2012). Informe técnico de avance. In Formulación de un sistema de monitoreo participativo del Pantano de Martos. Iglesias, V., Yospin, G. I., & Whitlock, C. (2015). Reconstruction of fire regimes through integrated Paleoecological proxy data and ecological modeling. Frontiers in Plant Science, 5(JAN), 1–12. https://doi.org/10.3389/fpls.2014.00785 Martin, G. (2005). The Age of Exploration. In All possible Worlds (Fourth, p. 537). Oxford University Press Josse, C., Cuesta, F., Barrena, V., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J., & Tovar, A. (2009). Ecosistemas de los del Norte y Andes Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Programa Regional ECOBONA-Intercooperation, CONDESAN-Proyecto Páramo Andino, Programa BioAndes, EcoCiencia, NatureServe, IAvH, LTA-UNALM,ICAE-ULA, CDC-UNALM, RUMBOL SRL. Juggins, S. (2007). C2 user guide: Software for ecological and palaeoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne, UK, 1–73. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:C2+Software+for+ecological+and+palaeoecological+data+analysis+and+visualisation#0 Kershaw, A. (1997). A modification of the Troels-Smith system of sediment description and portrayal. Quaternary Australasia, 15(2), 63–68. http://giantsstudio.com/aqua1/wp-content/uploads/2012/06/QA_Vol-15_No-2_1997.pdf#page=66 Krassilov, V. a. (2003). Terrestrial Paleoecology and Global Ghange. Pensoft Krukowski, S. T. (1988). Sodium metatungstate: a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. Journal of Paleontology, 62(2), 314–316. https://doi.org/10.1017/S0022336000030018 Kuhry, P., Hooghiemstra, H., van Geel, B., & van der Hammen, T. (1993). The El Abra stadlal in the Eastern Cordillera of Colombia (South America). Quaternary Science Reviews, 12(5), 333–343. https://doi.org/10.1016/0277-3791(93)90041-J Langebaek, C. H. (2019). Los Muiscas: la historia milenaria de un pueblo chibcha (Primera). Penguin Random House Grupo Editorial S.A.S. Last, W. M., & Smol, J. P. (2002). Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques. In Developments in Paleoenvironmental Research (Vol. 1). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4020-5725-0_3 Maher, B. A. (1998). Magnetic properties of modern soils and quaternary loessic paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1–2), 25–54. https://doi.org/10.1016/S0031-0182(97)00103-X Maher, B. A., & Thompson, R. (Eds.). (1999). Quaternary Climates, Environments and Magnetism. Cambridge University Press. http://dx.doi.org/10.1016/j.jsames.2011.03.003 Marchant, R., Behling, H., Berrio, J. C., Cleef, A., Duivenvoorden, J., Hooghiemstra, H., Kuhry, P., Melief, B., Geel, B. Van, Hammen, T. Van der, Reenen, G. Van, & Wille, M. (2001). Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews, 20(12), 1289–1308. https://doi.org/10.1016/S0277-3791(00)00182-7 Markgraf, V. (1980). Pollen dispersal in a mountain area. Grana, 19(2), 127–146. https://doi.org/10.1080/00173138009424995 Markgraf, V. (1993). Younger Dryas in southernmost south America — An update. Quaternary Science Reviews, 12(5), 351–355. https://doi.org/10.1016/0277-3791(93)90043-L Martin, L., Bertaux, J., Corrège, T., Ledru, M. P., Mourguiart, P., Sifeddine, A., Soubiès, F., Wirrmann, D., Suguio, K., & Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research, 47(1), 117–122. https://doi.org/10.1006/qres.1996.1866 Millspaugh, S. H., & Whitlock, C. (1995). A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. Holocene, 5(3), 283–292. https://doi.org/10.1177/095968369500500303 Moore, P. D. (1989). The ecology of peat-forming processes: a review. International Journal of Coal Geology, 12, 89–103. Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bulletin of the Geological Society of America, 120(7–8), 930–949. https://doi.org/10.1130/B26186.1 Moy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912), 162–165. https://doi.org/10.1038/nature01194 Muñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M. C., & Jojoa, M. (2017). Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews, 155, 159–178. https://doi.org/10.1016/j.quascirev.2016.11.021 Mustaphi, C. J. C., & Pisaric, M. F. J. (2014). A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Progress in Physical Geography, 38(6), 734–754. https://doi.org/10.1177/0309133314548886 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501 Ohlson, M., & Tryterud, E. (2000). Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene, 10(4), 519–525. https://doi.org/10.1191/095968300667442551 Olivera-Moscol, M., Duivenvoorden, J. F., & Hooghiemstra, H. (2009). Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology, 157(3–4), 285–300. https://doi.org/10.1016/j.revpalbo.2009.05.008 Pabón, J. D., Eslava, J. A., & Gómez, R. E. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana, 4, 47–59. Pausas, J. G., & Keeley, J. E. (2009). A Burning Story: The Role of Fire in the History of Life. BioScience, 59(7), 593–601. https://doi.org/10.1525/bio.2009.59.7.10 Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1 Poveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031 Power, M. J., Bush, M., Behling, H., Horn, S., Mayle, F., & Urrego, D. (2010). Paleofire activity in tropical America during the last 21 ka: A regional synthesis based on sedimentary charcoal. PAGES News, 18(2), 73–75. https://doi.org/10.22498/pages.18.2.73 Prentice, C. (1988). Records of vegetation in time and space: the principles of pollen analysis. In B. Huntley & T. I. Webb (Eds.), Vegetation history (pp. 17–42). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-3081-0_2 R Core Team. (2020). A Language and Environment for Statistical Computing (4.0.0; p. https://www.R-project.org). R Statistical Foundation for Statistical Computing. http://www.r-project.org Rafter, T. A., & Fergusson, G. J. (1957). “Atom bomb effect” - Recent increase of carbon-14 content of the atmosphere and biosphere. Science, 126(3273), 557–558. https://doi.org/10.1126/science.126.3273.557 Ramsay, P. M. (2014). Giant rosette plant morphology as an indicator of recent fire history in Andean páramo grasslands. Ecological Indicators, 45, 37–44. https://doi.org/10.1016/j.ecolind.2014.03.003 Rangel-Ch., J. O. (2015). La biodiversidad de Colombia: significado y distribución regional. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(51), 176. https://doi.org/10.18257/raccefyn.136 Rangel-Ch, J. O., Lowy-C, P. D., & Aguilar-P, M. (1997). Distribucion de los tipos de Vegetación en las regiones. In Colombia Diversidad Biotica II Tipos de vegetación en Colombia: Vol. II (1st ed., pp. 383–402). Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Rangel-Ch, O. (2000). La región paramuna y franja aledaña en Colombia. In O. Rangel-Ch (Ed.), Colombia Diversidad Biótica III. La región de vida paramuna (pp. 1–23). Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41 Rodríguez Eraso, N., Armenteras-Pascual, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228 Rosenbaum, J. G., Reynolds, R. L., Adam, D. P., Drexler, J., Sarna-Wojcicki, A. M., & Whitney, G. C. (1996). Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen. Bulletin of the Geological Society of America, 108(10), 1328–1341. https://doi.org/10.1130/0016-7606(1996)108<1328:ROMPCC>2.3.CO;2 Rothhammer, F., & Dillehay, T. D. (2009). The late pleistocene colonization of South America: An interdisciplinary perspective. Annals of Human Genetics, 73(5), 540–549. https://doi.org/10.1111/j.1469-1809.2009.00537.x Salazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22(March), e01021. https://doi.org/10.1016/j.gecco.2020.e01021 Sandgren, P., & Snowball, I. (2001). Application of Mineral Magnetic Techniques to Paleolimnology. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Vol. 2, pp. 217–237). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47670-3_8 Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene ( Colombia): Tectonics , erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3–4), 563–575. https://doi.org/10.1016/j.geomorph.2008.02.006 Saylor, J. E., Mora, A., Horton, B. K., & Nie, J. (2009). Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera. Geochimica et Cosmochimica Acta, 73(23), 6999–7018. https://doi.org/10.1016/j.gca.2009.08.030 Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https://doi.org/10.1038/35098000 Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., Johnson, E. A., Jones, V. J., Juggins, S., Macias-Fauria, M., Mills, K., Morris, J. L., Nogués-Bravo, D., Punyasena, S. W., Roland, T. P., … Witkowski, A. (2014). Looking forward through the past: Identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102(1), 256–267. https://doi.org/10.1111/1365-2745.12195 Seppä, H. (2013). Pollen Analysis, Principles. In Encyclopedia of Quaternary Science: Second Edition (2nd ed., Issue December 2013). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53643-3.00171-0 Smol, J., Birks, J., & Last, W. (Eds.). (2002). Tracking environmental change using lake sediments. Volume 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers. Stuiver, M., & Quay, Pa. D. (1980). Changes in Atmospheric Carbon-14 Attributed to a Variable Sun. Science, 207(4426), 11–19. Taylor, Z., Horn, S., & Finkelstein, D. (2013). Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. The Holocene, 23(1), 78–84. https://doi.org/10.1177/0959683612450201 Thompson, L. G., Davis, M. E., E., M.-T., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P. N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., & Francou, B. (1998). A 25,000-Year Tropical Climate History from Bolivian Ice Cores. Science, 282(5395), 1858–1864. https://doi.org/10.1126/science.282.5395.1858 Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., & Liu, K. -b. (1995). Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru. Science, 269(5220), 46–50. https://doi.org/10.1126/science.269.5220.46 Thompson, R., & Oldfield, F. (1986). Environmental magnetism. Allen & Unwin Ltd. Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005 Toth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., Enochs, I. C., Combosch, D. J., Van Woesik, R., & Macintyre, I. G. (2012). ENSO drove 2500-year collapse of Eastern Pacific coral reefs. Science, 336(6090), 81–84. https://doi.org/10.1126/science.1221168 Traverse, A. (2007). Paleopalynology. Urrego, D. H., Bush, M. B., & Silman, M. R. (2010). A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research, 73(2), 364–373. https://doi.org/10.1016/j.yqres.2009.10.005 Urrego, D. H., Hooghiemstra, H., Rama-Corredor, O., Martrat, B., Grimalt, J. O., Thompson, L., Bush, M. B., González-Carranza, Z., Hanselman, J., Valencia, B., & Velásquez-Ruiz, C. (2016). Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past, 12(3), 697–711. https://doi.org/10.5194/cp-12-697-2016 van’t Veer, R., Islebe, G. A., & Hooghiemstra, H. (2000). Climatic change during the Younger Dryas chron in northern South America: A test of the evidence. Quaternary Science Reviews, 19(17–18), 1821–1835. https://doi.org/10.1016/S0277-3791(00)00093-7 van Boxel, J. H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., & Vélez, M. I. (2014). Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1), 63–77. https://doi.org/10.1007/s10933-013-9755-1 van der Hammen, T. (1974). The Pleistocene Changes of Vegetation and Climate in Tropical South America. Journal of Biogeography, 1(1), 3. https://doi.org/10.2307/3038066 van der Hammen, T., Correal, G., & van Klinken, G. J. (1990). Isotopos estables y dieta del hombre prehistórico en la Sabana de Bogotá (un estudio inicial). Boletín de Arqueología, 5(2), 1–10. http://publicaciones.banrepcultural.org/index.php/fian/article/view/5282%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0 Van der Hammen, T., & González, E. (1965). A pollen diagram from “Laguna de la Herrera” (Sabana de Bogotá). Leidse Geologische Mededelingen, 32, 183–191. van der Hammen, T., & Hooghiemstra, H. (1995). The El Abra stadial, a younger dryas equivalent in Colombia. Quaternary Science Reviews, 14(9), 841–851. https://doi.org/10.1016/0277-3791(95)00066-6 van Geel, B., & van der Hammen, T. (1973). Upper quaternary vegetational and climatic sequence of the fuquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14(1), 9–92. https://doi.org/10.1016/0031-0182(73)90064-3 Velásquez, C. (1999). Atlas palinologico de la flora vascular paramuna de colombia: Angiospermae. Colciencias, 1–2. Vélez, M. I., Hooghiemstra, H., Metcalfe, S., Wille, M., & Berrío, J. C. (2006). Late Glacial and Holocene environmental and climatic changes from a limnological transect through Colombia, northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 81–96. https://doi.org/10.1016/j.palaeo.2005.10.020 Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., & Weiss, H. (2018). Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries. Episodes, 41(4), 213–223. https://doi.org/10.18814/epiiugs/2018/018016 Weng, C., Bush, M. B., & Chepstow-Lusty, A. J. (2004). Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science, 19(7), 685–691. https://doi.org/10.1002/jqs.882 Whitlock, C., & Larsen, C. (2001). Charcoal as a Fire Proxy. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators (Vol. 3, pp. 75–97). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47668-1_5 Williams, J. W., & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482. https://doi.org/10.1890/070037 Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104 Robinson, P. J., & Handerson-Sellers, A. (1999). Contemporary climatology (2nd ed.). Routledge. http://dx.doi.org/10.1016/j.jsames.2011.03.003 Willis, K. J., & Birks, H. J. B. (2006). What Is Natural? The Need for a Long-Term Perspective in Biodiversity Conservation. Science, 314(5803), 1261–1265. https://doi.org/10.1126/science.1122667 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 72 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Humanas - Maestría en Geografía |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geografía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Humanas |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81199/3/1014248661.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81199/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81199/5/1014248661.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8e1c9850104f027458495342928225de 8153f7789df02f0a4c9e079953658ab2 cc6993ce20c0464289e94d0d6b176a9f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089557965012992 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Armenteras, Dolorsebf7e304cde8a4ba8822a4186bf184f2600García Espinoza, Ismael5090b2afaeb21dc7542f0e84ededc10d600Berrío, Juan CarlosEcología del Paisaje y Modelación de EcosistemasFranco Gaviria, Juan FelipeUrrego, Dunia H.2022-03-14T15:10:50Z2022-03-14T15:10:50Z2021https://repositorio.unal.edu.co/handle/unal/81199Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, mapas, tablasUna comprensión detallada de las relaciones en el largo plazo entre los ecosistemas y su entorno es vital para estimar las respuestas de la biodiversidad ante el cambio climático. En las décadas por venir, múltiples cambios ecológicos como respuesta al aumento abrupto de la temperatura y la expansión de las actividades humanas son esperados. Sin embargo, el grado en que las variables ambientales y el fuego pueden modular los ecosistemas Altoandinos en Colombia en el largo plazo, sigue siendo una pregunta abierta. Atendiendo a ese interrogante, esta investigación tiene como objetivo estudiar el pasado de estos ecosistemas para entender mejor su presente y futuro. Para ello, busca: (i) reconstruir las dinámicas de la vegetación del Holoceno de los ecosistemas Altoandinos, (ii) evaluar la importancia de la actividad del fuego como agente de disturbio en el largo plazo y, (iii) dar una idea de la novedad ecológica de estas comunidades biológicas. Se presentan aquí datos de polen y material vegetal carbonizado organizados estratigráficamente, provenientes de la zona de transición entre el bosque Altoandino y el Páramo en el flanco oriental de la Cordillera Oriental colombiana a casi 3000 msnm. La historia de la vegetación reveló la interacción de numerosos grupos ecológicos, con transiciones de composición en 8700, 5700, 4100 y 440 AP. El páramo fue reemplazado gradualmente por el Subpáramo a partir de 8700 a. C. cuando la temperatura aumentó. Las condiciones más secas y cálidas del Holoceno Medio favorecieron fuegos más frecuentes e intensos, los cuales aumentaron drásticamente durante los últimos cuatro milenios. Como consecuencia, comunidades composicionalmente novedosas se establecieron en Monquentiva. Este cambio probablemente estuvo asociado con el inicio de la actividad moderna de ENOS, y posteriormente fue agudizado por las actividades humanas después de ca. 3800 AP. Aunque la sensibilidad climática de estos ecosistemas explicó la mayoría de los cambios regionales en la vegetación de la Cordillera Oriental colombiana, nuestro estudio dio una idea de la relevancia del fuego, la distribución heterogénea de las variables climáticas y las actividades humanas a lo largo del Holoceno. Esta nueva evidencia ayuda a dilucidar cuán sensibles han sido los ecosistemas Altoandinos a las presiones externas y la importancia del fuego como agente de disturbio en escalas temporales amplias. (Texto tomado de la fuente).A detailed understanding of how environment-ecosystem feedback occurs is vital to estimating biodiversity responses under climate change scenarios where abrupt warming, increased anthropogenic activities and ecological shifts are expected. However, how environmental gradients and fire activity has changed Colombian High Andean ecosystems over the last thousands of years remains an open question. This research aims to (i) reconstruct the Holocene vegetation dynamics of High Andean ecosystems, (ii) assess the importance of fire activity as a disturbance agent and (iii) give insights into the ecological novelty of these biological communities. We present pollen and charcoal time-series data from the ecotone between High Andean Forest and Páramo on the eastern flank of the Colombian Cordillera Oriental at almost 3000 m.a.s.l. Past vegetation dynamics revealed the interplay of numerous ecological groups, with compositional transitions at 8700, 5700, 4100 and 440 BP. Páramo was gradually replaced by Subpáramo vegetation from 8700 BP when the temperature rose. Mid-Holocene drier and warmer conditions also favoured more frequent and intense fire events, which rose sharply during the last four millennia. As a consequence, compositionally novel communities were established in Monquentiva. This shift was likely associated with the onset of modern ENSO activity, which was subsequently deepened by human activities after ca. 3800 BP. Although high climatic responsiveness explained most regional changes in the Colombian High Andes, our study gave insights into the relevance of fire events, uneven climate variables distribution and human activities through the Holocene. This new evidence helped elucidate how sensitive High Andean ecosystems are to external pressures and the importance of fire as a disturbance agent over broad temporal scales.Natural Environment Research Council (NERC) y el Arts and Humanities Research Council (AHRC) bajo el programa Newton-Caldas Colombia-Bio (NE/R017980/1)MaestríaMagíster en GeografíaPaleoecologíaxvi, 72 páginasapplication/pdfspaengUniversidad Nacional de ColombiaBogotá - Ciencias Humanas - Maestría en GeografíaDepartamento de GeografíaFacultad de Ciencias HumanasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá500 - Ciencias naturales y matemáticas::508 - Historia naturalLos Andes (Cordillera)Geological timeCronología geológicaVegetation dynamicsDinámica vegetalPaleocologyPaleoecologíaEcosistemas AltoandinosHolocenoColombiaPaleoecologíaFuegoEcosistemas novedososHigh Andean EcosystemsHolocenePaleoecologyFireNovel EcosystemsVegetación, fuego y novedad ecológica en los Andes colombianos durante el HolocenoVegetation, fire and ecological novelty in the colombian Andes throughout the HoloceneTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAceituno, F. J., Loaiza, N., Delgado-Burbano, M. E., & Barrientos, G. (2013). The initial human settlement of Northwest South America during the Pleistocene/Holocene transition: Synthesis and perspectives. Quaternary International, 301, 23–33. https://doi.org/10.1016/j.quaint.2012.05.017Archibald, S., Lehmann, C. E. R., Belcher, C. M., Bond, W. J., Bradstock, R. A., Daniau, A. L., Dexter, K. G., Forrestel, E. J., Greve, M., He, T., Higgins, S. I., Hoffmann, W. A., Lamont, B. B., McGlinn, D. J., Moncrieff, G. R., Osborne, C. P., Pausas, J. G., Price, O., Ripley, B. S., … Zanne, A. E. (2018). Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9eadArchila, S., Groot, A. M., Ospina, J. P., Mejía, M., & Zorro, C. (2021). Dwelling the hill: Traces of increasing sedentism in hunter-gatherers societies at Checua site, Colombia (9500-5052 cal BP). Quaternary International, 578(18), 102–119. https://doi.org/10.1016/j.quaint.2020.07.040Armenteras, D., Schneider, L., & Dávalos, L. M. (2019). Fires in protected areas reveal unforeseen costs of Colombian peace. Nature Ecology & Evolution, 3(1), 20–23. https://doi.org/10.1038/s41559-018-0727-8Armenteras, D., Sebastian Barreto, J., Tabor, K., Molowny-Horas, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 14(11), 2755–2765. https://doi.org/10.5194/bg-14-2755-2017Avella-M, A., Torres-R, S., Gómez-A, W., & Pardo-P, M. (2014). Los páramos y bosques altoandinos del pantano de Monquentiva o pantano de Martos (Guatavita, Cundinamarca, Colombia): caracterización ecológica y estado de conservación. Biota Colombiana, 15(1), 3–39.Baker, P. A., Seltzer, G. O., Fritz, S. C., Dunbar, R., Grove, M., Tapia, P. M., Cross, S., Rowe, H., & Broda, J. (2001). The History of South American Tropical Precipitation for the Past 25,000 Years. Science, 291(5504), 640–643. https://doi.org/10.1126/science.291.5504.640Barthlott, W., Rafiqpoor, D., Kier, G., & Kreft, H. (2005). Global Centers of Vascular Plant Diversity. Nova Acta Leopoldina, 92(342), 61–83.Bennett, K. D., & Willis, K. J. (2001). Pollen. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. (Vol. 3, pp. 5–32). Kluwer Academic Publishers.Bernal, R., Gradstein, S. R., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. http://catalogoplantasdecolombia.unal.edu.co/en/Berrío, J. C., Hooghiemstra, H., Marchant, R., & Rangel, O. (2002). Late-glacial and Holocene history of the dry forest area in the south. Journal of Quaternary Science, 17(7), 667–682. https://doi.org/10.1002/jqs.701Bird, B. W., Rudloff, O., Escobar, J., Gilhooly, W. P., Correa-Metrio, A., Vélez, M., & Polissar, P. J. (2017). Paleoclimate support for a persistent dry island effect in the Colombian Andes during the last 4700 years. The Holocene, 28(2), 217–228. https://doi.org/10.1177/0959683617721324Birks, H. J. B., & Birks, H. H. (1980). Quaternary Palaeoecology. The Blackburn Press.Blaauw, M. (2010). Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology, 5(5), 512–518. https://doi.org/10.1016/j.quageo.2010.01.002Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3), 457–474. https://doi.org/10.1214/11-BA618Bogotá-A, R. G., Groot, M. H. M., Hooghiemstra, H., Lourens, L. J., Linden, M. Van Der, & Berrio, J. C. (2011). Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity : implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quaternary Science Reviews, 30(23–24), 3321–3337. https://doi.org/10.1016/j.quascirev.2011.08.003Bond, W. J., & Keeley, J. E. (2005). Fire as a global ‘ herbivore ’: the ecology and evolution of flammable ecosystems. 20(7). https://doi.org/10.1016/j.tree.2005.04.025Boom, A., Marchant, R., Hooghiemstra, H., & Sinninghe Damsté, J. S. (2002). CO2- and temperature-controlled altitudinal shifts of C4- and C3-dominated grasslands allow reconstruction of palaeoatmospheric pCO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1–2), 151–168. https://doi.org/10.1016/S0031-0182(01)00357-1Bush, M. B. (2002). Distributional change and conservation on the Andean flank: A palaeoecological perspective. Global Ecology and Biogeography, 11(6), 463–473. https://doi.org/10.1046/j.1466-822X.2002.00305.xCAR. (2007). Elaboración del Diagnostico, Prospectiva y Formulación Cuenca Hidrográfica del Río Gacheta Subcuenca Río Monquentiva.CAR. (2011). Estudios básicos para establecer la factibilidad de declarar el Páramo de Monquentiva (Municipio de Guatavita) como nueva área natural protegida.Cardale, M. (1987). En busca de los primeros agricultores del altiplano cundiboyacense. Maguaré, 5, 6.Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity hotspots. Nature, 404(6781), 990–992. https://doi.org/10.1038/35010105Clark, J. S. (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quaternary Research, 30(1), 67–80. https://doi.org/10.1016/0033-5894(88)90088-9Clark, J. S., & Hussey, T. C. (1996). Estimating the mass flux of charcoal from sedimentary records: Effects of particle size, morphology, and orientation. Holocene, 6(2), 129–144. https://doi.org/10.1177/095968369600600201Clark, J. S., Lynch, J., Stocks, B. J., & Goldammer, J. G. (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. Holocene, 8(1), 19–29. https://doi.org/10.1191/095968398672501165Colinvaux, P., De Oliveira, P. E., & Moreno, E. (1999). Amazon Pollen manual and Atlas (1er ed.). Harwood Academic Publishers.CONDESAN. (2012). 20 years of sustainable mountain development in the Andes - from Rio 1992 to 2012 and beyond- (C. Devenish & C. Gianella (Eds.)). http://www.mountainpartnership.org/publications/publication-detail/en/c/170308/Correa-Metrio, A., Dechnik, Y., Lozano-García, S., & Caballero, M. (2014). Detrended correspondence analysis: A useful tool to quantify ecological changes from fossil data sets. Boletin de La Sociedad Geologica Mexicana, 66(1), 135–143. https://doi.org/10.18268/BSGM2014v66n1a10Correal, G. (1989). Aguazuque: evidencias de cazadores, recolectores y plantadores en la altiplanicie de la Cordillera Oriental. Fundacion de Investigaciones Arqueologicas Nacionales. Banco de La República., 271.Correal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99.Correal, G., van der Hammen, T., & Hurt, W. (1976). La ecología y tecnología de los abrigos rocosos en El Abra, Sabana de Bogotá, Colombia. Boletín de La Sociedad Geográfica Colombiana, XXX(109), 76–99.Corredor, V. E., & Terraza, R. (2015). Geología de la Plancha 228 Bogotá Noreste. In Memoria técnica.Cronk, J. K., & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. In Delta (1st ed.). CRC PressCuatrecasas, J. (1958). Aspectos de la vegetación natural de Colombia. Parte I. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40, 221–264. https://doi.org/10.18257/raccefyn.570Delcourt, H. R., Delcourt, P. A., & Webb III, T. (1983). Dynamic Plant Ecology: The Spectrum of Vegetational Change in Space and Time. Quaternary Science Reviews, 1, 153–175.Delgado, M. (2012). Mid and Late Holocene population changes at the Sabana de Bogotá (Northern South America) inferred from skeletal morphology and radiocarbon chronology. Quaternary International, 256, 2–11. https://doi.org/10.1016/j.quaint.2011.10.035Delgado, M. (2018). Stable isotope evidence for dietary and cultural change over the Holocene at the Sabana de Bogotá region, Northern South America. Archaeological and Anthropological Sciences, 10(4), 817–832. https://doi.org/10.1007/s12520-016-0403-3Etter, Andres, McAlpine, C., & Possingham, H. (2008). Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Annals of the Association of American Geographers, 98(1), 2–23. https://doi.org/10.1080/00045600701733911Etter, Andrés, & van Wyngaarden, W. (2000). Patterns of Landscape Transformation in Colombia, with Emphasis in the Andean Region. AMBIO: A Journal of the Human Environment, 29(7), 432–439. https://doi.org/10.1579/0044-7447-29.7.432Faegri, K., & Iversen, J. (1964). Textbook of Pollen Analysis (Segunda Ed). Hafner Publishing CoFlantua, S. G. A., O’Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808–1825. https://doi.org/10.1111/jbi.13607Gagan, M. K., Hendy, E. J., Haberle, S. G., & Hantoro, W. S. (2004). Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern oscillation. Quaternary International, 118–119, 127–143. https://doi.org/10.1016/S1040-6182(03)00134-4Gardner, J. J., & Whitlock, C. (2001). Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. Holocene, 11(5), 541–549. https://doi.org/10.1191/095968301680223495Gedye, S. J., Jones, R. T., Tinner, W., Ammann, B., & Oldfield, F. (2000). The use of mineral magnetism in the reconstruction of fire history: A case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 101–110. https://doi.org/10.1016/S0031-0182(00)00178-4Gentry, A. H. (1992). Tropical Forest Biodiversity: Distributional Patterns and Their Conservational Significance. Oikos, 63(1), 19. https://doi.org/10.2307/3545512Gnecco, C. (2003). Against ecological reductionism: Late Pleistocene hunter-gatherers in the tropical forests of northern South America. Quaternary International, 109–110, 13–21. https://doi.org/10.1016/S1040-6182(02)00199-4Gnecco, C., & Mora, S. (1997). Late Pleistocene/early Holocene tropical forest occupations at San Isidro and Peña Roja, Colombia. Antiquity, 71(273), 683–690. https://doi.org/10.1017/S0003598X00085409Gómez, A., Berrío, J. C., Hooghiemstra, H., Becerra, M., & Marchant, R. (2007). A Holocene pollen record of vegetation change and human impact from Pantano de Vargas, an intra-Andean basin of Duitama, Colombia. Review of Palaeobotany and Palynology, 145(1–2), 143–157. https://doi.org/10.1016/j.revpalbo.2006.10.002Gomez, B., Carter, L., Trustrum, N. A., Palmer, A. S., & Roberts, A. P. (2004). El Nino-Southern Oscillation signal associated with middle Holocene climate change in intercorrelated terrestrial and marine sediment cores, North Island, New Zealand. Geology, 32(8), 653–656. https://doi.org/10.1130/G20720.1González-Carranza, Z., Hooghiemstra, H., & Vélez, M. I. (2012). Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. Holocene, 22(11), 1227–1241. https://doi.org/10.1177/0959683612451183Gornitz, V. (Ed.). (2008). Encyclopedia of paleoclimatology and Ancient Environments. SpringerGrimm, E. C. (1987). CONISS : A FORTRAN 77 PROGRAM FOR STRATIGRAPHICALLY CONSTRAINED CLUSTER ANALYSIS BY THE METHOD OF INCREMENTAL SUM OF SQUARES *. Computers & Geosciences, 13(I), 13–35. https://doi.org/10.1016/0098-3004(87)90022-7Groot, M. H. M., Bogotá, R. G., Lourens, L. J., Hooghiemstra, H., Vriend, M., Berrio, J. C., Tuenter, E., Van Der Plicht, J., Van Geel, B., Ziegler, M., Weber, S. L., Betancourt, A., Contreras, L., Gaviria, S., Giraldo, C., González, N., Jansen, J. H. F., Konert, M., Ortega, D., … Westerhoff, W. (2011). Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past, 7(1), 299–316. https://doi.org/10.5194/cp-7-299-2011Hagemans, K., Nooren, K., de Haas, T., Córdova, M., Hennekam, R., Stekelenburg, M. C. A., Rodbell, D. T., Middelkoop, H., & Donders, T. H. (2021). Patterns of alluvial deposition in Andean lake consistent with ENSO trigger. Quaternary Science Reviews, 259. https://doi.org/10.1016/j.quascirev.2021.106900Hagemans, K., Tóth, C. D., Ormaza, M., Gosling, W. D., Urrego, D. H., León-Yánez, S., Wagner-Cremer, F., & Donders, T. H. (2019). Modern pollen-vegetation relationships along a steep temperature gradient in the tropical andes of Ecuador. Quaternary Research (United States), 92(1), 1–13. https://doi.org/10.1017/qua.2019.4Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., & Röhl, U. (2001). Southward migration of the intertropical convergence zone through the holocene. Science, 293(5533), 1304–1308. https://doi.org/10.1126/science.1059725Hill, M. O., & Gauch, H. G. J. (1980). Detrended Correspondence Analysis : An Improved Ordination Technique. Vegetatio, 42(1), 47–58. https://doi.org/10.2307/20145789Hooghiemstra, H. (2006). Immigration of Oak into Northern South America: a Paleo-Ecological Document. In Ecology and Conservation of Neotropical Montane Oak Forests (Vol. 185, pp. 17–28). https://doi.org/10.1007/3-540-28909-7_2Hooghiemstra, Henry. (1984). Vegetation and climatic history of the High Plain of Bogotá: A continuous record of the last 3.5 million years (J. Cramer Vaduz (Ed.)). Dissertationes Botanicae, Vol. 79.Hooghiemstra, Henry, & Flantua, S. G. A. (2019). Colombia in the Quaternary: An Overview of Environmental and Climatic Change. 4(September).Hooghiemstra, Henry, & van der Hammen, T. (1993). Late quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology, 77(3–4), 235–262. https://doi.org/10.1016/0034-6667(93)90006-GHoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., & Antonelli, A. (2010). Amazonia Through Time : Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science, 330(November), 927–931.Horn, S. P., & Kappelle, M. (2009). Fire in the páramo ecosystems of Central and South America. In Tropical Fire Ecology (1st ed., Issue January, pp. 505–539). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8_18IAvH. (2012). Informe técnico de avance. In Formulación de un sistema de monitoreo participativo del Pantano de Martos.Iglesias, V., Yospin, G. I., & Whitlock, C. (2015). Reconstruction of fire regimes through integrated Paleoecological proxy data and ecological modeling. Frontiers in Plant Science, 5(JAN), 1–12. https://doi.org/10.3389/fpls.2014.00785Martin, G. (2005). The Age of Exploration. In All possible Worlds (Fourth, p. 537). Oxford University PressJosse, C., Cuesta, F., Barrena, V., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J., & Tovar, A. (2009). Ecosistemas de los del Norte y Andes Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Programa Regional ECOBONA-Intercooperation, CONDESAN-Proyecto Páramo Andino, Programa BioAndes, EcoCiencia, NatureServe, IAvH, LTA-UNALM,ICAE-ULA, CDC-UNALM, RUMBOL SRL.Juggins, S. (2007). C2 user guide: Software for ecological and palaeoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne, UK, 1–73. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:C2+Software+for+ecological+and+palaeoecological+data+analysis+and+visualisation#0Kershaw, A. (1997). A modification of the Troels-Smith system of sediment description and portrayal. Quaternary Australasia, 15(2), 63–68. http://giantsstudio.com/aqua1/wp-content/uploads/2012/06/QA_Vol-15_No-2_1997.pdf#page=66Krassilov, V. a. (2003). Terrestrial Paleoecology and Global Ghange. PensoftKrukowski, S. T. (1988). Sodium metatungstate: a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. Journal of Paleontology, 62(2), 314–316. https://doi.org/10.1017/S0022336000030018Kuhry, P., Hooghiemstra, H., van Geel, B., & van der Hammen, T. (1993). The El Abra stadlal in the Eastern Cordillera of Colombia (South America). Quaternary Science Reviews, 12(5), 333–343. https://doi.org/10.1016/0277-3791(93)90041-JLangebaek, C. H. (2019). Los Muiscas: la historia milenaria de un pueblo chibcha (Primera). Penguin Random House Grupo Editorial S.A.S.Last, W. M., & Smol, J. P. (2002). Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring, and Chronological Techniques. In Developments in Paleoenvironmental Research (Vol. 1). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4020-5725-0_3Maher, B. A. (1998). Magnetic properties of modern soils and quaternary loessic paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1–2), 25–54. https://doi.org/10.1016/S0031-0182(97)00103-XMaher, B. A., & Thompson, R. (Eds.). (1999). Quaternary Climates, Environments and Magnetism. Cambridge University Press. http://dx.doi.org/10.1016/j.jsames.2011.03.003Marchant, R., Behling, H., Berrio, J. C., Cleef, A., Duivenvoorden, J., Hooghiemstra, H., Kuhry, P., Melief, B., Geel, B. Van, Hammen, T. Van der, Reenen, G. Van, & Wille, M. (2001). Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quaternary Science Reviews, 20(12), 1289–1308. https://doi.org/10.1016/S0277-3791(00)00182-7Markgraf, V. (1980). Pollen dispersal in a mountain area. Grana, 19(2), 127–146. https://doi.org/10.1080/00173138009424995Markgraf, V. (1993). Younger Dryas in southernmost south America — An update. Quaternary Science Reviews, 12(5), 351–355. https://doi.org/10.1016/0277-3791(93)90043-LMartin, L., Bertaux, J., Corrège, T., Ledru, M. P., Mourguiart, P., Sifeddine, A., Soubiès, F., Wirrmann, D., Suguio, K., & Turcq, B. (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research, 47(1), 117–122. https://doi.org/10.1006/qres.1996.1866Millspaugh, S. H., & Whitlock, C. (1995). A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. Holocene, 5(3), 283–292. https://doi.org/10.1177/095968369500500303Moore, P. D. (1989). The ecology of peat-forming processes: a review. International Journal of Coal Geology, 12, 89–103.Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Jaramillo, J. V. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bulletin of the Geological Society of America, 120(7–8), 930–949. https://doi.org/10.1130/B26186.1Moy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912), 162–165. https://doi.org/10.1038/nature01194Muñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M. C., & Jojoa, M. (2017). Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews, 155, 159–178. https://doi.org/10.1016/j.quascirev.2016.11.021Mustaphi, C. J. C., & Pisaric, M. F. J. (2014). A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments. Progress in Physical Geography, 38(6), 734–754. https://doi.org/10.1177/0309133314548886Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501Ohlson, M., & Tryterud, E. (2000). Interpretation of the charcoal record in forest soils: Forest fires and their production and deposition of macroscopic charcoal. Holocene, 10(4), 519–525. https://doi.org/10.1191/095968300667442551Olivera-Moscol, M., Duivenvoorden, J. F., & Hooghiemstra, H. (2009). Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology, 157(3–4), 285–300. https://doi.org/10.1016/j.revpalbo.2009.05.008Pabón, J. D., Eslava, J. A., & Gómez, R. E. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana, 4, 47–59.Pausas, J. G., & Keeley, J. E. (2009). A Burning Story: The Role of Fire in the History of Life. BioScience, 59(7), 593–601. https://doi.org/10.1525/bio.2009.59.7.10Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228–240. https://doi.org/10.1175/MWR-2853.1Poveda, G., Waylen, P. R., & Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031Power, M. J., Bush, M., Behling, H., Horn, S., Mayle, F., & Urrego, D. (2010). Paleofire activity in tropical America during the last 21 ka: A regional synthesis based on sedimentary charcoal. PAGES News, 18(2), 73–75. https://doi.org/10.22498/pages.18.2.73Prentice, C. (1988). Records of vegetation in time and space: the principles of pollen analysis. In B. Huntley & T. I. Webb (Eds.), Vegetation history (pp. 17–42). Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-3081-0_2R Core Team. (2020). A Language and Environment for Statistical Computing (4.0.0; p. https://www.R-project.org). R Statistical Foundation for Statistical Computing. http://www.r-project.orgRafter, T. A., & Fergusson, G. J. (1957). “Atom bomb effect” - Recent increase of carbon-14 content of the atmosphere and biosphere. Science, 126(3273), 557–558. https://doi.org/10.1126/science.126.3273.557Ramsay, P. M. (2014). Giant rosette plant morphology as an indicator of recent fire history in Andean páramo grasslands. Ecological Indicators, 45, 37–44. https://doi.org/10.1016/j.ecolind.2014.03.003Rangel-Ch., J. O. (2015). La biodiversidad de Colombia: significado y distribución regional. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(51), 176. https://doi.org/10.18257/raccefyn.136Rangel-Ch, J. O., Lowy-C, P. D., & Aguilar-P, M. (1997). Distribucion de los tipos de Vegetación en las regiones. In Colombia Diversidad Biotica II Tipos de vegetación en Colombia: Vol. II (1st ed., pp. 383–402). Instituto de Ciencias Naturales, Universidad Nacional de Colombia.Rangel-Ch, O. (2000). La región paramuna y franja aledaña en Colombia. In O. Rangel-Ch (Ed.), Colombia Diversidad Biótica III. La región de vida paramuna (pp. 1–23).Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/RDC.2020.41Rodríguez Eraso, N., Armenteras-Pascual, D., & Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228Rosenbaum, J. G., Reynolds, R. L., Adam, D. P., Drexler, J., Sarna-Wojcicki, A. M., & Whitney, G. C. (1996). Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen. Bulletin of the Geological Society of America, 108(10), 1328–1341. https://doi.org/10.1130/0016-7606(1996)108<1328:ROMPCC>2.3.CO;2Rothhammer, F., & Dillehay, T. D. (2009). The late pleistocene colonization of South America: An interdisciplinary perspective. Annals of Human Genetics, 73(5), 540–549. https://doi.org/10.1111/j.1469-1809.2009.00537.xSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22(March), e01021. https://doi.org/10.1016/j.gecco.2020.e01021Sandgren, P., & Snowball, I. (2001). Application of Mineral Magnetic Techniques to Paleolimnology. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (Vol. 2, pp. 217–237). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47670-3_8Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene ( Colombia): Tectonics , erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3–4), 563–575. https://doi.org/10.1016/j.geomorph.2008.02.006Saylor, J. E., Mora, A., Horton, B. K., & Nie, J. (2009). Controls on the isotopic composition of surface water and precipitation in the Northern Andes, Colombian Eastern Cordillera. Geochimica et Cosmochimica Acta, 73(23), 6999–7018. https://doi.org/10.1016/j.gca.2009.08.030Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https://doi.org/10.1038/35098000Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., Johnson, E. A., Jones, V. J., Juggins, S., Macias-Fauria, M., Mills, K., Morris, J. L., Nogués-Bravo, D., Punyasena, S. W., Roland, T. P., … Witkowski, A. (2014). Looking forward through the past: Identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102(1), 256–267. https://doi.org/10.1111/1365-2745.12195Seppä, H. (2013). Pollen Analysis, Principles. In Encyclopedia of Quaternary Science: Second Edition (2nd ed., Issue December 2013). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53643-3.00171-0Smol, J., Birks, J., & Last, W. (Eds.). (2002). Tracking environmental change using lake sediments. Volume 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers.Stuiver, M., & Quay, Pa. D. (1980). Changes in Atmospheric Carbon-14 Attributed to a Variable Sun. Science, 207(4426), 11–19.Taylor, Z., Horn, S., & Finkelstein, D. (2013). Maize pollen concentrations in Neotropical lake sediments as an indicator of the scale of prehistoric agriculture. The Holocene, 23(1), 78–84. https://doi.org/10.1177/0959683612450201Thompson, L. G., Davis, M. E., E., M.-T., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P. N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., & Francou, B. (1998). A 25,000-Year Tropical Climate History from Bolivian Ice Cores. Science, 282(5395), 1858–1864. https://doi.org/10.1126/science.282.5395.1858Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., & Liu, K. -b. (1995). Late Glacial Stage and Holocene Tropical Ice Core Records from Huascaran, Peru. Science, 269(5220), 46–50. https://doi.org/10.1126/science.269.5220.46Thompson, R., & Oldfield, F. (1986). Environmental magnetism. Allen & Unwin Ltd.Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005Toth, L. T., Aronson, R. B., Vollmer, S. V., Hobbs, J. W., Urrego, D. H., Cheng, H., Enochs, I. C., Combosch, D. J., Van Woesik, R., & Macintyre, I. G. (2012). ENSO drove 2500-year collapse of Eastern Pacific coral reefs. Science, 336(6090), 81–84. https://doi.org/10.1126/science.1221168Traverse, A. (2007). Paleopalynology.Urrego, D. H., Bush, M. B., & Silman, M. R. (2010). A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research, 73(2), 364–373. https://doi.org/10.1016/j.yqres.2009.10.005Urrego, D. H., Hooghiemstra, H., Rama-Corredor, O., Martrat, B., Grimalt, J. O., Thompson, L., Bush, M. B., González-Carranza, Z., Hanselman, J., Valencia, B., & Velásquez-Ruiz, C. (2016). Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past, 12(3), 697–711. https://doi.org/10.5194/cp-12-697-2016van’t Veer, R., Islebe, G. A., & Hooghiemstra, H. (2000). Climatic change during the Younger Dryas chron in northern South America: A test of the evidence. Quaternary Science Reviews, 19(17–18), 1821–1835. https://doi.org/10.1016/S0277-3791(00)00093-7van Boxel, J. H., González-Carranza, Z., Hooghiemstra, H., Bierkens, M., & Vélez, M. I. (2014). Reconstructing past precipitation from lake levels and inverse modelling for Andean Lake La Cocha. Journal of Paleolimnology, 51(1), 63–77. https://doi.org/10.1007/s10933-013-9755-1van der Hammen, T. (1974). The Pleistocene Changes of Vegetation and Climate in Tropical South America. Journal of Biogeography, 1(1), 3. https://doi.org/10.2307/3038066van der Hammen, T., Correal, G., & van Klinken, G. J. (1990). Isotopos estables y dieta del hombre prehistórico en la Sabana de Bogotá (un estudio inicial). Boletín de Arqueología, 5(2), 1–10. http://publicaciones.banrepcultural.org/index.php/fian/article/view/5282%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0Van der Hammen, T., & González, E. (1965). A pollen diagram from “Laguna de la Herrera” (Sabana de Bogotá). Leidse Geologische Mededelingen, 32, 183–191.van der Hammen, T., & Hooghiemstra, H. (1995). The El Abra stadial, a younger dryas equivalent in Colombia. Quaternary Science Reviews, 14(9), 841–851. https://doi.org/10.1016/0277-3791(95)00066-6van Geel, B., & van der Hammen, T. (1973). Upper quaternary vegetational and climatic sequence of the fuquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 14(1), 9–92. https://doi.org/10.1016/0031-0182(73)90064-3Velásquez, C. (1999). Atlas palinologico de la flora vascular paramuna de colombia: Angiospermae. Colciencias, 1–2.Vélez, M. I., Hooghiemstra, H., Metcalfe, S., Wille, M., & Berrío, J. C. (2006). Late Glacial and Holocene environmental and climatic changes from a limnological transect through Colombia, northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 81–96. https://doi.org/10.1016/j.palaeo.2005.10.020Walker, M., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., & Weiss, H. (2018). Formal ratification of the subdivision of the Holocene Series/ Epoch (Quaternary System/Period): Two new Global Boundary Stratotype Sections and Points (GSSPs) and three new stages/ subseries. Episodes, 41(4), 213–223. https://doi.org/10.18814/epiiugs/2018/018016Weng, C., Bush, M. B., & Chepstow-Lusty, A. J. (2004). Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science, 19(7), 685–691. https://doi.org/10.1002/jqs.882Whitlock, C., & Larsen, C. (2001). Charcoal as a Fire Proxy. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators (Vol. 3, pp. 75–97). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47668-1_5Williams, J. W., & Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5(9), 475–482. https://doi.org/10.1890/070037Williams, J. W., Jackson, S. T., & Kutzbach, J. E. (2007). Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5738–5742. https://doi.org/10.1073/pnas.0606292104Robinson, P. J., & Handerson-Sellers, A. (1999). Contemporary climatology (2nd ed.). Routledge. http://dx.doi.org/10.1016/j.jsames.2011.03.003Willis, K. J., & Birks, H. J. B. (2006). What Is Natural? The Need for a Long-Term Perspective in Biodiversity Conservation. Science, 314(5803), 1261–1265. https://doi.org/10.1126/science.1122667BioResilience: Biodiversity Resilience and Ecosystem services in post-conflict socio-ecological systemsNatural Environment Research Council (NERC)Arts and Humanities Research Council (AHRC)EstudiantesInvestigadoresPúblico generalORIGINAL1014248661.2022.pdf1014248661.2022.pdfTesis de Maestría en Geografíaapplication/pdf1725619https://repositorio.unal.edu.co/bitstream/unal/81199/3/1014248661.2022.pdf8e1c9850104f027458495342928225deMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81199/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1014248661.2022.pdf.jpg1014248661.2022.pdf.jpgGenerated Thumbnailimage/jpeg4508https://repositorio.unal.edu.co/bitstream/unal/81199/5/1014248661.2022.pdf.jpgcc6993ce20c0464289e94d0d6b176a9fMD55unal/81199oai:repositorio.unal.edu.co:unal/811992023-08-02 23:04:08.902Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |