Ecuaciones para retículos distributivos con cuantificador
ilustraciones, diagramas
- Autores:
-
Ramírez Ramos, Nicolás José
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84407
- Palabra clave:
- 510 - Matemáticas::512 - Álgebra
510 - Matemáticas::514 - Topología
TEORIA DE DUALIDADES (MATEMATICAS)
ANALISIS MATEMATICO
ECUACIONES
VARIEDADES TOPOLOGICAS
Duality theory (Mathematics)
Mathematical analysis
Equations
Topological manifolds
Álgebra universal
Retículos distributivos
Dualidad
Subvariedades
Cuantificadores
Ecuaciones
Universal algebra
Distributive lattices
Duality
Subvarieties
Quantifiers
Equations
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_83911a422e450f4124e0825318448fa6 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84407 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ecuaciones para retículos distributivos con cuantificador |
dc.title.translated.eng.fl_str_mv |
Equations for distributive lattices with quantifiers |
title |
Ecuaciones para retículos distributivos con cuantificador |
spellingShingle |
Ecuaciones para retículos distributivos con cuantificador 510 - Matemáticas::512 - Álgebra 510 - Matemáticas::514 - Topología TEORIA DE DUALIDADES (MATEMATICAS) ANALISIS MATEMATICO ECUACIONES VARIEDADES TOPOLOGICAS Duality theory (Mathematics) Mathematical analysis Equations Topological manifolds Álgebra universal Retículos distributivos Dualidad Subvariedades Cuantificadores Ecuaciones Universal algebra Distributive lattices Duality Subvarieties Quantifiers Equations |
title_short |
Ecuaciones para retículos distributivos con cuantificador |
title_full |
Ecuaciones para retículos distributivos con cuantificador |
title_fullStr |
Ecuaciones para retículos distributivos con cuantificador |
title_full_unstemmed |
Ecuaciones para retículos distributivos con cuantificador |
title_sort |
Ecuaciones para retículos distributivos con cuantificador |
dc.creator.fl_str_mv |
Ramírez Ramos, Nicolás José |
dc.contributor.advisor.none.fl_str_mv |
Gaitan, Hernando |
dc.contributor.author.none.fl_str_mv |
Ramírez Ramos, Nicolás José |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::512 - Álgebra 510 - Matemáticas::514 - Topología |
topic |
510 - Matemáticas::512 - Álgebra 510 - Matemáticas::514 - Topología TEORIA DE DUALIDADES (MATEMATICAS) ANALISIS MATEMATICO ECUACIONES VARIEDADES TOPOLOGICAS Duality theory (Mathematics) Mathematical analysis Equations Topological manifolds Álgebra universal Retículos distributivos Dualidad Subvariedades Cuantificadores Ecuaciones Universal algebra Distributive lattices Duality Subvarieties Quantifiers Equations |
dc.subject.lemb.spa.fl_str_mv |
TEORIA DE DUALIDADES (MATEMATICAS) ANALISIS MATEMATICO ECUACIONES VARIEDADES TOPOLOGICAS |
dc.subject.lemb.eng.fl_str_mv |
Duality theory (Mathematics) Mathematical analysis Equations Topological manifolds |
dc.subject.proposal.spa.fl_str_mv |
Álgebra universal Retículos distributivos Dualidad Subvariedades Cuantificadores Ecuaciones |
dc.subject.proposal.eng.fl_str_mv |
Universal algebra Distributive lattices Duality Subvarieties Quantifiers Equations |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-01T21:30:09Z |
dc.date.available.none.fl_str_mv |
2023-08-01T21:30:09Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84407 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84407 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
L.M. Acosta, Temas de Teoría de Retículos, Universidad Nacional de Colombia (2016). M.E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135 (1994) 15-28. M.E. Adams and W. Dziobiak, Endomorphisms of distributive lattices with a quantifier, International Journal of Algebra and Computation, Vol. 17, No. 7 (2007) 1349-1376. R. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, Columbia, MO, 1974). S. Burris and H.P. Sankappanavar, A course in Universal Algebra, Graduate Texts in Mathematics, Vol 78 (Springer, Berlin, 1981). R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991) 183-197. S. Givant, Duality Theories for Boolean Algebras with Operators, Springer Monographs in Mathematics, (Springer, Switzerland, 2014). P.R. Halmos, Algebraic Logic (Chelsea, New York, 1962). P.R. Halmos, Algebraic Logic, I. Monadic Boolean algebras, Compositio Math. 12 (1955) 217-249. P.R. Halmos, Lectures on Boolean Algebras, Van Nostrand Studies 1, Princenton, New Jersey (1963). P.T. Johnstone, Stone Spaces, Cambridge Univ. Press (1982). B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967). B. Jónsson and Alfred Tarski, Boolean algebras with operators. Part I, American Journal of Math. Vol. 73, No. 4 (1951) 891-939. S. Mac lane, Categories for the Working Mathematician, 2nd ed, Graduate Texts in Mathematics, Vol 5, Springer, (1998). A. Malcev, On the general theory of algebraic systems, Mat. Sb. (77) 35 (1954) 3-20. G. Markowsky, Some combinatorial aspects of lattice theory, Lattice Theory Conf. Houston (1973). D. Monk, On equational classes of algebraic versions of logic I, Math. Scand. 27 (1970) 53-71. L. Monteiro, Alg`ebres de Boole monadiques libres, Algebra Universalis 8 (1978) 374-380. J.M. Munkres, Topology a first course, Prentice-Hall, Inc., New Jersey (1975). A. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Math. 175 (1997) 211-219. H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970) 186-190. H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 4 (3) (1972) 507-530. M.H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40, (1936) 37-111. M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis. Pest. Math. 67 (1937) 1-25. O. Varsavsky, Quantifiers and equivalence relations, Revista matemática cuyana, Vol. 2 no. 1 (1956) 29–51. D. van der Zypen, Aspects of Priestley Duality, Phd Thesis, Mathematisches Institut der Universität Bern (2004). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xi, 50 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84407/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84407/4/1020830572.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84407/5/1020830572.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 67ad79f27c2e4eb66eb489516c3ab2e2 7f23effcdfdc2b2b25ad463a15837473 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089256961835008 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gaitan, Hernando02850242a985f955d3be16e8a3b9aa1aRamírez Ramos, Nicolás Josée86b8744ef9ffa321fbe6adf2fc812ae2023-08-01T21:30:09Z2023-08-01T21:30:09Z2023https://repositorio.unal.edu.co/handle/unal/84407Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste trabajo aborda el estudio de los Q-retículos distributivos, generalizaciones de las álgebras Booleanas monádicas. Mediante resultados de dualidad basados en el trabajo de Stone, Priestley y Halmos se muestra que las subvariedades de los Q-retículos distributivos forman una ω + 1 cadena, donde cada subvariedad es generada por una única álgebra finita. El objetivo es encontrar nuevas ecuaciones que caractericen estas subvariedades, explorando la dualidad en el caso finito y analizando la estructura de sus álgebras generadoras. (Texto tomado de la fuente)This work addresses the study of Q-distributive lattices, which are generalizations of monadic Boolean algebras. Through duality results based on the work of Stone, Priestley, and Halmos, it is shown that the subvarieties of Q-distributive lattices form an ω + 1 chain, where each subvariety is generated by a unique finite algebra. The objective is to find new equations that characterize these subvarieties, exploring duality in the finite case and analyzing the structure of their generating algebras.MaestríaMagíster en Ciencias - MatemáticasÁlgebra universalxi, 50 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::512 - Álgebra510 - Matemáticas::514 - TopologíaTEORIA DE DUALIDADES (MATEMATICAS)ANALISIS MATEMATICOECUACIONESVARIEDADES TOPOLOGICASDuality theory (Mathematics)Mathematical analysisEquationsTopological manifoldsÁlgebra universalRetículos distributivosDualidadSubvariedadesCuantificadoresEcuacionesUniversal algebraDistributive latticesDualitySubvarietiesQuantifiersEquationsEcuaciones para retículos distributivos con cuantificadorEquations for distributive lattices with quantifiersTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TML.M. Acosta, Temas de Teoría de Retículos, Universidad Nacional de Colombia (2016).M.E. Adams and W. Dziobiak, Quasivarieties of distributive lattices with a quantifier, Discrete Math. 135 (1994) 15-28.M.E. Adams and W. Dziobiak, Endomorphisms of distributive lattices with a quantifier, International Journal of Algebra and Computation, Vol. 17, No. 7 (2007) 1349-1376.R. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, Columbia, MO, 1974).S. Burris and H.P. Sankappanavar, A course in Universal Algebra, Graduate Texts in Mathematics, Vol 78 (Springer, Berlin, 1981).R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (1991) 183-197.S. Givant, Duality Theories for Boolean Algebras with Operators, Springer Monographs in Mathematics, (Springer, Switzerland, 2014).P.R. Halmos, Algebraic Logic (Chelsea, New York, 1962).P.R. Halmos, Algebraic Logic, I. Monadic Boolean algebras, Compositio Math. 12 (1955) 217-249.P.R. Halmos, Lectures on Boolean Algebras, Van Nostrand Studies 1, Princenton, New Jersey (1963).P.T. Johnstone, Stone Spaces, Cambridge Univ. Press (1982).B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967).B. Jónsson and Alfred Tarski, Boolean algebras with operators. Part I, American Journal of Math. Vol. 73, No. 4 (1951) 891-939.S. Mac lane, Categories for the Working Mathematician, 2nd ed, Graduate Texts in Mathematics, Vol 5, Springer, (1998).A. Malcev, On the general theory of algebraic systems, Mat. Sb. (77) 35 (1954) 3-20.G. Markowsky, Some combinatorial aspects of lattice theory, Lattice Theory Conf. Houston (1973).D. Monk, On equational classes of algebraic versions of logic I, Math. Scand. 27 (1970) 53-71.L. Monteiro, Alg`ebres de Boole monadiques libres, Algebra Universalis 8 (1978) 374-380.J.M. Munkres, Topology a first course, Prentice-Hall, Inc., New Jersey (1975).A. Petrovich, Equations in the theory of Q-distributive lattices, Discrete Math. 175 (1997) 211-219.H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970) 186-190.H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 4 (3) (1972) 507-530.M.H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40, (1936) 37-111.M.H. Stone, Topological representation of distributive lattices and Brouwerian logics, Casopis. Pest. Math. 67 (1937) 1-25.O. Varsavsky, Quantifiers and equivalence relations, Revista matemática cuyana, Vol. 2 no. 1 (1956) 29–51.D. van der Zypen, Aspects of Priestley Duality, Phd Thesis, Mathematisches Institut der Universität Bern (2004).EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84407/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1020830572.2023.pdf1020830572.2023.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf598086https://repositorio.unal.edu.co/bitstream/unal/84407/4/1020830572.2023.pdf67ad79f27c2e4eb66eb489516c3ab2e2MD54THUMBNAIL1020830572.2023.pdf.jpg1020830572.2023.pdf.jpgGenerated Thumbnailimage/jpeg3469https://repositorio.unal.edu.co/bitstream/unal/84407/5/1020830572.2023.pdf.jpg7f23effcdfdc2b2b25ad463a15837473MD55unal/84407oai:repositorio.unal.edu.co:unal/844072023-08-15 23:03:56.782Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |