Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana
ilustraciones, gráficas, tablas
- Autores:
-
Rodriguez Osorio, Jenny Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81536
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Receptors, Virus
Coronavirus Infections
Receptores Virales
Infecciones por Coronavirus
Viral proteins
Proteínas virales
Bioquímica
Receptor ACE2
Proteína Spike de SARS-CoV-2
Acoplamiento molecular
Interacción proteína-proteína
Mutaciones
Variantes del SARS-CoV-2
Biochemistry
ACE2 receptor
SARS-CoV-2 spike protein
Docking Molecular
Protein-protein interaction
Mutations
SARS-CoV-2 variants
Mutación
Mutation
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_848cff7fc1790e7ac02621a380c078ca |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81536 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
dc.title.translated.eng.fl_str_mv |
Study of the genetic variability and molecular interaction of the Spike protein of SARS-CoV-2 and the human ACE2 protein |
title |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
spellingShingle |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana 570 - Biología::572 - Bioquímica Receptors, Virus Coronavirus Infections Receptores Virales Infecciones por Coronavirus Viral proteins Proteínas virales Bioquímica Receptor ACE2 Proteína Spike de SARS-CoV-2 Acoplamiento molecular Interacción proteína-proteína Mutaciones Variantes del SARS-CoV-2 Biochemistry ACE2 receptor SARS-CoV-2 spike protein Docking Molecular Protein-protein interaction Mutations SARS-CoV-2 variants Mutación Mutation |
title_short |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
title_full |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
title_fullStr |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
title_full_unstemmed |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
title_sort |
Estudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humana |
dc.creator.fl_str_mv |
Rodriguez Osorio, Jenny Alejandra |
dc.contributor.advisor.spa.fl_str_mv |
Pinzón Velasco, Andrés Mauricio Arboleda Bustos, Carlos Eduardo |
dc.contributor.author.spa.fl_str_mv |
Rodriguez Osorio, Jenny Alejandra |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Receptors, Virus Coronavirus Infections Receptores Virales Infecciones por Coronavirus Viral proteins Proteínas virales Bioquímica Receptor ACE2 Proteína Spike de SARS-CoV-2 Acoplamiento molecular Interacción proteína-proteína Mutaciones Variantes del SARS-CoV-2 Biochemistry ACE2 receptor SARS-CoV-2 spike protein Docking Molecular Protein-protein interaction Mutations SARS-CoV-2 variants Mutación Mutation |
dc.subject.decs.eng.fl_str_mv |
Receptors, Virus Coronavirus Infections |
dc.subject.decs.spa.fl_str_mv |
Receptores Virales Infecciones por Coronavirus |
dc.subject.lemb.eng.fl_str_mv |
Viral proteins |
dc.subject.lemb.spa.fl_str_mv |
Proteínas virales |
dc.subject.proposal.spa.fl_str_mv |
Bioquímica Receptor ACE2 Proteína Spike de SARS-CoV-2 Acoplamiento molecular Interacción proteína-proteína Mutaciones Variantes del SARS-CoV-2 |
dc.subject.proposal.eng.fl_str_mv |
Biochemistry ACE2 receptor SARS-CoV-2 spike protein Docking Molecular Protein-protein interaction Mutations SARS-CoV-2 variants |
dc.subject.unesco.spa.fl_str_mv |
Mutación |
dc.subject.unesco.eng.fl_str_mv |
Mutation |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12 |
dc.date.accessioned.none.fl_str_mv |
2022-06-08T18:23:35Z |
dc.date.available.none.fl_str_mv |
2022-06-08T18:23:35Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81536 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81536 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Abd El-Aziz, Tarek Mohamed, Ahmed Al-Sabi, and James D. Stockand. 2020. “Human Recombinant Soluble ACE2 (HrsACE2) Shows Promise for Treating Severe COVID19.” Signal Transduction and Targeted Therapy 5 (1): 3–4. https://doi.org/10.1038/s41392-020-00374-6. Al-Mulla, Fahd, Anwar Mohammad, Ashraf Al Madhoun, Dania Haddad, Hamad Ali, Muthukrishnan Eaaswarkhanth, Sumi Elsa John, et al. 2021. “ACE2 and FURIN Variants Are Potential Predictors of SARS-CoV-2 Outcome: A Time to Implement Precision Medicine against COVID-19.” Heliyon 7 (2): e06133. https://doi.org/10.1016/j.heliyon.2021.e06133. Alanagreh, Lo’Ai, Foad Alzoughool, and Manar Atoum. 2020. “The Human Coronavirus Disease Covid-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms.” Pathogens 9 (5). https://doi.org/10.3390/pathogens9050331. Aleem, Abdul, Abdul Bari Akbar Samad, and Amy K Slenker. 2021. “Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19).” In . Treasure Island (FL). Arriero, Rueda, Sánchez. 2020. “LA ENZIMA CONVERTIDORA DE ANGIOTENSINA 2 EN VIRUS SARS-COV-2.” Revista de Educación Bioquímica (REB) 39 (4): 121–30. Benetti, Elisa, Rossella Tita, Ottavia Spiga, Andrea Ciolfi, Giovanni Birolo, Alessandro Bruselles, Gabriella Doddato, et al. 2020. “ACE2 Gene Variants May Underlie Interindividual Variability and Susceptibility to COVID-19 in the Italian Population.” European Journal of Human Genetics 28 (11): 1602–14. https://doi.org/10.1038/s41431-020-0691-z. Beniac, Daniel R., Anton Andonov, Elsie Grudeski, and Tim F. Booth. 2006. “Architecture of the SARS Coronavirus Prefusion Spike.” Nature Structural and Molecular Biology 13 (8): 751–52. https://doi.org/10.1038/nsmb1123. Calcagnile, Matteo, Patricia Forgez, Antonio Iannelli, Cecilia Bucci, Marco Alifano, and Pietro Alifano. 2020. “Molecular Docking Simulation Reveals ACE2 Polymorphisms That May Increase the Affinity of ACE2 with the SARS-CoV-2 Spike Protein,” no. January. Cao, Yanan, Lin Li, Zhimin Feng, Shengqing Wan, Peide Huang, Xiaohui Sun, Fang Wen, Xuanlin Huang, Guang Ning, and Weiqing Wang. 2020. “Comparative Genetic Analysis of the Novel Coronavirus (2019-NCoV/SARS-CoV-2) Receptor ACE2 in Different Populations.” Cell Discovery 6 (1): 4–7. https://doi.org/10.1038/s41421-020-0147-1. Capriotti, Emidio, Piero Fariselli, and Rita Casadio. 2005. “I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure.” Nucleic Acids Research 33 (SUPPL. 2): 306–10. https://doi.org/10.1093/nar/gki375. Centers for Disease Control and Prevention. 2021. “SARS-CoV-2 Variant Classifications and Definitions.” 2021. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html. Chan, Kui K., Danielle Dorosky, Preeti Sharma, Shawn A. Abbasi, John M. Dye, David M. Kranz, Andrew S. Herbert, and Erik Procko. 2020. “Engineering Human ACE2 to Optimize Binding to the Spike Protein of SARS Coronavirus 2.” Science 369 (6508): 1261–65. https://doi.org/10.1126/SCIENCE.ABC0870. Chellasamy, Gayathri, Shiva Kumar Arumugasamy, and Saravanan Govindaraju. 2020. “Evolutionary and Structural Analysis Elucidates Mutations on SARS-CoV2 Spike Protein with Altered Human ACE2 Binding Affinity,” no. January. Chen, Chi Wei, Jerome Lin, and Yen Wei Chu. 2013. “IStable: Off-the-Shelf Predictor Integration for Predicting Protein Stability Changes.” BMC Bioinformatics 14 (Suppl 2): S5. https://doi.org/10.1186/1471-2105-14-S2-S5. Cheng, Jianlin, Arlo Randall, and Pierre Baldi. 2006. “Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines.” Proteins: Structure, Function and Genetics 62 (4): 1125–32. https://doi.org/10.1002/prot.20810. Crackower, Michael A., Renu Sarao, Antonio J. Oliveira-dos-Santos, Joan Da Costa, and Liyong Zhang. 2002. “Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function.” Nature 417 (6891): 822–28. https://doi.org/10.1038/nature00786. Debnath, Monojit, Moinak Banerjee, and Michael Berk. 2020. “Genetic Gateways to COVID-19 Infection: Implications for Risk, Severity, and Outcomes.” FASEB Journal 34 (7): 8787–95. https://doi.org/10.1096/fj.202001115R. Dejnirattisai, Wanwisa, Daming Zhou, Piyada Supasa, Jingshan Ren, David I Stuart, and Gavin R Screaton. 2021. “Antibody Evasion by the P . 1 Strain of SARS-CoV-2,” 2939–54. https://doi.org/10.1016/j.cell.2021.03.055. Deng, Xianding, et al. 2020. “Transmission, Infectivity, and Neutralization of a Spike L452R SARS-CoV-2 Variant.” Ann Oncol, no. January: 19–21. Fratev, View ORCID ProfileFilip. 2020. “The N501Y and K417N Mutations in the Spike Protein of SARS-CoV-2 Alter the Interactions with Both HACE2 and Human Derived Antibody: A Free Energy of Perturbation Study.” BioRxiv : The Preprint Server for Biology, 4–5. https://doi.org/10.1101/2020.12.23.424283. Funahashi, Jun, Yuji Sugita, Akio Kitao, and Katsuhide Yutani. 2003. “How Can Free Energy Component Analysis Explain the Difference in Protein Stability Caused by Amino Acid Substitutions? Effect of Three Hydrophobic Mutations at the 56th Residue on the Stability of Human Lysozyme.” Protein Engineering 16 (9): 665–71. https://doi.org/10.1093/protein/gzg083. Gheblawi, Mahmoud, Kaiming Wang, Anissa Viveiros, Quynh Nguyen, Jiu Chang Zhong, Anthony J. Turner, Mohan K. Raizada, Maria B. Grant, and Gavin Y. Oudit. 2020. “Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2.” Circulation Research, 1456–74. https://doi.org/10.1161/CIRCRESAHA.120.317015. Gu, Hongjing, Qi Chen, Guan Yang, Lei He, Hang Fan, Yong Qiang Deng, Yanxiao Wang, et al. 2020. “Adaptation of SARS-CoV-2 in BALB/c Mice for Testing Vaccine Efficacy.” Science 369 (6511): 1603–7. https://doi.org/10.1126/science.abc4730. Haake, Christine, Sarah Cook, Nicola Pusterla, and Brian Murphy. 2020. “Coronavirus Infections in Companion Animals: Virology, Epidemiology, Clinical and Pathologic Features.” Viruses 12 (9): 1–22. https://doi.org/10.3390/v12091023. Hajj-Hassan, Houssein, Kassem Hamze, Fadi Abdel Sater, Nadeem Kizilbash, and Hassan M Khachfe. 2021. “Probing the Increased Virulence of Severe Acute Respiratory Syndrome Coronavirus 2 B.1.617 (Indian Variant) From Predicted Spike Protein Structure.” Cureus 617 (8): 1–8. https://doi.org/10.7759/cureus.16905. Halder, Anushka, Arinnia Anto, Varsha Subramanyan, Moitrayee Bhattacharyya, Smitha Vishveshwara, and Saraswathi Vishveshwara. 2020. “Surveying the Side-Chain Network Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case.” Frontiers in Molecular Biosciences 7 (December): 1–15. https://doi.org/10.3389/fmolb.2020.596945. Harmer, Dan, Maureen Gilbert, Richard Borman, and Kenneth L. Clark. 2002. “Quantitative MRNA Expression Profiling of ACE 2, a Novel Homologue of Angiotensin Converting Enzyme.” FEBS Letters 532 (1–2): 107–10. https://doi.org/10.1016/S0014-5793(02)03640-2. Hartenian, Ella, Divya Nandakumar, Azra Lari, Michael Ly, Jessica M. Tucker, and Britt A. Glaunsinger. 2020. “The Molecular Virology of Coronaviruses.” Journal of Biological Chemistry 295 (37): 12910–34. https://doi.org/10.1074/jbc.REV120.013930. Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.” Cell 181 (2): 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052. Huang, Yuan, Chan Yang, Xin feng Xu, Wei Xu, and Shu wen Liu. 2020. “Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19.” Acta Pharmacologica Sinica 41 (9): 1141–49. https://doi.org/10.1038/s41401-020-0485-4. Hussain, Mushtaq, Nusrat Jabeen, Fozia Raza, Sanya Shabbir, Ayesha A. Baig, Anusha Amanullah, and Basma Aziz. 2020. “Structural Variations in Human ACE2 May Influence Its Binding with SARS-CoV-2 Spike Protein.” Journal of Medical Virology 92 (9): 1580–86. https://doi.org/10.1002/jmv.25832. Jawad, Bahaa, Puja Adhikari, Rudolf Podgornik, and Wai-yim Ching. 2021. “Key Interacting Residues between RBD of SARS-CoV ‑ 2 and ACE2 Receptor : Combination of Molecular Dynamics Simulation and Density Functional Calculation.” https://doi.org/10.1021/acs.jcim.1c00560. Jiabao Xu, Shizhe Zhao, Tieshan Teng, Abualgasim Elgaili Abdalla, Wan Zhu, and Xiangqian Guo. Longxiang Xie, Yunlong Wang. 2020. “Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV.” Jiří Zahradník, Shir Marciano, Maya Shemesh, Eyal Zoler, Daniel Harari, Jeanne Chiaravalli, Björn Meyer, Yinon Rudich, Chunlin Li, Ira Marton, Orly Dym, Nadav Elad, Mark G. Lewis, Hanne Andersen, Matthew Gagne, Robert A. Seder, Daniel C. Douek & Gideon Schreiber. 2021. “SARS-CoV-2 RBD in Vitro Evolution Follows Contagious Mutation Spread, yet Generates an Able Infection Inhibitor” 7: 6. Jordi Reina, Núria Reina. 2015. “The Middle East Respiratory Syndrome Coronavirus.” Medicina Clínica Barcelona, no. January. https://doi.org/10.1016/j.watres.2021.117043. Kakodkar, Pramath, Nagham Kaka, and MN Baig. 2020. “A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19).” Cureus 2019 (4). https://doi.org/10.7759/cureus.7560. Karczewski, Konrad J., Laurent C. Francioli, Grace Tiao, Beryl B. Cummings, Jessica Alföldi, Qingbo Wang, Ryan L. Collins, et al. 2020. “The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans.” Nature 581 (7809): 434–43. https://doi.org/10.1038/s41586-020-2308-7. Kemp, S.A., B. Meng, I.A.T.M. Ferriera, Rawlings Datir, W.T. Harvey, D. A. Collier, Spyros Lytras, et al. 2021. “Recurrent Emergence and Transmission of a SARS-CoV-2 Spike Deletion H69/V70.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3780277. Klein, Friederike. 2020. “Risikofaktor Komorbiditäten Bei COVID-19- Erkrankung.” Pneumologie 74 (10): 640. https://doi.org/10.1183/13993003.00547-2020. Krieger, Elmar, Gúnther Koraimann, and Gert Vriend. 2002. “Increasing the Precision of Comparative Models with YASARA NOVA - A Self-Parameterizing Force Field.” Proteins: Structure, Function and Genetics 47 (3): 393–402. https://doi.org/10.1002/prot.10104. Lan, Jun, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, et al. 2020. “Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor.” Nature 581 (7807): 215–20. https://doi.org/10.1038/s41586-020-2180-5. Li, Fang. 2015. “Receptor Recognition Mechanisms of Coronaviruses : A Decade Of” 89 (4): 1954–64. https://doi.org/10.1128/JVI.02615-14. Li, Mengyuan, Lin Li, Yue Zhang, and Xiaosheng Wang. 2020. “An Investigation of the Expression of 2019 Novel Coronavirus Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues,” 1–7. https://doi.org/10.21203/rs.2.24751/v1. Li, Wenhui, Chengsheng Zhang, Jens H Kuhn, Michael J Moore, Shiwen Luo, Swee-kee Wong, Keming Xu, et al. 2005. “Receptor and Viral Determinants of SARS-Coronavirus Adaptation to Human ACE2” 24 (8): 1634–43. https://doi.org/10.1038/sj.emboj.7600640. Liu H, Wei P, Zhang Q, Aviszus K, Linderberger J, Yang J, Liu J, Chen Z, Waheed H, Reynoso L, Downey GP, Frankel SK, Kappler J, Marrack P, Zhang G. 2021. “The Lambda Variant of SARS-CoV-2 Has a Better Chance than the Delta Variant to Escape Vaccines,” 1–26. https://doi.org/10.1101/2021.08.25.457692. Lopez Bernal, Jamie, Nick Andrews, Charlotte Gower, Eileen Gallagher, Ruth Simmons, Simon Thelwall, Julia Stowe, et al. 2021. “Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant.” New England Journal of Medicine 385 (7): 585–94. https://doi.org/10.1056/nejmoa2108891. Masso, Majid, and Iosif I. Vaisman. 2008. “Accurate Prediction of Stability Changes in Protein Mutants by Combining Machine Learning with Structure Based Computational Mutagenesis.” Bioinformatics 24 (18): 2002–9. https://doi.org/10.1093/bioinformatics/btn353. Mohammad, Anwar, Sulaiman K Mara, Eman Alshawaf, and Mohamed Abu-farha. 2020. “Structural Analysis of ACE2 Variant N720D Demonstrates a Higher Binding Affinity to TMPRSS2,” no. January. Ortega, Joseph Thomas, Maria Luisa Serrano, Flor Helene Pujol, Hector Rafael Rangel, and Structural Biology. 2020. “Role of Changes in SARS-CoV-2 Spike Protein in the Interaction with the Human ACE2 Receptor: An in Silico Analysis.” EXCLI Journal, no. 19: 410–17. http://dx.doi.org/10.17179/excli2020-1167%0A. Parthiban, Vijaya, M. Michael Gromiha, and Dietmar Schomburg. 2006. “CUPSAT: Prediction of Protein Stability upon Point Mutations.” Nucleic Acids Research 34 (WEB. SERV. ISS.): 239–42. https://doi.org/10.1093/nar/gkl190. Qianqian Li, Jiajing Wu, Jianhui Nie, ..., and Youchun Wang Xuguang Li, Weijin Huang. 2020. “The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity,” no. January. Reguera, Juan, Gaurav Mudgal, César Santiago, and José M. Casasnovas. 2014. “A Structural View of Coronavirus-Receptor Interactions.” Virus Research 194: 3–15. https://doi.org/10.1016/j.virusres.2014.10.005. Renhong, Yan, Zhang Yuanyuan, Li Yaning, Xia Lu, Guo Yingying, and Zhou Qiang. 2020. “Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2.” Science 367 (6485): 1444–48. Riemersma, Kasen K, Brittany E Grogan, Amanda Kita-yarbro, Peter Halfmann, Anna Kocharian, Kelsey R Florek, Ryan Westergaard, et al. 2021. “Shedding of Infectious SARS-CoV-2 Despite Vaccination When the Delta Variant Is Prevalent - Wisconsin , July 2021.” Salleh, Mohd Zulkifli, Jeremy P. Derrick, and Zakuan Zainy Deris. 2021. “Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion.” International Journal of Molecular Sciences 22 (14). https://doi.org/10.3390/ijms22147425. Schrödinger, LLC. 2015. “The PyMOL Molecular Graphics System, Version 1.8.” hah, Masaud, Bilal Ahmad, Sangdun Choi, and Hyun Goo Woo. 2020. “Mutations in the SARS-CoV-2 Spike RBD Are Responsible for Stronger ACE2 Binding and Poor Anti-SARS-CoV MAbs Cross-Neutralization.” Computational and Structural Biotechnology Journal 18: 3402–14. https://doi.org/10.1016/j.csbj.2020.11.002. Sheikh, Aziz, Jim McMenamin, Bob Taylor, and Chris Robertson. 2021. “SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness.” The Lancet 397 (10293): 2461–62. https://doi.org/10.1016/S0140-6736(21)01358-1. Simmons, Graham, Pawel Zmora, Stefanie Gierer, Adeline Heurich, Stefan Pöhlmann, Sarpong Hammond, David Getty, et al. 2013. “Proteolytic Activation of the SARS-Coronavirus Spike Protein: Cutting Enzymes at the Cutting Edge of Antiviral Research.” Ann Oncol 268 (January): 19–21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550914/pdf/main.pdf. Starr, Tyler N., Allison J. Greaney, Sarah K. Hilton, Daniel Ellis, Katharine H.D. Crawford, Adam S. Dingens, Mary Jane Navarro, et al. 2020. “Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding.” Cell 182 (5): 1295-1310.e20. https://doi.org/10.1016/j.cell.2020.08.012. Stawiski, Eric W., Devan Diwanji, Kushal Suryamohan, Ravi Gupta, Frederic A. Fellouse, J. Fah Sathirapongsasuti, Jiang Liu, et al. 2020. “Human ACE2 Receptor Polymorphisms Predict SARS-CoV-2 Susceptibility.” BioRxiv. https://doi.org/10.1101/2020.04.07.024752. Studer, Gabriel, Christine Rempfer, Andrew M. Waterhouse, Rafal Gumienny, Juergen Haas, and Torsten Schwede. 2020. “QMEANDisCo—Distance Constraints Applied on Model Quality Estimation.” Bioinformatics 36 (6): 1765–71. https://doi.org/10.1093/bioinformatics/btz828. Supasa, Piyada, Daming Zhou, Wanwisa Dejnirattisai, Chang Liu, Alexander J. Mentzer, Helen M. Ginn, Yuguang Zhao, et al. 2021. “Reduced Neutralization of SARS-CoV-2 B.1.1.7 Variant by Convalescent and Vaccine Sera.” Cell 184 (8): 2201-2211.e7. https://doi.org/10.1016/j.cell.2021.02.033. Suryamohan, Kushal, Devan Diwanji, Eric W. Stawiski, Ravi Gupta, Shane Miersch, Jiang Liu, Chao Chen, et al. 2021. “Human ACE2 Receptor Polymorphisms and Altered Susceptibility to SARS-CoV-2.” Communications Biology 4 (1). https://doi.org/10.1038/s42003-021-02030-3. Taka, Elhan, Sema Z. Yilmaz, Mert Golcuk, Ceren Kilinc, Umut Aktas, Ahmet Yildiz, and Mert Gur. 2021. “Critical Interactions between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor.” Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.1c02048. Tegally, H., E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, et al. 2020. “Emergence and Rapid Spread of a New Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Lineage with Multiple Spike Mutations in South Africa.” MedRxiv 2. https://doi.org/10.1101/2020.12.21.20248640. Vangone, Anna, and Alexandre M.J.J. Bonvin. 2015. “Contacts-Based Prediction of Binding Affinity in Protein–Protein Complexes.” ELife 4 (JULY2015): 1–15. https://doi.org/10.7554/eLife.07454. Veeramachaneni, Ganesh Kumar, V. B.S.C. Thunuguntla, Janakiram Bobbillapati, and Jayakumar Singh Bondili. 2021. “Structural and Simulation Analysis of Hotspot Residues Interactions of SARS-CoV 2 with Human ACE2 Receptor.” Journal of Biomolecular Structure and Dynamics 39 (11): 4015–25. https://doi.org/10.1080/07391102.2020.1773318. Venselaar, Hanka, Tim A.H. te Beek, Remko K.P. Kuipers, Maarten L. Hekkelman, and Gert Vriend. 2010. “Protein Structure Analysis of Mutations Causing Inheritable Diseases. An e-Science Approach with Life Scientist Friendly Interfaces.” BMC Bioinformatics 11 (1): 548. https://doi.org/10.1186/1471-2105-11-548. Vidal, Marc, Michael E. Cusick, and Albert László Barabási. 2011. “Interactome Networks and Human Disease.” Cell 144 (6): 986–98. https://doi.org/10.1016/j.cell.2011.02.016. Walls, Alexandra C., Young Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, and David Veesler. 2020. “Structure, Function and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.” BioRxiv, no. January. https://doi.org/10.1101/2020.02.19.956581. Walsh, Ian M., Micayla A. Bowman, Iker F. Soto Santarriaga, Anabel Rodriguez, and Patricia L. Clark. 2020. “Synonymous Codon Substitutions Perturb Cotranslational Protein Folding in Vivo and Impair Cell Fitness.” Proceedings of the National Academy of Sciences of the United States of America 117 (7): 3528–34. https://doi.org/10.1073/pnas.1907126117. Wang, Zijun, Fabian Schmidt, Yiska Weisblum, Frauke Muecksch, Christopher O. Barnes, Shlomo Finkin, Dennis Schaefer-Babajew, et al. 2021. “MRNA Vaccine-Elicited Antibodies to SARS-CoV-2 and Circulating Variants.” Nature 592 (7855): 616–22. https://doi.org/10.1038/s41586-021-03324-6. Weisblum, Yiska, Fabian Schmidt, Fengwen Zhang, Justin DaSilva, Daniel Poston, Julio C.C. Lorenzi, Frauke Muecksch, et al. 2020. “Escape from Neutralizing Antibodies 1 by SARS-CoV-2 Spike Protein Variants.” ELife 9: 1. https://doi.org/10.7554/eLife.61312. Woo, P. C. Y., S. K. P. Lau, C. S. F. Lam, C. C. Y. Lau, A. K. L. Tsang, J. H. N. Lau, R. Bai, et al. 2012. “Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi.” Journal of Virology 86 (7): 3995–4008. https://doi.org/10.1128/jvi.06540-11. World Health Organization. 2021a. “WHO-Convened Global Study of Origins of SARS-CoV-2 : China Part (14 January-10 February 2021).” Wrapp, Daniel, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching Lin Hsieh, Olubukola Abiona, Barney S. Graham, and Jason S. McLellan. 2020. “Cryo-EM Structure of the 2019-NCoV Spike in the Prefusion Conformation.” Science 367 (6483): 1260–63. https://doi.org/10.1126/science.aax0902. Xue, Li C., Joao Pglm Rodrigues, Panagiotis L. Kastritis, Alexandre Mjj Bonvin, and Anna Vangone. 2016. “PRODIGY: A Web Server for Predicting the Binding Affinity of Protein-Protein Complexes.” Bioinformatics 32 (23): 3676–78. https://doi.org/10.1093/bioinformatics/btw514. Yan, Yumeng, Huanyu Tao, Jiahua He, and Sheng You Huang. 2020. “The HDOCK Server for Integrated Protein–Protein Docking.” Nature Protocols 15 (5): 1829–52. https://doi.org/10.1038/s41596-020-0312-x. Yang, Jing, Ya Zheng, Xi Gou, Ke Pu, and Zhaofeng Chen. 2020. “Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-CoV-2: A Systematic Review and Meta-Analysis.” International Journal of Infectious Diseases 94 (March): 91–95. https://pubmed.ncbi.nlm.nih.gov/32173574/. Yates, Andrew D., Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, M. Ridwan Amode, et al. 2020. “Ensembl 2020.” Nucleic Acids Research 48 (D1): D682–88. https://doi.org/10.1093/nar/gkz966. Yesudhas, Dhanusha, Ambuj Srivastava, and M. Michael Gromiha. 2021. “COVID-19 Outbreak: History, Mechanism, Transmission, Structural Studies and Therapeutics.” Infection 49 (2): 199–213. https://doi.org/10.1007/s15010-020-01516-2. Yi, Chunyan, Xiaoyu Sun, Jing Ye, Longfei Ding, Meiqin Liu, Zhuo Yang, Xiao Lu, et al. 2020. “Key Residues of the Receptor Binding Motif in the Spike Protein of SARS-CoV-2 That Interact with ACE2 and Neutralizing Antibodies.” Cellular and Molecular Immunology 17 (6): 621–30. https://doi.org/10.1038/s41423-020-0458-z. Zahradník, Jiří, Shir Marciano, Maya Shemesh, Eyal Zoler, Daniel Harari, Jeanne Chiaravalli, Björn Meyer, et al. 2021. “SARS-CoV-2 Variant Prediction and Antiviral Drug Design Are Enabled by RBD in Vitro Evolution.” Nature Microbiology 6 (9): 1188–98. https://doi.org/10.1038/s41564-021-00954-4. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
99 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf application/vnd.ms-excel |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81536/1/1032472021.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81536/3/Tabla%20complementaria%201%20Variantes%20identificadas%20en%20el%20gen%20ACE2%20presentes%20en%20las%20bases%20de%20datos%20GnomAD%20y%20Ensembl..pdf https://repositorio.unal.edu.co/bitstream/unal/81536/2/Tabla%20complementaria%202%20Interacciones%20intermoleculares%20entre%20los%20complejos%20ACE2-RBD-Spike%20predichas%20por%20los%20servidores%20HDOCK%20y%20Prodigy.xlsx https://repositorio.unal.edu.co/bitstream/unal/81536/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81536/5/1032472021.2021.pdf.jpg https://repositorio.unal.edu.co/bitstream/unal/81536/6/Tabla%20complementaria%201%20Variantes%20identificadas%20en%20el%20gen%20ACE2%20presentes%20en%20las%20bases%20de%20datos%20GnomAD%20y%20Ensembl..pdf.jpg |
bitstream.checksum.fl_str_mv |
d30269bf3e468a1df7ec5b15d59dffc4 7b003319f4e320f7f052c82439c60631 e9dea3e3313a672af03b7c65645b0dd0 8153f7789df02f0a4c9e079953658ab2 7cd07a6d06823ff082265efaddfee151 650173efa8e8b3c4e9db75a2732cea0f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089458484510720 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pinzón Velasco, Andrés Mauricio366c2eddf6aa24434ee55e57da235448Arboleda Bustos, Carlos Eduardo1b40af3328ad09fee0f9bf17bdfa1f30600Rodriguez Osorio, Jenny Alejandrafbc51f34a8484eaa85f0c93261bd29d76002022-06-08T18:23:35Z2022-06-08T18:23:35Z2021-12https://repositorio.unal.edu.co/handle/unal/81536Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas interacciones entre la enzima convertidora de angiotensina humana 2 (ACE2) y la región del dominio de unión al receptor (RBD) de la proteína Spike del SARS-CoV-2 son críticas para la entrada del virus en la célula huésped. El objetivo de este trabajo fue identificar algunas de las variantes más relevantes de la proteína Spike de SARS-CoV-2 que surgieron durante la pandemia y evaluar su afinidad de unión con variantes de la proteína ACE2 humana. En este trabajo se empleó el acoplamiento molecular (docking molecular) para predecir los efectos de cinco mutaciones de ACE2 en interacción con mutaciones específicas en la región RBD de la proteína Spike de SARS-CoV-2 que se originaron en el Reino Unido (N501Y) variante Alfa, Sudáfrica (K417N ‐ E484K ‐ N501Y) variante Beta, India (L452R-T478K) variante Delta y una variante hipotética (E484K). Nuestros resultados sugieren que, en conjunto, estas variantes alteran la interacción entre las proteínas Spike y ACE2, perdiendo o creando interacciones intermoleculares, mejorando la aptitud viral al mejorar la afinidad de unión y conduciendo a un aumento de la infectividad y transmisión. Destacamos que la mutación S19P de ACE2 disminuye la afinidad de unión entre las proteínas ACE2 y Spike en presencia de la variante Beta y la variante tipo salvaje o wild type del SARS-CoV-2 aislado en Wuhan-2019. La mutación R115Q de ACE2 baja la afinidad unión de estas dos proteínas en presencia de las variantes Beta y Delta. De igual manera, K26R baja la afinidad de interacción entre las proteínas ACE2 y Spike en presencia de la variante Alfa. Esta disminución en la afinidad de unión probablemente se deba a la falta de interacción entre algunos de los residuos claves del complejo de interacción entre la proteína ACE2 y la región RBD de la proteína Spike de SARS-CoV-2. Por lo tanto, las mutaciones de ACE2 mencionadas en presencia de estas variantes, podrían sugerir una resistencia intrínseca ante la enfermedad del COVID-19. Por otro lado, nuestros resultados sugieren que las mutaciones K26R, M332L y K341R de ACE2 aumentan expresivamente la afinidad entre las proteínas ACE2 y Spike en las variantes Alfa, Beta y Delta. En consecuencia, estas mutaciones de ACE2 en presencia de las variantes Alfa, Beta y delta del SARS-CoV-2 podrían ser más infecciosos en células humanas en comparación con el SARS-CoV-2 aislado en Wuhan-2019. (Texto tomado de la fuente).Interactions between the human angiotensin-converting enzyme 2 (ACE2) and the RBD region of the SARS-CoV-2 Spike protein are critical for virus entry into the host cell. The objective of this work is to identify some of the most relevant SARS-CoV-2 spike variants that emerged during the pandemic and evaluate their binding affinity with human variants of ACE2. We used molecular docking to predict the effects of five mutations of ACE2 when they interact with the specific mutations that originated in the UK (N501Y) Alpha variant, South Africa (K417N - E484K - N501Y) Beta variant, India (L452R-T478K) Delta variant, and a hypothetical variant (E484K) in the RBD region of the Spike protein of SARS-CoV-2. Our results suggest that together, these variants alter the interaction of the Spike and the human ACE2 protein, losing or creating new inter-protein contacts, enhancing viral fitness by improving binding affinity, and leading to an increase in infectivity and transmission. This investigation highlighted that the ACE2 S19P mutation decreases the binding affinity between the ACE2 and Spike proteins in the presence of the Beta variant and the wild-type variant of SARS-CoV-2 isolated in Wuhan-2019. The R115Q mutation of ACE2 lowers the binding affinity of these two proteins in the presence of the Beta and Delta variants. Similarly, K26R lowers the affinity of the interaction between the ACE2 and Spike proteins in the presence of the Alpha variant. This decrease in binding affinity is probably due to the lack of interaction between some of the key residues of the interaction complex between the ACE2 protein and the RBD region of the SARS-CoV-2 Spike protein. Therefore, ACE2 mutations appear in the presence of these variants, they could suggest an intrinsic resistance to COVID-19 disease. On the other hand, our results suggested that the K26R, M332L, and K341R mutations of ACE2 expressively showed the affinity between the ACE2 and Spike proteins in the Alpha, Beta, and Delta variants. Consequently, these ACE2 mutations in the presence of the Alpha, Beta, and delta variants of SARS-CoV-2 could be more infectious in human cells compared to the SARS-CoV-2 isolated in Wuhan-2019.Incluye anexosMaestríaMagíster en Ciencias - Bioquímica1. Minería de datos para estructura y polimorfismo genético del gen ACE2. La variabilidad genética a lo largo de la región del gen ACE2 para las diferentes poblaciones analizadas se obtuvo a partir del uso de la herramienta Data Slicer (https://www.ensembl.org/Homo_sapiens/Tools/DataSlicer) implementada en el Ensembl Genome Browser (https://www.ensembl.org) (Karczewski et al. 2020). Las bases de datos de dbSNP (https://www.ncbi.nlm.nih.gov/snp), gnomAD (https://gnomad.broadinstitute.org) y Ensembl Genome Browser (Yates et al. 2020) fueron empleadas para determinar las frecuencias alélicas de los SNPs identificados en la región ACE2. Para ello se tomaron las regiones de los 18 exones del gen ACE2 y se evaluó la variabilidad genética en las poblaciones americanas (AMR) que incluye población proveniente de Colombia (CLM), California (MXL), Perú (PEL) y Puerto Rico (PUR). En poblaciones africanas (AFR) que incluyen población proveniente de Barbados (ACB), Ascendencia africana en el suroeste de US (ASW), Esan Nigeria (ESN), Gambia (GWD), Kenya (LWK), Yoruba en Ibadan Nigeria (YRI) y Mende en Sierra Leona (MSL). Poblaciones europeas (EUR) que incluyen Residentes de Utah con ascendencia de Europa del Norte y Occidental (CEU), Finlandia (FIN), Británicos en Inglaterra y Escocia (GBR), Poblaciones ibéricas en España (IBS) y Toscani en Italia (TSI). Poblaciones del este de Asia (EAS) que incluyen Dai chino en Xishuangbanna, China (CDX), China Han en Bejing, China (CHB), China Han del Sur, China (CHS), Japonés en Tokio, Japón (JPT) y Kinh en Ciudad Ho Chi Minh, Vietnam (KHV). Finalmente se emplearon datos de poblaciones del sur de Asia (SAS) que incluyen Bengalí en Bangladesh (BAB), India gujarati en Houston, TX (GIH), Telugu indio en el Reino Unido (UIT), Punjabi en Lahore, Pakistán (PJL) y Tamil de Sri Lanka en el Reino Unido (STU). 2. Análisis del impacto de las mutaciones no sinónimas. El efecto de la sustitución de aminoácidos en las proteínas ACE2 humano y Spike de SARS-CoV2 sobre la estabilidad de la proteína se predijo a 37 ° C y pH: 7 utilizando i-Stable Server (Chen, Lin, and Chu 2013) y CUPSAT (Cologne University Protein Stability Analysis Tool) (Parthiban, Gromiha, and Schomburg 2006). Se aplicó el servidor i-Stable para predecir las alteraciones de estabilidad por las variantes seleccionadas en cada proteína. i-Stable Server proporciona resultados de los programas I-Mutant2.0 (Capriotti, Fariselli, and Casadio 2005) y MUpro (Cheng, Randall, and Baldi 2006) prediciendo en meta resultados. El programa define la estabilidad de una proteína como valor positivo (+) por una diferencia de energía libre (ΔΔG) > 0, una puntuación superior a 0 pronostica una mayor estabilidad y los datos negativos (-) como desestabilizadores, un valor de ΔΔG <0 indica una disminución en la estabilidad de la estructura. El programa también predice la distribución de datos basándose en la estructura secundaria y la accesibilidad relativa al solvente (RSA) del sitio de mutación. Los rangos que determinan el RSA son los siguientes: valores inferiores al 10% como superficie inferior, valores entre 10% y 20% son clasificados como enterrados, valores entre 20% ~ 50% como parcialmente enterrados y finalmente, valores entre 50% y 100% como expuestos. La puntuación de confianza de i-Stable varía entre 0 y 1, donde el valor más alto expone una mayor confianza. (Chen, Lin, and Chu 2013). El programa CUPSAT utiliza específicos átomos potenciales del entorno estructural y ángulos de torsión potenciales para predecir energía libre (ΔΔG) de la estructura en cuestión. La diferencia en la energía libre se compara entre proteínas wild-type y mutantes. El resultado consta de información sobre el sitio de la mutación, sus características estructurales (accesibilidad al disolvente y ángulos de torsión) e información completa sobre los cambios en la estabilidad de las proteínas (Parthiban, Gromiha, and Schomburg 2006). En el método de cálculo de energía libre, la diferencia de energía libre, ΔΔG, se calcula como una diferencia ΔΔG = ΔGN - ΔGD , donde ΔGN y ΔGD se definen como el cambio de energía libre de la estructura tipo wild-type a la estructura mutante en el estado nativo y en el estado desnaturalizado, respectivamente. (Funahashi et al. 2003). Finalmente, se empleó la herramienta bioinformática HOPE (Venselaar et al. 2010). HOPE es un programa que analiza los efectos estructurales y funcionales de las mutaciones puntuales, recopilando información de una amplia gama de fuentes de información, incluidos cálculos sobre las coordenadas 3D de la proteína mediante el uso de servicios web WHAT IF, anotaciones de secuencia de la base de datos UniProt y predicciones de los servicios DAS. Los modelos de homología se construyen con YASARA (Venselaar et al. 2010). 3. Preparación del sistema y Docking Molecular. Los modelos estructurales de las variantes seleccionadas del SARS-CoV-2 y las mutaciones no sinónimas del receptor ACE2 se diseñaron empleando como plantilla la estructura cristalina PDB ID: 6M0J que involucra la región RBD de la proteína S de SARS-CoV-2 y a la proteína ACE2 humana (Lan et al. 2020). El ion cloruro, el ion zinc, los glicanos y las moléculas de agua de la estructura cristalina se mantuvieron en sus posiciones originales. Se realizó la minimización de la energía del complejo proteico original utilizando el programa YASARA (www.yasara.org)(Krieger, Koraimann, and Vriend 2002), mediante el algoritmo “Steepest descent minimization” (simulation > temperature control > steepest descent minimization). Los nuevos archivos generados se exportaron en formato PDB y se visualizaron directamente en PyMOL Molecular Graphics System, Versión 1.8 (Schrödinger 2015), para luego generar los complejos mutantes. El acople de las estructuras se llevó a cabo con el servidor HDOCK (http://hdock.phys.hust.edu.cn/) (Yan et al. 2020). El servidor predice automáticamente la interacción proteína-proteína a través de un algoritmo híbrido de acoplamiento basado en plantillas y sin plantillas o ab initio. La desviación cuadrática media (RMSD) se estimó para cada modelo. Se empleó el servidor QMEANDisCo SwissDock (Studer et al. 2020) para validar los complejos formados por HDOCK, debido a que emplea métricas de malos enlaces y ángulos. QMEANDisCo es un método de estimación de calidad predeterminado empleado por el servidor de modelado de homología SWISS-MODEL. Es una puntuación compuesta que se basa en una combinación de términos basados en el conocimiento y una nueva puntuación de restricción de distancia (DisCo). DisCo evalúa la concordancia entre las distancias observadas por pares en un modelo con un conjunto de restricciones extraídas de estructuras determinadas experimentalmente que son homólogas al modelo que se está evaluando (Studer et al. 2020). 4. Análisis estructurales de los complejos ACE2/Spike. Los resultados de las simulaciones realizadas en HDOCK se confirmaron mediante el envío de complejos ACE2/Spike generados por HDOCK a PRODIGY. PRODIGY (protein binding energy prediction), es una herramienta en línea para la predicción de la afinidad de unión en complejos proteína-proteína. (Xue et al. 2016). La afinidad de enlace es la fuerza de unión ligando-receptor. Esta afinidad determina si un ligando finalmente se unirá o se separará de la superficie del receptor y volverá a su estado libre. Los resultados del servidor PRODIGY incluyen: el valor previsto de la energía libre de enlace (ΔG) en kcal mol -1 ; el valor predicho de la constante de disociación (KD) en M calculado a partir de ΔG = RT ln (KD), donde R es la constante de gas idea (kcal K −1 mol −1 ), T es la temperatura (K), en nuestro estudio tomamos una temperatura de 37°C, y finalmente el número y tipo de interacciones intermoleculares dentro del límite de distancia de 5,5 Å. Es importante mencionar que PRODIGY no predice la distancia exacta de las interacciones entre los residuos, sino que predice qué interacciones se están formando a una distancia inferior a 5,5 Å. Más, sin embargo, el servidor HDOCK si proporciona estas distancias, no obstante, HDOCK sólo predice interacciones con distancias inferiores a 5 Å. Por lo tanto, se implementaron ambas herramientas para construir la tabla de interacciones entre los residuos de ACE2 y Spike para los complejos desarrollados. Las distancias superiores a 5 Å se denominaron como (NN) indicando que sí hay interacción y que la interacción presenta una distancia entre 5 – 5.5 Å.99 páginasapplication/pdfapplication/vnd.ms-excelspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaReceptors, VirusCoronavirus InfectionsReceptores ViralesInfecciones por CoronavirusViral proteinsProteínas viralesBioquímicaReceptor ACE2Proteína Spike de SARS-CoV-2Acoplamiento molecularInteracción proteína-proteínaMutacionesVariantes del SARS-CoV-2BiochemistryACE2 receptorSARS-CoV-2 spike proteinDocking MolecularProtein-protein interactionMutationsSARS-CoV-2 variantsMutaciónMutationEstudio de la variabilidad genética y la interacción molecular de la proteína Spike de SARS-CoV-2 y la proteína ACE2 humanaStudy of the genetic variability and molecular interaction of the Spike protein of SARS-CoV-2 and the human ACE2 proteinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAbd El-Aziz, Tarek Mohamed, Ahmed Al-Sabi, and James D. Stockand. 2020. “Human Recombinant Soluble ACE2 (HrsACE2) Shows Promise for Treating Severe COVID19.” Signal Transduction and Targeted Therapy 5 (1): 3–4. https://doi.org/10.1038/s41392-020-00374-6.Al-Mulla, Fahd, Anwar Mohammad, Ashraf Al Madhoun, Dania Haddad, Hamad Ali, Muthukrishnan Eaaswarkhanth, Sumi Elsa John, et al. 2021. “ACE2 and FURIN Variants Are Potential Predictors of SARS-CoV-2 Outcome: A Time to Implement Precision Medicine against COVID-19.” Heliyon 7 (2): e06133. https://doi.org/10.1016/j.heliyon.2021.e06133.Alanagreh, Lo’Ai, Foad Alzoughool, and Manar Atoum. 2020. “The Human Coronavirus Disease Covid-19: Its Origin, Characteristics, and Insights into Potential Drugs and Its Mechanisms.” Pathogens 9 (5). https://doi.org/10.3390/pathogens9050331.Aleem, Abdul, Abdul Bari Akbar Samad, and Amy K Slenker. 2021. “Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19).” In . Treasure Island (FL).Arriero, Rueda, Sánchez. 2020. “LA ENZIMA CONVERTIDORA DE ANGIOTENSINA 2 EN VIRUS SARS-COV-2.” Revista de Educación Bioquímica (REB) 39 (4): 121–30.Benetti, Elisa, Rossella Tita, Ottavia Spiga, Andrea Ciolfi, Giovanni Birolo, Alessandro Bruselles, Gabriella Doddato, et al. 2020. “ACE2 Gene Variants May Underlie Interindividual Variability and Susceptibility to COVID-19 in the Italian Population.” European Journal of Human Genetics 28 (11): 1602–14. https://doi.org/10.1038/s41431-020-0691-z.Beniac, Daniel R., Anton Andonov, Elsie Grudeski, and Tim F. Booth. 2006. “Architecture of the SARS Coronavirus Prefusion Spike.” Nature Structural and Molecular Biology 13 (8): 751–52. https://doi.org/10.1038/nsmb1123.Calcagnile, Matteo, Patricia Forgez, Antonio Iannelli, Cecilia Bucci, Marco Alifano, and Pietro Alifano. 2020. “Molecular Docking Simulation Reveals ACE2 Polymorphisms That May Increase the Affinity of ACE2 with the SARS-CoV-2 Spike Protein,” no. January.Cao, Yanan, Lin Li, Zhimin Feng, Shengqing Wan, Peide Huang, Xiaohui Sun, Fang Wen, Xuanlin Huang, Guang Ning, and Weiqing Wang. 2020. “Comparative Genetic Analysis of the Novel Coronavirus (2019-NCoV/SARS-CoV-2) Receptor ACE2 in Different Populations.” Cell Discovery 6 (1): 4–7. https://doi.org/10.1038/s41421-020-0147-1.Capriotti, Emidio, Piero Fariselli, and Rita Casadio. 2005. “I-Mutant2.0: Predicting Stability Changes upon Mutation from the Protein Sequence or Structure.” Nucleic Acids Research 33 (SUPPL. 2): 306–10. https://doi.org/10.1093/nar/gki375.Centers for Disease Control and Prevention. 2021. “SARS-CoV-2 Variant Classifications and Definitions.” 2021. https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html.Chan, Kui K., Danielle Dorosky, Preeti Sharma, Shawn A. Abbasi, John M. Dye, David M. Kranz, Andrew S. Herbert, and Erik Procko. 2020. “Engineering Human ACE2 to Optimize Binding to the Spike Protein of SARS Coronavirus 2.” Science 369 (6508): 1261–65. https://doi.org/10.1126/SCIENCE.ABC0870.Chellasamy, Gayathri, Shiva Kumar Arumugasamy, and Saravanan Govindaraju. 2020. “Evolutionary and Structural Analysis Elucidates Mutations on SARS-CoV2 Spike Protein with Altered Human ACE2 Binding Affinity,” no. January.Chen, Chi Wei, Jerome Lin, and Yen Wei Chu. 2013. “IStable: Off-the-Shelf Predictor Integration for Predicting Protein Stability Changes.” BMC Bioinformatics 14 (Suppl 2): S5. https://doi.org/10.1186/1471-2105-14-S2-S5.Cheng, Jianlin, Arlo Randall, and Pierre Baldi. 2006. “Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines.” Proteins: Structure, Function and Genetics 62 (4): 1125–32. https://doi.org/10.1002/prot.20810.Crackower, Michael A., Renu Sarao, Antonio J. Oliveira-dos-Santos, Joan Da Costa, and Liyong Zhang. 2002. “Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function.” Nature 417 (6891): 822–28. https://doi.org/10.1038/nature00786.Debnath, Monojit, Moinak Banerjee, and Michael Berk. 2020. “Genetic Gateways to COVID-19 Infection: Implications for Risk, Severity, and Outcomes.” FASEB Journal 34 (7): 8787–95. https://doi.org/10.1096/fj.202001115R.Dejnirattisai, Wanwisa, Daming Zhou, Piyada Supasa, Jingshan Ren, David I Stuart, and Gavin R Screaton. 2021. “Antibody Evasion by the P . 1 Strain of SARS-CoV-2,” 2939–54. https://doi.org/10.1016/j.cell.2021.03.055.Deng, Xianding, et al. 2020. “Transmission, Infectivity, and Neutralization of a Spike L452R SARS-CoV-2 Variant.” Ann Oncol, no. January: 19–21.Fratev, View ORCID ProfileFilip. 2020. “The N501Y and K417N Mutations in the Spike Protein of SARS-CoV-2 Alter the Interactions with Both HACE2 and Human Derived Antibody: A Free Energy of Perturbation Study.” BioRxiv : The Preprint Server for Biology, 4–5. https://doi.org/10.1101/2020.12.23.424283.Funahashi, Jun, Yuji Sugita, Akio Kitao, and Katsuhide Yutani. 2003. “How Can Free Energy Component Analysis Explain the Difference in Protein Stability Caused by Amino Acid Substitutions? Effect of Three Hydrophobic Mutations at the 56th Residue on the Stability of Human Lysozyme.” Protein Engineering 16 (9): 665–71. https://doi.org/10.1093/protein/gzg083.Gheblawi, Mahmoud, Kaiming Wang, Anissa Viveiros, Quynh Nguyen, Jiu Chang Zhong, Anthony J. Turner, Mohan K. Raizada, Maria B. Grant, and Gavin Y. Oudit. 2020. “Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2.” Circulation Research, 1456–74. https://doi.org/10.1161/CIRCRESAHA.120.317015.Gu, Hongjing, Qi Chen, Guan Yang, Lei He, Hang Fan, Yong Qiang Deng, Yanxiao Wang, et al. 2020. “Adaptation of SARS-CoV-2 in BALB/c Mice for Testing Vaccine Efficacy.” Science 369 (6511): 1603–7. https://doi.org/10.1126/science.abc4730.Haake, Christine, Sarah Cook, Nicola Pusterla, and Brian Murphy. 2020. “Coronavirus Infections in Companion Animals: Virology, Epidemiology, Clinical and Pathologic Features.” Viruses 12 (9): 1–22. https://doi.org/10.3390/v12091023.Hajj-Hassan, Houssein, Kassem Hamze, Fadi Abdel Sater, Nadeem Kizilbash, and Hassan M Khachfe. 2021. “Probing the Increased Virulence of Severe Acute Respiratory Syndrome Coronavirus 2 B.1.617 (Indian Variant) From Predicted Spike Protein Structure.” Cureus 617 (8): 1–8. https://doi.org/10.7759/cureus.16905.Halder, Anushka, Arinnia Anto, Varsha Subramanyan, Moitrayee Bhattacharyya, Smitha Vishveshwara, and Saraswathi Vishveshwara. 2020. “Surveying the Side-Chain Network Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case.” Frontiers in Molecular Biosciences 7 (December): 1–15. https://doi.org/10.3389/fmolb.2020.596945.Harmer, Dan, Maureen Gilbert, Richard Borman, and Kenneth L. Clark. 2002. “Quantitative MRNA Expression Profiling of ACE 2, a Novel Homologue of Angiotensin Converting Enzyme.” FEBS Letters 532 (1–2): 107–10. https://doi.org/10.1016/S0014-5793(02)03640-2.Hartenian, Ella, Divya Nandakumar, Azra Lari, Michael Ly, Jessica M. Tucker, and Britt A. Glaunsinger. 2020. “The Molecular Virology of Coronaviruses.” Journal of Biological Chemistry 295 (37): 12910–34. https://doi.org/10.1074/jbc.REV120.013930.Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.” Cell 181 (2): 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.Huang, Yuan, Chan Yang, Xin feng Xu, Wei Xu, and Shu wen Liu. 2020. “Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19.” Acta Pharmacologica Sinica 41 (9): 1141–49. https://doi.org/10.1038/s41401-020-0485-4.Hussain, Mushtaq, Nusrat Jabeen, Fozia Raza, Sanya Shabbir, Ayesha A. Baig, Anusha Amanullah, and Basma Aziz. 2020. “Structural Variations in Human ACE2 May Influence Its Binding with SARS-CoV-2 Spike Protein.” Journal of Medical Virology 92 (9): 1580–86. https://doi.org/10.1002/jmv.25832.Jawad, Bahaa, Puja Adhikari, Rudolf Podgornik, and Wai-yim Ching. 2021. “Key Interacting Residues between RBD of SARS-CoV ‑ 2 and ACE2 Receptor : Combination of Molecular Dynamics Simulation and Density Functional Calculation.” https://doi.org/10.1021/acs.jcim.1c00560.Jiabao Xu, Shizhe Zhao, Tieshan Teng, Abualgasim Elgaili Abdalla, Wan Zhu, and Xiangqian Guo. Longxiang Xie, Yunlong Wang. 2020. “Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV.”Jiří Zahradník, Shir Marciano, Maya Shemesh, Eyal Zoler, Daniel Harari, Jeanne Chiaravalli, Björn Meyer, Yinon Rudich, Chunlin Li, Ira Marton, Orly Dym, Nadav Elad, Mark G. Lewis, Hanne Andersen, Matthew Gagne, Robert A. Seder, Daniel C. Douek & Gideon Schreiber. 2021. “SARS-CoV-2 RBD in Vitro Evolution Follows Contagious Mutation Spread, yet Generates an Able Infection Inhibitor” 7: 6.Jordi Reina, Núria Reina. 2015. “The Middle East Respiratory Syndrome Coronavirus.” Medicina Clínica Barcelona, no. January. https://doi.org/10.1016/j.watres.2021.117043.Kakodkar, Pramath, Nagham Kaka, and MN Baig. 2020. “A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19).” Cureus 2019 (4). https://doi.org/10.7759/cureus.7560.Karczewski, Konrad J., Laurent C. Francioli, Grace Tiao, Beryl B. Cummings, Jessica Alföldi, Qingbo Wang, Ryan L. Collins, et al. 2020. “The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans.” Nature 581 (7809): 434–43. https://doi.org/10.1038/s41586-020-2308-7.Kemp, S.A., B. Meng, I.A.T.M. Ferriera, Rawlings Datir, W.T. Harvey, D. A. Collier, Spyros Lytras, et al. 2021. “Recurrent Emergence and Transmission of a SARS-CoV-2 Spike Deletion H69/V70.” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3780277.Klein, Friederike. 2020. “Risikofaktor Komorbiditäten Bei COVID-19- Erkrankung.” Pneumologie 74 (10): 640. https://doi.org/10.1183/13993003.00547-2020.Krieger, Elmar, Gúnther Koraimann, and Gert Vriend. 2002. “Increasing the Precision of Comparative Models with YASARA NOVA - A Self-Parameterizing Force Field.” Proteins: Structure, Function and Genetics 47 (3): 393–402. https://doi.org/10.1002/prot.10104.Lan, Jun, Jiwan Ge, Jinfang Yu, Sisi Shan, Huan Zhou, Shilong Fan, Qi Zhang, et al. 2020. “Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor.” Nature 581 (7807): 215–20. https://doi.org/10.1038/s41586-020-2180-5.Li, Fang. 2015. “Receptor Recognition Mechanisms of Coronaviruses : A Decade Of” 89 (4): 1954–64. https://doi.org/10.1128/JVI.02615-14.Li, Mengyuan, Lin Li, Yue Zhang, and Xiaosheng Wang. 2020. “An Investigation of the Expression of 2019 Novel Coronavirus Cell Receptor Gene ACE2 in a Wide Variety of Human Tissues,” 1–7. https://doi.org/10.21203/rs.2.24751/v1.Li, Wenhui, Chengsheng Zhang, Jens H Kuhn, Michael J Moore, Shiwen Luo, Swee-kee Wong, Keming Xu, et al. 2005. “Receptor and Viral Determinants of SARS-Coronavirus Adaptation to Human ACE2” 24 (8): 1634–43. https://doi.org/10.1038/sj.emboj.7600640.Liu H, Wei P, Zhang Q, Aviszus K, Linderberger J, Yang J, Liu J, Chen Z, Waheed H, Reynoso L, Downey GP, Frankel SK, Kappler J, Marrack P, Zhang G. 2021. “The Lambda Variant of SARS-CoV-2 Has a Better Chance than the Delta Variant to Escape Vaccines,” 1–26. https://doi.org/10.1101/2021.08.25.457692.Lopez Bernal, Jamie, Nick Andrews, Charlotte Gower, Eileen Gallagher, Ruth Simmons, Simon Thelwall, Julia Stowe, et al. 2021. “Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant.” New England Journal of Medicine 385 (7): 585–94. https://doi.org/10.1056/nejmoa2108891.Masso, Majid, and Iosif I. Vaisman. 2008. “Accurate Prediction of Stability Changes in Protein Mutants by Combining Machine Learning with Structure Based Computational Mutagenesis.” Bioinformatics 24 (18): 2002–9. https://doi.org/10.1093/bioinformatics/btn353.Mohammad, Anwar, Sulaiman K Mara, Eman Alshawaf, and Mohamed Abu-farha. 2020. “Structural Analysis of ACE2 Variant N720D Demonstrates a Higher Binding Affinity to TMPRSS2,” no. January.Ortega, Joseph Thomas, Maria Luisa Serrano, Flor Helene Pujol, Hector Rafael Rangel, and Structural Biology. 2020. “Role of Changes in SARS-CoV-2 Spike Protein in the Interaction with the Human ACE2 Receptor: An in Silico Analysis.” EXCLI Journal, no. 19: 410–17. http://dx.doi.org/10.17179/excli2020-1167%0A.Parthiban, Vijaya, M. Michael Gromiha, and Dietmar Schomburg. 2006. “CUPSAT: Prediction of Protein Stability upon Point Mutations.” Nucleic Acids Research 34 (WEB. SERV. ISS.): 239–42. https://doi.org/10.1093/nar/gkl190.Qianqian Li, Jiajing Wu, Jianhui Nie, ..., and Youchun Wang Xuguang Li, Weijin Huang. 2020. “The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity,” no. January.Reguera, Juan, Gaurav Mudgal, César Santiago, and José M. Casasnovas. 2014. “A Structural View of Coronavirus-Receptor Interactions.” Virus Research 194: 3–15. https://doi.org/10.1016/j.virusres.2014.10.005.Renhong, Yan, Zhang Yuanyuan, Li Yaning, Xia Lu, Guo Yingying, and Zhou Qiang. 2020. “Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2.” Science 367 (6485): 1444–48.Riemersma, Kasen K, Brittany E Grogan, Amanda Kita-yarbro, Peter Halfmann, Anna Kocharian, Kelsey R Florek, Ryan Westergaard, et al. 2021. “Shedding of Infectious SARS-CoV-2 Despite Vaccination When the Delta Variant Is Prevalent - Wisconsin , July 2021.”Salleh, Mohd Zulkifli, Jeremy P. Derrick, and Zakuan Zainy Deris. 2021. “Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion.” International Journal of Molecular Sciences 22 (14). https://doi.org/10.3390/ijms22147425.Schrödinger, LLC. 2015. “The PyMOL Molecular Graphics System, Version 1.8.”hah, Masaud, Bilal Ahmad, Sangdun Choi, and Hyun Goo Woo. 2020. “Mutations in the SARS-CoV-2 Spike RBD Are Responsible for Stronger ACE2 Binding and Poor Anti-SARS-CoV MAbs Cross-Neutralization.” Computational and Structural Biotechnology Journal 18: 3402–14. https://doi.org/10.1016/j.csbj.2020.11.002.Sheikh, Aziz, Jim McMenamin, Bob Taylor, and Chris Robertson. 2021. “SARS-CoV-2 Delta VOC in Scotland: Demographics, Risk of Hospital Admission, and Vaccine Effectiveness.” The Lancet 397 (10293): 2461–62. https://doi.org/10.1016/S0140-6736(21)01358-1.Simmons, Graham, Pawel Zmora, Stefanie Gierer, Adeline Heurich, Stefan Pöhlmann, Sarpong Hammond, David Getty, et al. 2013. “Proteolytic Activation of the SARS-Coronavirus Spike Protein: Cutting Enzymes at the Cutting Edge of Antiviral Research.” Ann Oncol 268 (January): 19–21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7550914/pdf/main.pdf.Starr, Tyler N., Allison J. Greaney, Sarah K. Hilton, Daniel Ellis, Katharine H.D. Crawford, Adam S. Dingens, Mary Jane Navarro, et al. 2020. “Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding.” Cell 182 (5): 1295-1310.e20. https://doi.org/10.1016/j.cell.2020.08.012.Stawiski, Eric W., Devan Diwanji, Kushal Suryamohan, Ravi Gupta, Frederic A. Fellouse, J. Fah Sathirapongsasuti, Jiang Liu, et al. 2020. “Human ACE2 Receptor Polymorphisms Predict SARS-CoV-2 Susceptibility.” BioRxiv. https://doi.org/10.1101/2020.04.07.024752.Studer, Gabriel, Christine Rempfer, Andrew M. Waterhouse, Rafal Gumienny, Juergen Haas, and Torsten Schwede. 2020. “QMEANDisCo—Distance Constraints Applied on Model Quality Estimation.” Bioinformatics 36 (6): 1765–71. https://doi.org/10.1093/bioinformatics/btz828.Supasa, Piyada, Daming Zhou, Wanwisa Dejnirattisai, Chang Liu, Alexander J. Mentzer, Helen M. Ginn, Yuguang Zhao, et al. 2021. “Reduced Neutralization of SARS-CoV-2 B.1.1.7 Variant by Convalescent and Vaccine Sera.” Cell 184 (8): 2201-2211.e7. https://doi.org/10.1016/j.cell.2021.02.033.Suryamohan, Kushal, Devan Diwanji, Eric W. Stawiski, Ravi Gupta, Shane Miersch, Jiang Liu, Chao Chen, et al. 2021. “Human ACE2 Receptor Polymorphisms and Altered Susceptibility to SARS-CoV-2.” Communications Biology 4 (1). https://doi.org/10.1038/s42003-021-02030-3.Taka, Elhan, Sema Z. Yilmaz, Mert Golcuk, Ceren Kilinc, Umut Aktas, Ahmet Yildiz, and Mert Gur. 2021. “Critical Interactions between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor.” Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.1c02048.Tegally, H., E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, et al. 2020. “Emergence and Rapid Spread of a New Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Lineage with Multiple Spike Mutations in South Africa.” MedRxiv 2. https://doi.org/10.1101/2020.12.21.20248640.Vangone, Anna, and Alexandre M.J.J. Bonvin. 2015. “Contacts-Based Prediction of Binding Affinity in Protein–Protein Complexes.” ELife 4 (JULY2015): 1–15. https://doi.org/10.7554/eLife.07454.Veeramachaneni, Ganesh Kumar, V. B.S.C. Thunuguntla, Janakiram Bobbillapati, and Jayakumar Singh Bondili. 2021. “Structural and Simulation Analysis of Hotspot Residues Interactions of SARS-CoV 2 with Human ACE2 Receptor.” Journal of Biomolecular Structure and Dynamics 39 (11): 4015–25. https://doi.org/10.1080/07391102.2020.1773318.Venselaar, Hanka, Tim A.H. te Beek, Remko K.P. Kuipers, Maarten L. Hekkelman, and Gert Vriend. 2010. “Protein Structure Analysis of Mutations Causing Inheritable Diseases. An e-Science Approach with Life Scientist Friendly Interfaces.” BMC Bioinformatics 11 (1): 548. https://doi.org/10.1186/1471-2105-11-548.Vidal, Marc, Michael E. Cusick, and Albert László Barabási. 2011. “Interactome Networks and Human Disease.” Cell 144 (6): 986–98. https://doi.org/10.1016/j.cell.2011.02.016.Walls, Alexandra C., Young Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, and David Veesler. 2020. “Structure, Function and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.” BioRxiv, no. January. https://doi.org/10.1101/2020.02.19.956581.Walsh, Ian M., Micayla A. Bowman, Iker F. Soto Santarriaga, Anabel Rodriguez, and Patricia L. Clark. 2020. “Synonymous Codon Substitutions Perturb Cotranslational Protein Folding in Vivo and Impair Cell Fitness.” Proceedings of the National Academy of Sciences of the United States of America 117 (7): 3528–34. https://doi.org/10.1073/pnas.1907126117.Wang, Zijun, Fabian Schmidt, Yiska Weisblum, Frauke Muecksch, Christopher O. Barnes, Shlomo Finkin, Dennis Schaefer-Babajew, et al. 2021. “MRNA Vaccine-Elicited Antibodies to SARS-CoV-2 and Circulating Variants.” Nature 592 (7855): 616–22. https://doi.org/10.1038/s41586-021-03324-6.Weisblum, Yiska, Fabian Schmidt, Fengwen Zhang, Justin DaSilva, Daniel Poston, Julio C.C. Lorenzi, Frauke Muecksch, et al. 2020. “Escape from Neutralizing Antibodies 1 by SARS-CoV-2 Spike Protein Variants.” ELife 9: 1. https://doi.org/10.7554/eLife.61312.Woo, P. C. Y., S. K. P. Lau, C. S. F. Lam, C. C. Y. Lau, A. K. L. Tsang, J. H. N. Lau, R. Bai, et al. 2012. “Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavi.” Journal of Virology 86 (7): 3995–4008. https://doi.org/10.1128/jvi.06540-11.World Health Organization. 2021a. “WHO-Convened Global Study of Origins of SARS-CoV-2 : China Part (14 January-10 February 2021).”Wrapp, Daniel, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching Lin Hsieh, Olubukola Abiona, Barney S. Graham, and Jason S. McLellan. 2020. “Cryo-EM Structure of the 2019-NCoV Spike in the Prefusion Conformation.” Science 367 (6483): 1260–63. https://doi.org/10.1126/science.aax0902.Xue, Li C., Joao Pglm Rodrigues, Panagiotis L. Kastritis, Alexandre Mjj Bonvin, and Anna Vangone. 2016. “PRODIGY: A Web Server for Predicting the Binding Affinity of Protein-Protein Complexes.” Bioinformatics 32 (23): 3676–78. https://doi.org/10.1093/bioinformatics/btw514.Yan, Yumeng, Huanyu Tao, Jiahua He, and Sheng You Huang. 2020. “The HDOCK Server for Integrated Protein–Protein Docking.” Nature Protocols 15 (5): 1829–52. https://doi.org/10.1038/s41596-020-0312-x.Yang, Jing, Ya Zheng, Xi Gou, Ke Pu, and Zhaofeng Chen. 2020. “Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-CoV-2: A Systematic Review and Meta-Analysis.” International Journal of Infectious Diseases 94 (March): 91–95. https://pubmed.ncbi.nlm.nih.gov/32173574/.Yates, Andrew D., Premanand Achuthan, Wasiu Akanni, James Allen, Jamie Allen, Jorge Alvarez-Jarreta, M. Ridwan Amode, et al. 2020. “Ensembl 2020.” Nucleic Acids Research 48 (D1): D682–88. https://doi.org/10.1093/nar/gkz966.Yesudhas, Dhanusha, Ambuj Srivastava, and M. Michael Gromiha. 2021. “COVID-19 Outbreak: History, Mechanism, Transmission, Structural Studies and Therapeutics.” Infection 49 (2): 199–213. https://doi.org/10.1007/s15010-020-01516-2.Yi, Chunyan, Xiaoyu Sun, Jing Ye, Longfei Ding, Meiqin Liu, Zhuo Yang, Xiao Lu, et al. 2020. “Key Residues of the Receptor Binding Motif in the Spike Protein of SARS-CoV-2 That Interact with ACE2 and Neutralizing Antibodies.” Cellular and Molecular Immunology 17 (6): 621–30. https://doi.org/10.1038/s41423-020-0458-z.Zahradník, Jiří, Shir Marciano, Maya Shemesh, Eyal Zoler, Daniel Harari, Jeanne Chiaravalli, Björn Meyer, et al. 2021. “SARS-CoV-2 Variant Prediction and Antiviral Drug Design Are Enabled by RBD in Vitro Evolution.” Nature Microbiology 6 (9): 1188–98. https://doi.org/10.1038/s41564-021-00954-4.Invitación directa a presentar propuestas de investigación e iniciativas de intercambio de conocimiento relacionadas con la pandemia y pospandemia del COVID-19Universidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalORIGINAL1032472021.2021.pdf1032472021.2021.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2777350https://repositorio.unal.edu.co/bitstream/unal/81536/1/1032472021.2021.pdfd30269bf3e468a1df7ec5b15d59dffc4MD51Tabla complementaria 1 Variantes identificadas en el gen ACE2 presentes en las bases de datos GnomAD y Ensembl..pdfTabla complementaria 1 Variantes identificadas en el gen ACE2 presentes en las bases de datos GnomAD y Ensembl..pdfAnexo 1application/pdf156752https://repositorio.unal.edu.co/bitstream/unal/81536/3/Tabla%20complementaria%201%20Variantes%20identificadas%20en%20el%20gen%20ACE2%20presentes%20en%20las%20bases%20de%20datos%20GnomAD%20y%20Ensembl..pdf7b003319f4e320f7f052c82439c60631MD53Tabla complementaria 2 Interacciones intermoleculares entre los complejos ACE2-RBD-Spike predichas por los servidores HDOCK y Prodigy.xlsxTabla complementaria 2 Interacciones intermoleculares entre los complejos ACE2-RBD-Spike predichas por los servidores HDOCK y Prodigy.xlsxAnexo 2application/vnd.openxmlformats-officedocument.spreadsheetml.sheet119433https://repositorio.unal.edu.co/bitstream/unal/81536/2/Tabla%20complementaria%202%20Interacciones%20intermoleculares%20entre%20los%20complejos%20ACE2-RBD-Spike%20predichas%20por%20los%20servidores%20HDOCK%20y%20Prodigy.xlsxe9dea3e3313a672af03b7c65645b0dd0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81536/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1032472021.2021.pdf.jpg1032472021.2021.pdf.jpgGenerated Thumbnailimage/jpeg4360https://repositorio.unal.edu.co/bitstream/unal/81536/5/1032472021.2021.pdf.jpg7cd07a6d06823ff082265efaddfee151MD55Tabla complementaria 1 Variantes identificadas en el gen ACE2 presentes en las bases de datos GnomAD y Ensembl..pdf.jpgTabla complementaria 1 Variantes identificadas en el gen ACE2 presentes en las bases de datos GnomAD y Ensembl..pdf.jpgGenerated Thumbnailimage/jpeg8729https://repositorio.unal.edu.co/bitstream/unal/81536/6/Tabla%20complementaria%201%20Variantes%20identificadas%20en%20el%20gen%20ACE2%20presentes%20en%20las%20bases%20de%20datos%20GnomAD%20y%20Ensembl..pdf.jpg650173efa8e8b3c4e9db75a2732cea0fMD56unal/81536oai:repositorio.unal.edu.co:unal/815362023-08-04 23:04:33.099Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |