Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer

Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insufic...

Full description

Autores:
Plazas González, Erika Andrea
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77833
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77833
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Benzophenanthridines
Metabolomics
Multivariate statistical analyses
Enzyme inhibitors
Cholinesterase
Monoamine oxidase
β-Amyloid
Benzofenantridinas
Metabolómica
Análisis estadístico multivariado
Inhibidores enzimáticos
Colinesterasas
Monoamino oxidasas
β-amiloide
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_8316c6e105b03845d1688cdbed411e2d
oai_identifier_str oai:repositorio.unal.edu.co:unal/77833
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
title Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
spellingShingle Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
610 - Medicina y salud::615 - Farmacología y terapéutica
Benzophenanthridines
Metabolomics
Multivariate statistical analyses
Enzyme inhibitors
Cholinesterase
Monoamine oxidase
β-Amyloid
Benzofenantridinas
Metabolómica
Análisis estadístico multivariado
Inhibidores enzimáticos
Colinesterasas
Monoamino oxidasas
β-amiloide
title_short Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
title_full Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
title_fullStr Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
title_full_unstemmed Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
title_sort Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
dc.creator.fl_str_mv Plazas González, Erika Andrea
dc.contributor.advisor.spa.fl_str_mv Cuca Suárez, Luis Enrique
dc.contributor.author.spa.fl_str_mv Plazas González, Erika Andrea
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Benzophenanthridines
Metabolomics
Multivariate statistical analyses
Enzyme inhibitors
Cholinesterase
Monoamine oxidase
β-Amyloid
Benzofenantridinas
Metabolómica
Análisis estadístico multivariado
Inhibidores enzimáticos
Colinesterasas
Monoamino oxidasas
β-amiloide
dc.subject.proposal.eng.fl_str_mv Benzophenanthridines
Metabolomics
Multivariate statistical analyses
Enzyme inhibitors
Cholinesterase
Monoamine oxidase
β-Amyloid
dc.subject.proposal.spa.fl_str_mv Benzofenantridinas
Metabolómica
Análisis estadístico multivariado
Inhibidores enzimáticos
Colinesterasas
Monoamino oxidasas
β-amiloide
description Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-07-23T21:19:36Z
dc.date.available.spa.fl_str_mv 2020-07-23T21:19:36Z
dc.date.issued.spa.fl_str_mv 2020-07-22
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77833
url https://repositorio.unal.edu.co/handle/unal/77833
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004
Adsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032
Affini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015
Agis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047
Ahmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002
Aniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2
Atri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009
Baek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0
Bautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848
Bean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals.
Bennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037
Biancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
Binutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210
Bird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582
Bird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017
Bitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005
Bräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246
Britton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654
Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting
Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting
Cai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040
Carpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923
Carradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6
Cheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014
Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28
Chen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-y
Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871x
Chia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9
Chu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801
Collaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4
Costa, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001
Cruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630.
Dawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675
Dinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4.
Doncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843.
Dong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18
Dreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7
Dundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304
Dvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042
Edmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784
Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006
Fazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935
Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888
Fernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025
Ferrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200
Gao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039
Gareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735
Geldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746
Greenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369
Guzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404.
Hagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020
Hamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013
Harvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510
Holdgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219
Huang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013
Inestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.x
Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008
jackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008
Jeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391
Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108
amigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587
Kepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009x
Khanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007
Kong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76.
Krane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43.
Kumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318
Lane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833
Leon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248
Liscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029
Macalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
Maity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296
Mallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75
Marco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034
Mathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804
Mishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025
Mohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049
Nantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. Notes
Ng, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018
O’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235
Oset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069
Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7
Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7
Patiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002
Patiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438.
Perrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073
ingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076
Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395
Porat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x
Qing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002
R-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072
Ramsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9
Ramsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2
Ramsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375
Renaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008
Roher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007
Sandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4
Schliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2
Silva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008
Singh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001
Sugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006
Swerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359.
Talevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205
Talić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14.
Tavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000
Tsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247r
Viegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169t
Vinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014
Wang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381
Wei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735
Weinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794
Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510
Williams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027b
Prod. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043
Wszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-y
Xiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186
Yang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139
Yeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005
Yuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258
Zheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113
Zuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 207
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77833/1/46385503.2020.pdf.pdf
https://repositorio.unal.edu.co/bitstream/unal/77833/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77833/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77833/4/46385503.2020.pdf.pdf.jpg
bitstream.checksum.fl_str_mv 9db0777bb661a7a8115a147793eb2158
6f3f13b02594d02ad110b3ad534cd5df
42fd4ad1e89814f5e4a476b409eb708c
1f2545687759a2bd978085058e2be9c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089935411478528
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuca Suárez, Luis Enriquec2bc286e-d211-4aa8-8a70-9db27d980657Plazas González, Erika Andrea55c33135-4472-4853-969d-e5648a0589d3Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos2020-07-23T21:19:36Z2020-07-23T21:19:36Z2020-07-22https://repositorio.unal.edu.co/handle/unal/77833Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer.Multifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatment. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy in the search of new anti-AD drug candidates. Herein the rational search and isolation of anti-cholinergic isoquinoline alkaloids from Zanthoxylum genus and the multi-target activity on key mechanisms associated with AD’s pathogenesis, i.e. cholinergic and monoaminergic depletion, β-amyloid (Aβ) aggregation, and oxidative stress were investigated. Initially, a LC-MS-based metabolomic approach of Zanthoxylum species was performed to identify potential anti-cholinesterase alkaloids predictors, rank the most promising extracts and selected one to carry out bio-directed isolation of potential bioactive alkaloids. 41 alkaloid extracts of nine Zanthoxylum species were analyzed by HPLC-UV-HRMS and inhibitory activity against cholinesterase (AChE/BChE). 11 alkaloid biomarkers were selected using a biochemometric analysis, and tentatively identified by manual dereplication approach. The most active extracts against cholinesterase (Z. schreberi and Z. monophylum) showed higher concentration of two biomarkers tentatively identified as berberine and chelerythrine, which have been reported as cholinesterase and monoamine oxidase inhibitors. Thus, a targeted isolation of berberine and chelerythrine from the bark extract of Z. schreberi was performed, in order to validate the results of the statistical model and select those extracts with the highest inhibitory activity and lowest concentration of these biomarkers. The findings in bio-guided isolation of Z. schreberi support the biochemometric model prediction and allowed us to select the species Z. rigidum to continue the rational search of anticholinesterase-multimodal alkaloids. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and monitoring by TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline and one quinolone alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (EP4) and avicine (EP12), as the most promising multi-target candidates. Both benzophenanthridines presented dual cholinesterase inhibition with IC50 values in micromolar range, being more active against AChE than BChE. Kinetic analysis with cholinesterase showed both compounds are reversible-mixed inhibitors, where avicine presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). Likewise, avicine and nitidine presented moderate Aβ1–42 anti-aggregation activity with IC50 values of 5.6 y 1.9 µM, respectively. In addition, both benzophenanthridines are MAO-A selective inhibitors, with IC50 values lower than 2 µM and selective index higher than 100. In the kinetic analysis with MAO A both alkaloids showed mixed-type inhibition and Ki values in the nanomolar range. Our findings suggest that avicine and nitidine are promising natural compounds and multifunctional candidates, representing a suitable starting point for the development of new therapeutic agents for Alzheimer’s disease.ColcienciasLínea de Investigación: Bioprospección en agentes terapéuticosDoctorado207application/pdfspa610 - Medicina y salud::615 - Farmacología y terapéuticaBenzophenanthridinesMetabolomicsMultivariate statistical analysesEnzyme inhibitorsCholinesteraseMonoamine oxidaseβ-AmyloidBenzofenantridinasMetabolómicaAnálisis estadístico multivariadoInhibidores enzimáticosColinesterasasMonoamino oxidasasβ-amiloideBúsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del AlzheimerTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáAdalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004Adsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032Affini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015Agis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047Ahmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002Aniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2Atri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009Baek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0Bautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848Bean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals.Bennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037Biancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001Binutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210Bird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582Bird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017Bitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005Bräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246Britton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingCai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040Carpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923Carradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6Cheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28Chen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-yCheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871xChia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9Chu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801Collaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4Costa, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001Cruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630.Dawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675Dinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4.Doncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843.Dong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18Dreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7Dundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304Dvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042Edmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006Fazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888Fernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025Ferrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200Gao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039Gareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735Geldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746Greenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369Guzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404.Hagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020Hamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013Harvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510Holdgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219Huang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013Inestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.xIngkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008jackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008Jeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108amigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587Kepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009xKhanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007Kong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76.Krane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43.Kumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318Lane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833Leon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248Liscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029Macalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5Maity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296Mallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75Marco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034Mathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804Mishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025Mohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049Nantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. NotesNg, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018O’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235Oset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7Patiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002Patiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438.Perrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073ingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395Porat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.xQing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002R-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072Ramsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9Ramsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2Ramsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375Renaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008Roher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007Sandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4Schliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2Silva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008Singh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001Sugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006Swerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359.Talevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205Talić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14.Tavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000Tsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247rViegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169tVinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014Wang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381Wei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735Weinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510Williams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027bProd. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043Wszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-yXiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186Yang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139Yeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005Yuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258Zheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113Zuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804ORIGINAL46385503.2020.pdf.pdf46385503.2020.pdf.pdfapplication/pdf11682338https://repositorio.unal.edu.co/bitstream/unal/77833/1/46385503.2020.pdf.pdf9db0777bb661a7a8115a147793eb2158MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77833/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77833/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAIL46385503.2020.pdf.pdf.jpg46385503.2020.pdf.pdf.jpgGenerated Thumbnailimage/jpeg4884https://repositorio.unal.edu.co/bitstream/unal/77833/4/46385503.2020.pdf.pdf.jpg1f2545687759a2bd978085058e2be9c3MD54unal/77833oai:repositorio.unal.edu.co:unal/778332024-07-22 00:39:06.443Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==