An extension of the stone duality: the expanded version

This paper deals with a duality between two categories extending the classical Stone Duality between totally disconnected compact Hausdorff spaces (Stone spaces) and Boolean rings with unit. This duality was announced and very briefly sketched in [7]. The first category denoted by RHQS has as object...

Full description

Autores:
Sabogal, Sonia
Tipo de recurso:
Article of journal
Fecha de publicación:
2006
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73596
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73596
http://bdigital.unal.edu.co/38072/
Palabra clave:
Stone duality
Boolean rings
quotients of Stone spaces
continua
Cantor space
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_84cac715999f095e7ea61ca16568da59
oai_identifier_str oai:repositorio.unal.edu.co:unal/73596
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sabogal, Soniac392eb3b-b251-4cf4-a43f-e8c80685eb373002019-07-03T16:34:15Z2019-07-03T16:34:15Z2006https://repositorio.unal.edu.co/handle/unal/73596http://bdigital.unal.edu.co/38072/This paper deals with a duality between two categories extending the classical Stone Duality between totally disconnected compact Hausdorff spaces (Stone spaces) and Boolean rings with unit. This duality was announced and very briefly sketched in [7]. The first category denoted by RHQS has as objects the representations of Hausdorff quotients of Stone spaces and as morphisms all compatible continuous functions. The second category denoted by BRLR has as objects all Boolean rings with unit endowed with a link relation and as morphisms all compatible Boolean rings with unit morphisms. Furthermore, we study connectedness from an algebraic point of view, in the context of the proposed generalized Stone duality.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40440Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 2357-6529 0120-0380Sabogal, Sonia (2006) An extension of the stone duality: the expanded version. Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 2357-6529 0120-0380 .An extension of the stone duality: the expanded versionArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTStone dualityBoolean ringsquotients of Stone spacescontinuaCantor spaceORIGINAL40440-181890-1-PB.pdfapplication/pdf236214https://repositorio.unal.edu.co/bitstream/unal/73596/1/40440-181890-1-PB.pdfd6892a87fde8091d314da46aaeb2205eMD51THUMBNAIL40440-181890-1-PB.pdf.jpg40440-181890-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4441https://repositorio.unal.edu.co/bitstream/unal/73596/2/40440-181890-1-PB.pdf.jpgfb0c321eec7a877df0bc603b3cdbd61bMD52unal/73596oai:repositorio.unal.edu.co:unal/735962024-06-25 23:11:40.57Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv An extension of the stone duality: the expanded version
title An extension of the stone duality: the expanded version
spellingShingle An extension of the stone duality: the expanded version
Stone duality
Boolean rings
quotients of Stone spaces
continua
Cantor space
title_short An extension of the stone duality: the expanded version
title_full An extension of the stone duality: the expanded version
title_fullStr An extension of the stone duality: the expanded version
title_full_unstemmed An extension of the stone duality: the expanded version
title_sort An extension of the stone duality: the expanded version
dc.creator.fl_str_mv Sabogal, Sonia
dc.contributor.author.spa.fl_str_mv Sabogal, Sonia
dc.subject.proposal.spa.fl_str_mv Stone duality
Boolean rings
quotients of Stone spaces
continua
Cantor space
topic Stone duality
Boolean rings
quotients of Stone spaces
continua
Cantor space
description This paper deals with a duality between two categories extending the classical Stone Duality between totally disconnected compact Hausdorff spaces (Stone spaces) and Boolean rings with unit. This duality was announced and very briefly sketched in [7]. The first category denoted by RHQS has as objects the representations of Hausdorff quotients of Stone spaces and as morphisms all compatible continuous functions. The second category denoted by BRLR has as objects all Boolean rings with unit endowed with a link relation and as morphisms all compatible Boolean rings with unit morphisms. Furthermore, we study connectedness from an algebraic point of view, in the context of the proposed generalized Stone duality.
publishDate 2006
dc.date.issued.spa.fl_str_mv 2006
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:34:15Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:34:15Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73596
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/38072/
url https://repositorio.unal.edu.co/handle/unal/73596
http://bdigital.unal.edu.co/38072/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/bolma/article/view/40440
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 2357-6529 0120-0380
dc.relation.references.spa.fl_str_mv Sabogal, Sonia (2006) An extension of the stone duality: the expanded version. Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 Boletín de Matemáticas; Vol. 13, núm. 1 (2006); 1-19 2357-6529 0120-0380 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Boletín de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73596/1/40440-181890-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73596/2/40440-181890-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv d6892a87fde8091d314da46aaeb2205e
fb0c321eec7a877df0bc603b3cdbd61b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089814156247040