Comparative analysis of the energy efficiency of container terminals in Colombia

Colombian ports and container terminals, as well as their regulators, have been approaching sustainability in terms of greenhouse gas emissions and energy efficiency. This study is part of this effort, as it analyzes the relationship between energy consumption, throughput, and overall costs in conta...

Full description

Autores:
Spaggiari Castro, Luisa Fernanda
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81681
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81681
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energy consumption
Marine terminals
Sustainable development
Consumo de energía
Terminales marítimos
Desarrollo sostenible
Eficiencia energética
Cambio climático
Puertos
Colombia
Consumo de energía
Desempeño sustentable
Productividad portuaria
Climate change
Colombia
Energy efficiency
Ports
Energy consumption
Sustainable performance
Port productivity
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_8441f8604ce11493b1f8653eab411f86
oai_identifier_str oai:repositorio.unal.edu.co:unal/81681
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Comparative analysis of the energy efficiency of container terminals in Colombia
dc.title.translated.spa.fl_str_mv Análisis comparativo de la eficiencia energética de las terminales de contenedores en Colombia
title Comparative analysis of the energy efficiency of container terminals in Colombia
spellingShingle Comparative analysis of the energy efficiency of container terminals in Colombia
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energy consumption
Marine terminals
Sustainable development
Consumo de energía
Terminales marítimos
Desarrollo sostenible
Eficiencia energética
Cambio climático
Puertos
Colombia
Consumo de energía
Desempeño sustentable
Productividad portuaria
Climate change
Colombia
Energy efficiency
Ports
Energy consumption
Sustainable performance
Port productivity
title_short Comparative analysis of the energy efficiency of container terminals in Colombia
title_full Comparative analysis of the energy efficiency of container terminals in Colombia
title_fullStr Comparative analysis of the energy efficiency of container terminals in Colombia
title_full_unstemmed Comparative analysis of the energy efficiency of container terminals in Colombia
title_sort Comparative analysis of the energy efficiency of container terminals in Colombia
dc.creator.fl_str_mv Spaggiari Castro, Luisa Fernanda
dc.contributor.advisor.spa.fl_str_mv Wilmsmeier, Gordon
Jiménez Poveda, Pedro Luis
dc.contributor.author.spa.fl_str_mv Spaggiari Castro, Luisa Fernanda
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Energy consumption
Marine terminals
Sustainable development
Consumo de energía
Terminales marítimos
Desarrollo sostenible
Eficiencia energética
Cambio climático
Puertos
Colombia
Consumo de energía
Desempeño sustentable
Productividad portuaria
Climate change
Colombia
Energy efficiency
Ports
Energy consumption
Sustainable performance
Port productivity
dc.subject.lemb.eng.fl_str_mv Energy consumption
Marine terminals
Sustainable development
dc.subject.lemb.spa.fl_str_mv Consumo de energía
Terminales marítimos
Desarrollo sostenible
dc.subject.proposal.spa.fl_str_mv Eficiencia energética
Cambio climático
Puertos
Colombia
Consumo de energía
Desempeño sustentable
Productividad portuaria
Climate change
Colombia
dc.subject.proposal.eng.fl_str_mv Energy efficiency
Ports
Energy consumption
Sustainable performance
Port productivity
description Colombian ports and container terminals, as well as their regulators, have been approaching sustainability in terms of greenhouse gas emissions and energy efficiency. This study is part of this effort, as it analyzes the relationship between energy consumption, throughput, and overall costs in container terminals. This is the first research that considers results for all container terminals in the same country for four years. The data analyzed in this study comes from a joint effort between Colombia's Ministry of Transport and the Universidad de Los Andes. These institutions designed and applied a survey to all of the terminals in Colombia, offering an overview of the activities of the port sector from 2010 to 2020. The present study focuses on a specific subset of the collected data: container terminals from 2017 to 2020. Moreover, it uses this data to compare the state of said terminals in Colombia to those in Chile. The results of the analysis showed that energy consumption reduced gradually during the 2017-2020 period. This study also found some promising changes in energy sources and a reduction in energy consumption in different terminals. Compared to previous research, the amount of energy that was either undefined or unaccounted for has also been reduced.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-05T19:22:19Z
dc.date.available.none.fl_str_mv 2022-07-05T19:22:19Z
dc.date.issued.none.fl_str_mv 2022-06-22
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81681
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81681
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Acciaro, M., & Wilmsmeier, G. (2015). Energy efficiency in maritime logistics chains. Research in Transportation Business & Management, 17, 1-7.
Acciaro, M., Ghiara, H., & Cusano, M. Í. (2016). Energy management in seaports: A new role for port authorities. Energy Policy, 71, 4-12.
Alamoush, A., Ballini, F., & Ölçer, A. (2020). Ports' technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Marine Pollution Bulletin, 160(111508).
Alamoush, A., Ölcer, A., & Ballini, F. (2021). Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Research in Transportation Business & Management(41).
Arena, F., Malara, G., Musolino, G., Rindone, C., Romolo, A., & Vitetta, A. (2018). From green-energy to green-logistics: a pilot study in an Italian Port Area. Transport Research Procedia, 30, 111-118.
Atulya, M., Karthik, P., Senthil Kumar, G., Elayaperumal , A., & Velraj , R. (2017). GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities - a case of the port of Chennai. Carbon management, 8(1), 45-56.
Azarkamand, S., Ferré, G., & Darbra, R. M. (2020). Calculating the Carbon Footprint in ports by using a standardized tool. Science of the Total Environmen, 734.
Brinkmann, B. (2011). Operations Systems of Container Terminals A Compendious Overvie. En Handbook of Terminal Planning (págs. 25-39). Springer.
Budiyanto, M. A., Nasruddin, & Zhafari, F. (2018). Simulation study using building-design energy analysis to estimate energy consumption of refrigerated container. Nagoya, Japan.
ECLAC. (2014). Consumo y eficiencia energética en los principales terminales portuarios de Chile. Santiago, Chile: Economic Commission for Latin America and the Caribbean.
ECLAC. (2015). Maritime and Logistics Newsletter - Towards benchmarking energy consumption in container terminals.
Fitzgerald, W. B., Howitt, O., Smith, I., & Hume, A. (2011). Energy use of integral refrigerated containers in maritime transportation. Energy Policy, 39, 1885-1896.
Geerlings, H., & Van Duin, R. (2011). A new method for assessing CO2 emissions from container terminals: a promising approach applied in Rotterdam. Journal of Cleaaner Production, 19, 657-666.
Gerring, J. (2004). What Is a Case Study and What Is It Good for? American Political Science Review, 98(2), 341-354.
Global Sustainability Standard Board. (2016). GRI 302: Energy 2016.
He, J. (2016). Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving. Advanced Engineering Informatics, 36, 390-405.
He, J., Huang, Y., & Yan, W. (2015). Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Advanced Engineering Informatics, 29, 56-75.
He, J., Youfang, H., Wei, Y., & Shuaian, W. (2015). Integrated internal truck, yard crane and quay crane scheduling in a Integrated internal truck, yard crane and quay crane scheduling in a. Expert Systems with Applications, 42, 2464-2487.
Hentschela, M., Ketterb, W., & Collins, J. (2018). Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam. Energy Policy, 121, 61-69.
International Transport Forum. (2015). ITF Transport Outlook. OECD .
Iris, Ç., & Lam, J. S. (2019). A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renewable and Sustainable Energy Reviews, 112, 170-182.
Lin, B., Collins, J., & Su, R. K. (2001). Supply Chain Costing: an activity-based perspective. International Journal of Physical Distribution and Logistics, 31.
Mamatok, Y., & Jin, C. (2016). An integrated framework for carbon footprinting at container seaports: the case study of a Chinese port. Maritime Policy & Management.
Martínez-Moya, J., Vazquez-Paja, B., & Gimenez Maldonado, J. A. (2019). Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia. Energy Policy, 131, 312-319.
Ministerio de Transporte. (2020). Transporte en Cifras 2019. Bogotá.
Ministry of the Environment and Sustainable Development. (2017). Plan de gestión de cambio climático para los puertos marítimos de Colombia. Bogotá.
Monios, J., & Wilmsmeier, G. (2014). The Impact of Container Type Diversification on Regional British Port Development Strategies. Transport reviews, 34(5), 583-606.
Na, J.-H., Choi, A.-Y., Ji, J., & Zhang, D. (2017). Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM mode. Journal of Transport Geography, 65, 13-24.
National Infrastructure Agency. (2021). www.ani.gov.co. Recuperado el 25 de January de 2022, de https://www.ani.gov.co/en-los-ultimos-tres-anos-se-han-invertido-146-millones-de-dolares-en-las-63-terminales-portuarias
National Planning Department. (2019). Demand and port capacity study. Bogotá: National Planing Department.
National Planning Department . (1995). CONPES 2782 - Plan de acción para el sector portuario.
Puig, M., Raptis, S., Wooldridge, C., & Darbra, R. (2020). Performance trends of environmental management in European ports. Marine Pollution Bulletin, 160(111686
Quintano, C., Mazzocchi, P., & Rocca, A. (2020). Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. Journal of Cleaner Production, 259.
Rhee, Y. (2004). The EPO chain in relationships management a case study of a government organization.
Sdoukopoulos, E., Boile, M., Tromaras, A., & Anastasiadis, N. (2019). Energy efficiency in euoepan ports: State of practice and Insights of the way forward. Sustainability, 11, 2-25.
Sha, M., Zhang, T., Lan, Y., Zhou, X., Qin, T., Yu, D., & Chen, K. (2016). Scheduling Optimization of Yard Cranes with Minimal Energy Consumption at Container Terminals. Computers & Industrial Engineering.
Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept. Journal of cleanner production, 286.
Spengler, T., & Wilmsmeier, G. (2019). Sustainable Performance and Benchmarking in Container Terminals - The Energy Dimesion. En Green Ports (págs. 125-154). Elsevier.
Superintendencia de transporte. (2020). Statistical Bulletin Port Traffic in Colombia. Bogotá: Superintendencia de transporte.
Tao, X., & Wu, Q. (2021). Energy consumption and CO2 emissions in hinterland container transport. Journal of Cleaner Production, 279(123394).
UNCTAD. (2021). Review of Maritime Transport. Geneva: United Nations.
Vaioa, A. D., Varriale, L., & Alvino, F. (2018). Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy, 122, 229-240.
Van Duin, J., & Geerlings, H. (2011). Estimating CO2 footprint of container terminal port-operations. International Journal of Sustainable Development and Planning , 6(4), 459-473.
Villalba, G., & Gemechu, D. E. (2011). Estimating GHG emissions of marine ports—the case of Barcelona. Energy Policy, 39, 1363-1368.
Wang, L., Zhou, Z., Yang, Y., & Wu, J. (2020). Green efficiency evaluation and improvement of Chinese ports: A cross-efficiency model. Transportation Research Part D, 88.
Wilmsmeier, G. (2012). Infrastructure charges: Creating inventives to improve enviromental performance FAL309.
Wilmsmeier, G. (2020). Climate change adpation and mitigation in ports Advances in Colombia. En Maritime Transport and Regional Sustainability (págs. 133- 150). Elsevier Inc. doi:https://doi.org/10.1016/B978-0-12-819134-7.00008-3
Wilmsmeier, G., & Spengler, T. (2016). Energy consumption and container terminal efficiency. Natural Resources and Infrastructure Division, UNECLAC.
Wilmsmeier, G., Zotz, A.-K., Froese, J., & Meyer, A. (2014). Energy Consumption and Efficiency: Emerging Challenges from Reefer Trade in South American Container Terminals. En FAL 329. ECLAC.
Yang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.
Yang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 67 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Transporte
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81681/1/1053782041.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81681/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81681/3/1053782041.2022.pdf.jpg
bitstream.checksum.fl_str_mv 1bef887e6cc336bbd1244c2aab0ba06e
8153f7789df02f0a4c9e079953658ab2
0a2cf2bf4d309b1fcca64037ad2f32ee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885993914040320
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wilmsmeier, Gordon793e28a1bc1828ae0b8eaed4023e3316600Jiménez Poveda, Pedro Luis194867bea7bf4ae28b706b43c6fc6eaaSpaggiari Castro, Luisa Fernandad1c589e32370e842feedee166397ed632022-07-05T19:22:19Z2022-07-05T19:22:19Z2022-06-22https://repositorio.unal.edu.co/handle/unal/81681Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Colombian ports and container terminals, as well as their regulators, have been approaching sustainability in terms of greenhouse gas emissions and energy efficiency. This study is part of this effort, as it analyzes the relationship between energy consumption, throughput, and overall costs in container terminals. This is the first research that considers results for all container terminals in the same country for four years. The data analyzed in this study comes from a joint effort between Colombia's Ministry of Transport and the Universidad de Los Andes. These institutions designed and applied a survey to all of the terminals in Colombia, offering an overview of the activities of the port sector from 2010 to 2020. The present study focuses on a specific subset of the collected data: container terminals from 2017 to 2020. Moreover, it uses this data to compare the state of said terminals in Colombia to those in Chile. The results of the analysis showed that energy consumption reduced gradually during the 2017-2020 period. This study also found some promising changes in energy sources and a reduction in energy consumption in different terminals. Compared to previous research, the amount of energy that was either undefined or unaccounted for has also been reduced.Los puertos y terminales de contenedores colombianos, así como sus reguladores, han venido abordando la sostenibilidad en términos de emisiones de gases de efecto invernadero y eficiencia energética. Este estudio es parte de este esfuerzo, ya que analiza la relación entre el consumo de energía, el rendimiento y los costos generales en las terminales de contenedores. Esta es la primera investigación que considera resultados para todas las terminales de contenedores en un mismo país durante cuatro años. Los datos analizados en este estudio provienen de un esfuerzo conjunto entre el Ministerio de Transporte de Colombia y la Universidad de Los Andes. Estas instituciones diseñaron y aplicaron una encuesta a todas las terminales portuarias en Colombia, ofreciendo una visión general de las actividades del sector portuario de 2010 a 2020. El presente estudio se enfoca en un subconjunto específico de los datos recopilados: las terminales de contenedores de 2017 a 2020. Además, utiliza estos datos para comparar el estado de dichos terminales en Colombia con los de Chile. Los resultados del análisis mostraron que el consumo de energía se redujo gradualmente durante el período 2017-2020. Este estudio también encontró algunos cambios prometedores en las fuentes de energía y una reducción en el consumo de energía en diferentes terminales. En comparación con investigaciones anteriores, la cantidad de energía que no estaba definida o no se contabilizaba también se ha reducido en cierta medida. (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - TransporteMovilidad y desarrollo tecnológicoxvi, 67 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - TransporteDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaEnergy consumptionMarine terminalsSustainable developmentConsumo de energíaTerminales marítimosDesarrollo sostenibleEficiencia energéticaCambio climáticoPuertosColombiaConsumo de energíaDesempeño sustentableProductividad portuariaClimate changeColombiaEnergy efficiencyPortsEnergy consumptionSustainable performancePort productivityComparative analysis of the energy efficiency of container terminals in ColombiaAnálisis comparativo de la eficiencia energética de las terminales de contenedores en ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAcciaro, M., & Wilmsmeier, G. (2015). Energy efficiency in maritime logistics chains. Research in Transportation Business & Management, 17, 1-7.Acciaro, M., Ghiara, H., & Cusano, M. Í. (2016). Energy management in seaports: A new role for port authorities. Energy Policy, 71, 4-12.Alamoush, A., Ballini, F., & Ölçer, A. (2020). Ports' technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Marine Pollution Bulletin, 160(111508).Alamoush, A., Ölcer, A., & Ballini, F. (2021). Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Research in Transportation Business & Management(41).Arena, F., Malara, G., Musolino, G., Rindone, C., Romolo, A., & Vitetta, A. (2018). From green-energy to green-logistics: a pilot study in an Italian Port Area. Transport Research Procedia, 30, 111-118.Atulya, M., Karthik, P., Senthil Kumar, G., Elayaperumal , A., & Velraj , R. (2017). GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities - a case of the port of Chennai. Carbon management, 8(1), 45-56.Azarkamand, S., Ferré, G., & Darbra, R. M. (2020). Calculating the Carbon Footprint in ports by using a standardized tool. Science of the Total Environmen, 734.Brinkmann, B. (2011). Operations Systems of Container Terminals A Compendious Overvie. En Handbook of Terminal Planning (págs. 25-39). Springer.Budiyanto, M. A., Nasruddin, & Zhafari, F. (2018). Simulation study using building-design energy analysis to estimate energy consumption of refrigerated container. Nagoya, Japan.ECLAC. (2014). Consumo y eficiencia energética en los principales terminales portuarios de Chile. Santiago, Chile: Economic Commission for Latin America and the Caribbean.ECLAC. (2015). Maritime and Logistics Newsletter - Towards benchmarking energy consumption in container terminals.Fitzgerald, W. B., Howitt, O., Smith, I., & Hume, A. (2011). Energy use of integral refrigerated containers in maritime transportation. Energy Policy, 39, 1885-1896.Geerlings, H., & Van Duin, R. (2011). A new method for assessing CO2 emissions from container terminals: a promising approach applied in Rotterdam. Journal of Cleaaner Production, 19, 657-666.Gerring, J. (2004). What Is a Case Study and What Is It Good for? American Political Science Review, 98(2), 341-354.Global Sustainability Standard Board. (2016). GRI 302: Energy 2016.He, J. (2016). Berth allocation and quay crane assignment in a container terminal for the trade-off between time-saving and energy-saving. Advanced Engineering Informatics, 36, 390-405.He, J., Huang, Y., & Yan, W. (2015). Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Advanced Engineering Informatics, 29, 56-75.He, J., Youfang, H., Wei, Y., & Shuaian, W. (2015). Integrated internal truck, yard crane and quay crane scheduling in a Integrated internal truck, yard crane and quay crane scheduling in a. Expert Systems with Applications, 42, 2464-2487.Hentschela, M., Ketterb, W., & Collins, J. (2018). Renewable energy cooperatives: Facilitating the energy transition at the Port of Rotterdam. Energy Policy, 121, 61-69.International Transport Forum. (2015). ITF Transport Outlook. OECD .Iris, Ç., & Lam, J. S. (2019). A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renewable and Sustainable Energy Reviews, 112, 170-182.Lin, B., Collins, J., & Su, R. K. (2001). Supply Chain Costing: an activity-based perspective. International Journal of Physical Distribution and Logistics, 31.Mamatok, Y., & Jin, C. (2016). An integrated framework for carbon footprinting at container seaports: the case study of a Chinese port. Maritime Policy & Management.Martínez-Moya, J., Vazquez-Paja, B., & Gimenez Maldonado, J. A. (2019). Energy efficiency and CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia. Energy Policy, 131, 312-319.Ministerio de Transporte. (2020). Transporte en Cifras 2019. Bogotá.Ministry of the Environment and Sustainable Development. (2017). Plan de gestión de cambio climático para los puertos marítimos de Colombia. Bogotá.Monios, J., & Wilmsmeier, G. (2014). The Impact of Container Type Diversification on Regional British Port Development Strategies. Transport reviews, 34(5), 583-606.Na, J.-H., Choi, A.-Y., Ji, J., & Zhang, D. (2017). Environmental efficiency analysis of Chinese container ports with CO2 emissions: An inseparable input-output SBM mode. Journal of Transport Geography, 65, 13-24.National Infrastructure Agency. (2021). www.ani.gov.co. Recuperado el 25 de January de 2022, de https://www.ani.gov.co/en-los-ultimos-tres-anos-se-han-invertido-146-millones-de-dolares-en-las-63-terminales-portuariasNational Planning Department. (2019). Demand and port capacity study. Bogotá: National Planing Department.National Planning Department . (1995). CONPES 2782 - Plan de acción para el sector portuario.Puig, M., Raptis, S., Wooldridge, C., & Darbra, R. (2020). Performance trends of environmental management in European ports. Marine Pollution Bulletin, 160(111686Quintano, C., Mazzocchi, P., & Rocca, A. (2020). Examining eco-efficiency in the port sector via non-radial data envelopment analysis and the response based procedure for detecting unit segments. Journal of Cleaner Production, 259.Rhee, Y. (2004). The EPO chain in relationships management a case study of a government organization.Sdoukopoulos, E., Boile, M., Tromaras, A., & Anastasiadis, N. (2019). Energy efficiency in euoepan ports: State of practice and Insights of the way forward. Sustainability, 11, 2-25.Sha, M., Zhang, T., Lan, Y., Zhou, X., Qin, T., Yu, D., & Chen, K. (2016). Scheduling Optimization of Yard Cranes with Minimal Energy Consumption at Container Terminals. Computers & Industrial Engineering.Sifakis, N., & Tsoutsos, T. (2021). Planning zero-emissions ports through the nearly zero energy port concept. Journal of cleanner production, 286.Spengler, T., & Wilmsmeier, G. (2019). Sustainable Performance and Benchmarking in Container Terminals - The Energy Dimesion. En Green Ports (págs. 125-154). Elsevier.Superintendencia de transporte. (2020). Statistical Bulletin Port Traffic in Colombia. Bogotá: Superintendencia de transporte.Tao, X., & Wu, Q. (2021). Energy consumption and CO2 emissions in hinterland container transport. Journal of Cleaner Production, 279(123394).UNCTAD. (2021). Review of Maritime Transport. Geneva: United Nations.Vaioa, A. D., Varriale, L., & Alvino, F. (2018). Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy, 122, 229-240.Van Duin, J., & Geerlings, H. (2011). Estimating CO2 footprint of container terminal port-operations. International Journal of Sustainable Development and Planning , 6(4), 459-473.Villalba, G., & Gemechu, D. E. (2011). Estimating GHG emissions of marine ports—the case of Barcelona. Energy Policy, 39, 1363-1368.Wang, L., Zhou, Z., Yang, Y., & Wu, J. (2020). Green efficiency evaluation and improvement of Chinese ports: A cross-efficiency model. Transportation Research Part D, 88.Wilmsmeier, G. (2012). Infrastructure charges: Creating inventives to improve enviromental performance FAL309.Wilmsmeier, G. (2020). Climate change adpation and mitigation in ports Advances in Colombia. En Maritime Transport and Regional Sustainability (págs. 133- 150). Elsevier Inc. doi:https://doi.org/10.1016/B978-0-12-819134-7.00008-3Wilmsmeier, G., & Spengler, T. (2016). Energy consumption and container terminal efficiency. Natural Resources and Infrastructure Division, UNECLAC.Wilmsmeier, G., Zotz, A.-K., Froese, J., & Meyer, A. (2014). Energy Consumption and Efficiency: Emerging Challenges from Reefer Trade in South American Container Terminals. En FAL 329. ECLAC.Yang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.Yang, Y.-C., & Chang, W.-M. (2013). Impacts of electric rubber-tired gantries on green port performance. Research in Transportation Business & Management, 8, 67-76.EstudiantesInvestigadoresPúblico generalORIGINAL1053782041.2022.pdf1053782041.2022.pdfTesis de Maestría en Ingeniería - Transporteapplication/pdf1228409https://repositorio.unal.edu.co/bitstream/unal/81681/1/1053782041.2022.pdf1bef887e6cc336bbd1244c2aab0ba06eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81681/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1053782041.2022.pdf.jpg1053782041.2022.pdf.jpgGenerated Thumbnailimage/jpeg4462https://repositorio.unal.edu.co/bitstream/unal/81681/3/1053782041.2022.pdf.jpg0a2cf2bf4d309b1fcca64037ad2f32eeMD53unal/81681oai:repositorio.unal.edu.co:unal/816812023-08-05 23:04:15.093Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK