Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer
Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insufic...
- Autores:
-
Plazas González, Erika Andrea
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77833
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77833
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
Benzophenanthridines
Metabolomics
Multivariate statistical analyses
Enzyme inhibitors
Cholinesterase
Monoamine oxidase
β-Amyloid
Benzofenantridinas
Metabolómica
Análisis estadístico multivariado
Inhibidores enzimáticos
Colinesterasas
Monoamino oxidasas
β-amiloide
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_8316c6e105b03845d1688cdbed411e2d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77833 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
title |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
spellingShingle |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer 610 - Medicina y salud::615 - Farmacología y terapéutica Benzophenanthridines Metabolomics Multivariate statistical analyses Enzyme inhibitors Cholinesterase Monoamine oxidase β-Amyloid Benzofenantridinas Metabolómica Análisis estadístico multivariado Inhibidores enzimáticos Colinesterasas Monoamino oxidasas β-amiloide |
title_short |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
title_full |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
title_fullStr |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
title_full_unstemmed |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
title_sort |
Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del Alzheimer |
dc.creator.fl_str_mv |
Plazas González, Erika Andrea |
dc.contributor.advisor.spa.fl_str_mv |
Cuca Suárez, Luis Enrique |
dc.contributor.author.spa.fl_str_mv |
Plazas González, Erika Andrea |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica Benzophenanthridines Metabolomics Multivariate statistical analyses Enzyme inhibitors Cholinesterase Monoamine oxidase β-Amyloid Benzofenantridinas Metabolómica Análisis estadístico multivariado Inhibidores enzimáticos Colinesterasas Monoamino oxidasas β-amiloide |
dc.subject.proposal.eng.fl_str_mv |
Benzophenanthridines Metabolomics Multivariate statistical analyses Enzyme inhibitors Cholinesterase Monoamine oxidase β-Amyloid |
dc.subject.proposal.spa.fl_str_mv |
Benzofenantridinas Metabolómica Análisis estadístico multivariado Inhibidores enzimáticos Colinesterasas Monoamino oxidasas β-amiloide |
description |
Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-23T21:19:36Z |
dc.date.available.spa.fl_str_mv |
2020-07-23T21:19:36Z |
dc.date.issued.spa.fl_str_mv |
2020-07-22 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77833 |
url |
https://repositorio.unal.edu.co/handle/unal/77833 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004 Adsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032 Affini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015 Agis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047 Ahmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002 Aniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2 Atri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009 Baek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0 Bautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848 Bean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals. Bennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037 Biancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001 Binutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210 Bird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582 Bird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017 Bitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005 Bräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246 Britton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654 Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targeting Cai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040 Carpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923 Carradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6 Cheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014 Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28 Chen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-y Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871x Chia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9 Chu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801 Collaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4 Costa, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001 Cruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630. Dawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675 Dinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4. Doncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843. Dong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18 Dreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7 Dundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304 Dvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042 Edmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784 Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006 Fazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935 Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888 Fernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025 Ferrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200 Gao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039 Gareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735 Geldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746 Greenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369 Guzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404. Hagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020 Hamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013 Harvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510 Holdgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219 Huang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013 Inestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.x Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008 jackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008 Jeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391 Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108 amigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587 Kepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009x Khanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007 Kong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76. Krane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43. Kumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318 Lane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833 Leon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248 Liscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029 Macalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5 Maity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296 Mallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75 Marco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034 Mathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804 Mishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025 Mohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049 Nantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. Notes Ng, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018 O’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235 Oset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069 Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7 Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7 Patiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002 Patiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438. Perrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073 ingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076 Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395 Porat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x Qing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002 R-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072 Ramsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9 Ramsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2 Ramsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375 Renaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008 Roher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007 Sandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4 Schliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2 Silva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008 Singh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001 Sugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006 Swerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359. Talevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205 Talić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14. Tavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000 Tsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247r Viegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169t Vinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014 Wang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381 Wei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735 Weinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794 Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510 Williams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027b Prod. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043 Wszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-y Xiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186 Yang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139 Yeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005 Yuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258 Zheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113 Zuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
207 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77833/1/46385503.2020.pdf.pdf https://repositorio.unal.edu.co/bitstream/unal/77833/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77833/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77833/4/46385503.2020.pdf.pdf.jpg |
bitstream.checksum.fl_str_mv |
9db0777bb661a7a8115a147793eb2158 6f3f13b02594d02ad110b3ad534cd5df 42fd4ad1e89814f5e4a476b409eb708c 1f2545687759a2bd978085058e2be9c3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089935411478528 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuca Suárez, Luis Enriquec2bc286e-d211-4aa8-8a70-9db27d980657Plazas González, Erika Andrea55c33135-4472-4853-969d-e5648a0589d3Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos2020-07-23T21:19:36Z2020-07-23T21:19:36Z2020-07-22https://repositorio.unal.edu.co/handle/unal/77833Los trastornos neurodegenerativos multifactoriales, como la enfermedad de Alzheimer (EA), son un problema creciente de salud pública mundial debido al aumento de su incidencia y la baja efectividad de los tratamientos actuales. Dado que la farmacoterapia basada en un blanco molecular ha sido insuficiente en el descubrimiento de agentes para el tratamiento o cura de enfermedades complejas, el enfoque multi-diana se ha posicionado como una de las estrategias más promisorias en la búsqueda de nuevos candidatos a fármacos. En el presente trabajo se realizó una búsqueda racional de alcaloides isoquinolínicos con potencial inhibitorio frente a colinesterasas en especies del género Zanthoxylum; y la determinación de la actividad multi-diana frente a mecanismos claves asociados a la patogénesis de la EA, como el agotamiento de neurotransmisores, la agregación de beta-amiloide (Aβ1-42) y el estrés oxidativo. Inicialmente, se realizó un perfilado metabolómico (LC-MS) de extractos alcaloidales de especies del género Zanthoxylum (Rutaceae), con el fin de identificar posibles alcaloides inhibidores de colinesterasas, priorizar los extractos más promisorios y hacer la selección de una especie para continuar con el aislamiento bio-dirigido de los metabolitos de interés. Para este propósito, se analizaron 41 extractos alcaloidales de nueve especies de Zanthoxylum por HPLC-UV-HRMS y se determinó la actividad inhibitoria frente a colinesterasas (AChE/BChE). Haciendo uso de un análisis bioquimiométrico, se seleccionaron 11 alcaloides biomarcadores, los cuales fueron identificados tentativamente por dereplicación manual. Los extractos con mayor actividad inhibitoria frente a las enzimas (Z. schreberi y Z. monophylum) mostraron alta presencia de dos biomarcadores identificados tentativamente como berberina y queleritrina, los cuales han sido ampliamente reportados como inhibidores de colinesterasas y monoamino oxidasas. Por lo tanto, se realizó un estudio químico dirigido del extracto de corteza de Z. schreberi en búsqueda de berberina y queleritrina, a fin de validar los resultados del modelo estadístico y hacer la priorización de los extractos con mayor potencial inhibitorio y baja presencia de estos alcaloides. Los resultados del estudio bio-dirigido de Z. schreberi permitieron confirmar la predicción realizada por el modelo bioquimiométrico y hacer la selección de la especie Z. rigidum para continuar con la búsqueda racional de alcaloides inhibidores de colinesterasas con potencial multi-diana. Por medio del estudio bio-dirigido del extracto de raíz de Z. rigidum se aislaron ocho alcaloides isoquinolínicos y uno quinolónico, a los cuales se les evaluó la actividad inhibitoria frente a colinesterasas (AChE y BChE), monoamino oxidasas (MAO-A y B) y en la agregación de Aβ1-42. En el estudio preliminar de actividad biológica se encontró que dos alcaloides benzofenantridínicos, nitidina (EP4) y avicina (EP12), presentaron el mayor potencial inhibitorio frente a todos blancos moleculares, por lo cual fueron seleccionados para continuar con la caracterización multi-diana. Estas benzofenantridinas poseen actividad inhibitoria frente a la dupla de colinesterasas con valores de IC50 en el rango micromolar, siendo más activos frente a AChE. En el análisis cinético con las colinesterasas los dos alcaloides mostraron mecanismos de inhibición mixta y contantes (Ki) menores a 1 µM. La avicina presentó mayor potencial inhibitorio de las colinesterasas con valores de Ki de 0,063 µM (EeAChE), 0,511 µM (HrAChE) y 0,123 µM (EqBChE). Asimismo, avicina y nitidina poseen actividad antiagregante de Aβ1–42 con IC50 de 5,6 y 1,9 µM, respectivamente. Adicionalmente, los dos alcaloides presentaron inhibición selectiva de la monoamino oxidasa A, con valores de IC50 menores a 2 µM e índices de selectividad superiores a 100. En el estudio cinético con MAO A los dos compuestos mostraron mecanismo de inhibición mixta y constantes de inhibición (Ki) en el rango nanomolar. Estos resultados sugieren que las benzofenantridinas avicina (EP12) y nitidina (EP4) poseen un alto potencial multi-diana, por lo tanto, representan un importante punto de partida en la búsqueda y desarrollo de moléculas con potencial terapéutico para la enfermedad de Alzheimer.Multifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatment. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy in the search of new anti-AD drug candidates. Herein the rational search and isolation of anti-cholinergic isoquinoline alkaloids from Zanthoxylum genus and the multi-target activity on key mechanisms associated with AD’s pathogenesis, i.e. cholinergic and monoaminergic depletion, β-amyloid (Aβ) aggregation, and oxidative stress were investigated. Initially, a LC-MS-based metabolomic approach of Zanthoxylum species was performed to identify potential anti-cholinesterase alkaloids predictors, rank the most promising extracts and selected one to carry out bio-directed isolation of potential bioactive alkaloids. 41 alkaloid extracts of nine Zanthoxylum species were analyzed by HPLC-UV-HRMS and inhibitory activity against cholinesterase (AChE/BChE). 11 alkaloid biomarkers were selected using a biochemometric analysis, and tentatively identified by manual dereplication approach. The most active extracts against cholinesterase (Z. schreberi and Z. monophylum) showed higher concentration of two biomarkers tentatively identified as berberine and chelerythrine, which have been reported as cholinesterase and monoamine oxidase inhibitors. Thus, a targeted isolation of berberine and chelerythrine from the bark extract of Z. schreberi was performed, in order to validate the results of the statistical model and select those extracts with the highest inhibitory activity and lowest concentration of these biomarkers. The findings in bio-guided isolation of Z. schreberi support the biochemometric model prediction and allowed us to select the species Z. rigidum to continue the rational search of anticholinesterase-multimodal alkaloids. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and monitoring by TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline and one quinolone alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (EP4) and avicine (EP12), as the most promising multi-target candidates. Both benzophenanthridines presented dual cholinesterase inhibition with IC50 values in micromolar range, being more active against AChE than BChE. Kinetic analysis with cholinesterase showed both compounds are reversible-mixed inhibitors, where avicine presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). Likewise, avicine and nitidine presented moderate Aβ1–42 anti-aggregation activity with IC50 values of 5.6 y 1.9 µM, respectively. In addition, both benzophenanthridines are MAO-A selective inhibitors, with IC50 values lower than 2 µM and selective index higher than 100. In the kinetic analysis with MAO A both alkaloids showed mixed-type inhibition and Ki values in the nanomolar range. Our findings suggest that avicine and nitidine are promising natural compounds and multifunctional candidates, representing a suitable starting point for the development of new therapeutic agents for Alzheimer’s disease.ColcienciasLínea de Investigación: Bioprospección en agentes terapéuticosDoctorado207application/pdfspa610 - Medicina y salud::615 - Farmacología y terapéuticaBenzophenanthridinesMetabolomicsMultivariate statistical analysesEnzyme inhibitorsCholinesteraseMonoamine oxidaseβ-AmyloidBenzofenantridinasMetabolómicaAnálisis estadístico multivariadoInhibidores enzimáticosColinesterasasMonoamino oxidasasβ-amiloideBúsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes multifuncionales para el tratamiento del AlzheimerTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáAdalbert, R., Gilley, J., Coleman, M.P., 2007. Aβ, tau and ApoE4 in Alzheimer’s disease: the axonal connection. Trends Mol. Med. 13, 135–142. https://doi.org/10.1016/j.molmed.2007.02.004Adsersen, A., Gauguin, B., Gudiksen, L., Jäger, A.K., 2006. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422. https://doi.org/10.1016/j.jep.2005.09.032Affini, A., Hagenow, S., Zivkovic, A., Marco-Contelles, J., Stark, H., 2018. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem. 148, 487–497. https://doi.org/10.1016/j.ejmech.2018.02.015Agis-torres, A., Söllhuber, M., Fernandez, M., 2014. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr. Neuropharmacol. 12, 2–36. https://doi.org/10.2174/1570159X113116660047Ahmed, T., Gilani, A.-H., Abdollahi, M., Daglia, M., Nabavi, S., Nabavi, S.M., 2015. Berberine and neurodegeneration: A review of literature. Pharmacol. Reports 67, 970–979. https://doi.org/doi.org/10.1016/j.pharep.2015.03.002Aniszewski, T., 2015. Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition, Alkaloids: Chemistry, Biology, Ecology, and Applications: Second Edition. Elsevier. https://doi.org/10.1016/C2011-0-04166-2Atri, A., 2019. The Alzheimer’s Disease Clinical Spectrum: Diagnosis and Management. Med. Clin. 103, 263–293. https://doi.org/doi.org/10.1016/j.mcna.2018.10.009Baek, M. Y., Park, H. J., Kim, G. M., Lee, D. Y., Lee, G. Y., Moon, S. J., Baek, N.I., 2013. Insecticidal alkaloids from the seeds of Macleaya cordata on cotton aphid (Aphis gossypii). J. Korean Soc. Appl. Biol. Chem. 56, 135–140. https://doi.org/10.1007/s13765-013-3013-0Bautista-Aguilera, Ó.M., Budni, J., Mina, F., Medeiros, E.B., Deuther-Conrad, W., Entrena, J.M., Moraleda, I., Iriepa, I., López-Muñoz, F., Marco-Contelles, J., 2018. Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile. J. Med. Chem. 61, 6937–6943. https://doi.org/10.1021/acs.jmedchem.8b00848Bean, M., 2002. Enzyme Kinetics Principles and methods, Psychiatric Annals.Bennett, D., Yu, L., De Jager, P., 2014. Building a pipeline to discover and validate novel therapeutic targets and lead compounds for Alzheimer’s disease. Biochem. Pharmacol. 88, 617–630. https://doi.org/10.1016/j.bcp.2014.01.037Biancalana, M., Koide, S., 2010. Molecular mechanism of Thioflavin-T binding to amyloid fibril. Biochim. Biophys. Acta 1804, 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001Binutu, O.A., Cordell, G.A., 2000. Constituents of Zanthoxylum Sprucei. Pharm. Biol. 38, 210–213. https://doi.org/10.1076/1388-0209(200007)3831-SFT210Bird, D.A., Facchini, P.J., 2001. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Plant 213, 888–897. https://doi.org/10.1007/s004250100582Bird, M.J., Thorburn, D.R., Frazier, A.E., 2014. Modelling biochemical features of mitochondrial neuropathology. Biochim. Biophys. Acta. https://doi.org/10.1016/j.bbagen.2013.10.017Bitzinger, D.I., Gruber, M., Tümmler, S., Michels, B., Bundscherer, A., Hopf, S., Trabold, B., Graf, B.M., Zausig, Y.A., 2016. Species and concentration dependent differences of acetyl and butyrylcholinesterase sensitivity to physostigmine and neostigmine. Neuropharmacology 109, 1–6. https://doi.org/10.1016/j.neuropharm.2016.01.005Bräse, S. (Ed)., 2015. Privileged Scaffolds in Medicinal Chemistry, RSC Drug D. ed. https://doi.org/10.1039/9781782622246Britton, E.R., Kellogg, J.J., Kvalheim, O.M., Cech, N.B., 2018. Biochemometrics to Identify Synergists and Additives from Botanical Medicines: A Case Study with Hydrastis canadensis (Goldenseal). J. Nat. Prod. 81, 484–493. https://doi.org/10.1021/acs.jnatprod.7b00654Brunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingBrunhofer, G., Fallarero, A., Karlsson, D., Batista-Gonzalez, A., Shinde, P., Mohan, C.G., Vuorela, P., 2012. Exploration of natural compounds as sources of new bifunctional scaffolds targetingCai, Z., 2014. Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol. Med. Rep. 9, 1533–1541. https://doi.org/10.3892/mmr.2014.2040Carpinella, M.C., Andrione, D.G., Ruiz, G., Palacios, S.M., 2010. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phyther. Res. 24, 259–263. https://doi.org/10.1002/ptr.2923Carradori, S., D’Ascenzio, M., Chimenti, P., Secci, D., Bolasco, A., 2014. Selective MAO-B inhibitors: A lesson from natural products. Mol. Divers. https://doi.org/10.1007/s11030-013-9490-6Cheignon, C., Tomas, M., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 14, 450–464. https://doi.org/10.1016/j.redox.2017.10.014Chen, G., Xu, T., Yan, Y., Zhou, Y., Jiang, Y., Melcher, K., Xu, E., 2017. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235. https://doi.org/10.1038/aps.2017.28Chen, Z., Zhong, C., 2014. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281. https://doi.org/10.1007/s12264-013-1423-yCheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M.S., Gary, E.N., Love, J., Franklin, M.C., Height, J.J., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282–10286. https://doi.org/10.1021/jm300871xChia, Y.C., Chang, F.R., Li, C.M., Wu, Y.C., 1998. Protoberberine alkaloids from Fissistigma balansae. Phytochemistry. https://doi.org/10.1016/S0031-9422(97)00775-9Chu, M., Chen, X., Wang, J., Guo, L., Wang, Q., Gao, Z., Kang, J., Zhang, M., Feng, J., Guo, Q., Li, B., Zhang, C., 2018. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front. Pharmacol. 9, 801. https://doi.org/10.3389/fphar.2018.00801Collaborators, G. 2016 D., 2019. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4Costa, R.S., Lins, M.O., Le, M., Barros, T.F., Velozo, E.S., 2017. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multiresistant Staphylococcus aureus. Rev. Bras. Farmacogn. 27, 195–198. https://doi.org/10.1016/j.bjp.2016.11.001Cruz, M.I., Cidade, H., Pinto, M., 2017. Dual/multitargeted xanthone derivatives for Alzheimer’s disease: where do we stand? Future Med. Chem. 9, 1611–1630.Dawkins, E., Small, D., 2014. Insights into the physiological function of the β‐amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem. 129, 756–769. https://doi.org/10.1111/jnc.12675Dinamarca, M., Sagal, J., Quintanilla, R., Godoy, J., Arrázola, M., Inestrosa, N., 2010. Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 5, 4. https://doi.org/10.1186/1750-1326-5-4.Doncheva, T., Yordanova, G., Vutov, V., Kostova, N., Philipov, S., 2015. Comparative study of alkaloid profile of Corydalis slivenensis Vel. And Corydalis solida L. Comptes Rendus L’Academie Bulg. des Sci. 68, 843.Dong, S., Duan, Y., Hu, Y., Zhao, Z., 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl. Neurodegener. 1, 18. https://doi.org/10.1186/2047-9158-1-18Dreyer, D., Brenner, R., 1980. Alkaloids of some Mexican Zanthoxylum species. Phytochemistry 19, 935–939. https://doi.org/10.1016/0031-9422(80)85141-7Dundar, Y., Kuyrukcu, O., Eren, G., Senol, S., Onkol, T., Orhan, I., 2019. Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorg. Chem. 92, 103304. https://doi.org/10.1016/j.bioorg.2019.103304Dvir, H., Silman, I., Harel, M., Rosenberry, T., Sussman, J., 2010. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 187, 10–22. https://doi.org/10.1016/j.cbi.2010.01.042Edmondson, D., Mattevi, A., Binda, C., Li, M., Hubalek, F., 2004. Structure and Mechanism of Monoamine Oxidase. Curr. Med. Chem. 11, 1983–1993. https://doi.org/10.2174/0929867043364784Esteban, G., Allan, J., Samadi, A., Mattevi, A., Unzeta, M., Marco-Contelles, J., Binda, C., Ramsay, R.R., 2014. Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim. Biophys. Acta - Proteins Proteomics. https://doi.org/10.1016/j.bbapap.2014.03.006Fazel, N., Uriarte, E., Rastrelli, L., Modak, B., Sobarzo-Sánchez, E., 2016. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 16, 1906–1909. https://doi.org/10.2174/1568026616666160204122935Feng, X., Liang, N., Zhu, D., Gao, Q., Peng, L., Dong, H., Yue, Q., Liu, H., Bao, L., Zhang, J., Hao, J., Gao, Y., Yu, X., Sun, J., 2013. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway. PLoS One 8, e59888. https://doi.org/10.1371/journal.pone.0059888Fernandes, C., Vieira, P., Silva, V., Dall’Oglio, E., Silva, L., Sousa, P., 2009. 6-Acetonyl-N-methyl-dihydrodecarine, a new alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc 20, 379–382. https://doi.org/dx.doi.org/10.1590/S0103-50532009000200025Ferrari, G.V. De, Mallender, W.D., Inestrosa, N.C., Rosenberry, T.L., 2001. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282–23287. https://doi.org/10.1074/jbc.M009596200Gao, C., Du, Y., Wang, X., Cao, H., Lin, B., Liu, Y., Di, X., 2018. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorganic Med. Chem. Lett. 28, 2265–2269. https://doi.org/10.1016/j.bmcl.2018.05.039Gareri, P., Putignano, D., Castagna, A., Cotroneo, A., De Palo, G., Fabbo, A., Simone, M., 2014. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J. Alzheimer’s Dis. 41, 633–640. https://doi.org/10.3233/JAD-132735Geldenhuys, W., Schyf, C., 2013. Designing drugs with multi-target activity: the next step in the treatment of neurodegenerative disorders. Expert Opin. Drug Discov. 8, 115–129. https://doi.org/10.1517/17460441.2013.744746Greenblatt, H., Dvir, H., Silman, I., Sussman, J., 2003. Acetylcholinesterase. J. Mol. Neurosci. 20, 369–383. https://doi.org/10.1385/JMN:20:3:369Guzior, N., Wieckowska, A., Panek, D., Malawska, B., 2015. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem. 22, 373–404.Hagel, J., Facchini, P., 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell. Physiol. 54, 647–672. https://doi.org/10.1093/pcp/pct020Hamouda, A., Kimm, T., Cohen, J., 2013. Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J. Neurosci. 33, 485–494. https://doi.org/10.1523/JNEUROSCI.3483-12.2013Harvey, A., Edrada-Ebel, R., Quinn, R., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129. https://doi.org/10.1038/nrd4510Holdgate, G.A., Meek, T.D., Grimley, R.L., 2018. Mechanistic enzymology in drug discovery: A fresh perspective. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2017.219Huang, L., Luo, Z., He, F., Shi, A., Qin, F., Li, X., 2010b. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorganic Med. Chem. Lett. 20, 6649–6652. https://doi.org/10.1016/j.bmcl.2010.09.013Inestrosa, N., Dinamarca, M., Alvarez, A., 2008. Amyloid–cholinesterase interactions Implications for Alzheimer’s disease. FEBS J. 275, 625–632. https://doi.org/10.1111/j.1742-4658.2007.06238.xIngkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., Thongnoi, W., 2003. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. https://doi.org/10.1016/j.jep.2003.08.008jackisch, R., Förster, S., Kammerer, M., Rothmaier, A., Ehret, A., Zentner, J., Feuerstein, T., 2009. Inhibitory potency of choline esterase inhibitors on acetylcholine release and choline esterase activity in fresh specimens of human and rat neocortex. J. Alzheimer’s Dis. 16, 635–647. https://doi.org/10.3233/JAD-2009-1008Jeon, Y., Jung, J., Kang, M., Chung, I.-K., Lee, W., 2002. NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23, 391–394. https://doi.org/10.5012/bkcs.2002.23.3.391Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D., Selkoe, D., 2011. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. 108, 5819–5824. https://doi.org/10.1073/pnas.1017033108amigauchi, M., Yoshida, M., Noda, Y., Nishijo, J., In, Y., Tomoo, K., Ohishi, H., Ishida, T., 2003. Difference between Enzymatic and Chemical N-methylations of Protoberberine-Type Alkaloid, Dependent on the Stereoisomer of (−)-N-methyl-7, 8, 13, 13a-tetrahydroberberinium Salt. ulletin Chem. Soc. Japan 76, 587–593. https://doi.org/doi.org/10.1246/bcsj.76.587Kepp, K.P., 2012. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239. https://doi.org/10.1021/cr300009xKhanna, I., 2012. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov. Today 17, 1088–1102. https://doi.org/10.1016/j.drudis.2012.05.007Kong, L., Cheng, C., Tan, R., 2001. Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med. 67, 74–76.Krane, B., Fagbule, M., Shamma, M., Gözler, M., 1984. The Benzophenanthridine Alkaloids. J. Nat. Prod. 4, 1–43.Kumar, R., Nordberg, A., Darreh-Shori, T., 2016. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain 139, 174–192. https://doi.org/10.1093/brain/awv318Lane, R., Potkin, S., Enz, A., 2016. Targeting Acetylcholinesterase and butyrylcholinesterase in dementia Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 9, 101–124. https://doi.org/10.1017/S1461145705005833Leon, R., Garcia, A., Marco‐Contelles, J., 2013. Recent advances in the multitarget‐directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev. 33, 139–189. https://doi.org/10.1002/med.20248Liscombe, D., Macleod, B., Loukanina, N., Nandi, O., Facchini, P., 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374–1393. https://doi.org/10.1016/j.phytochem.2005.04.029Macalino, S.J.Y., Gosu, V., Hong, S., Choi, S., 2015. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701. https://doi.org/10.1007/s12272-015-0640-5Maity, S., Gundampati, R.K., Kumar, T.K.S., 2019. NMR methods to characterize protein-ligand interactions. Nat. Prod. Commun. 14, 1934578X19849296. https://doi.org/10.1177/1934578X19849296Mallya, R., Malim, F., Naik, A., Bhitre, M., 2019. Evaluation of Anthelmintic Potential of Leaves and Fruits of Zanthoxylum rhetsa. Pharmacogn. J. 11, 475–478. https://doi.org/10.5530/pj.2019.11.75Marco-Contelles, J., 2019. Facts, Results, and Perspectives of the Current Alzheimer’s Disease Research. ACS Chem. Neurosci. 10, 1127–1128. https://doi.org/10.1021/acschemneuro.9b00034Mathew, M., Subramanian, S., 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, In vitro screening for anti-cholinesterase and ant. https://doi.org/10.1371/journal.pone.0086804Mishra, P., Kumar, A., Panda, G., 2019. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998-2018). Bioorg. Med. Chem. 27, 895–930. https://doi.org/10.1016/j.bmc.2019.01.025Mohamed, T., Shakeri, A., Rao, P., 2016. Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur. J. Med. Chem. 113, 258–272. https://doi.org/10.1016/j.ejmech.2016.02.049Nantongo, J., Odoi, J., Abigaba, G., Gwali, S., 2018. Variability of phenolic and alkaloid content in different plant parts of Carissa edulis Vahl and Zanthoxylum chalybeum Engl. BMC Res. NotesNg, Y., Cho, T., Or, T., Ip, N., 2015. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int. 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018O’Keefe, B., Beecher, C., 1994. Isolation and characterization of S-adenosyl-L-methionine: tetrahydroberberine-cis-N-methyltransferase from suspension cultures of Sanguinaria canadensis L. Plant Physiol. 105, 395–403. https://doi.org/137.189.171.235Oset-Gasque, M., Marco-Contelles, J., 2018. Alzheimer’s Disease, the “one-Molecule, One-Target” Paradigm, and the Multitarget Directed Ligand Approach. ACS Chem. Neurosci. 9, 401–403. https://doi.org/10.1021/acschemneuro.8b00069Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7Padilla, F., Diazgranados, M., Da Costa, F., 2017. Biogeography shaped the metabolome of the genus Espeletia: A phytochemical perspective on an Andean adaptive radiation. Sci. Rep. 7, 8835. https://doi.org/10.1038/s41598-017-09431-7Patiño, O., Cuca, L., 2011. Monophyllidin, a new alkaloid L-proline derivative from Zanthoxylum monophyllum. Phytochem. Lett. 4, 22–25. https://doi.org/10.1016/j.phytol.2010.10.002Patiño, O., Prieto, J., Lozano, J., Lesmes, L., Cuca, L., 2011. Propiedades antibacterianas in vitro de metabolitos secundarios aislados de dos especies del género Zanthoxylum (Rutaceae). Rev. Cuba. Farm. 45, 431–438.Perrett, S., Whitfield, P.J., 1995. Atanine (3-dimethylallyl-4-methoxy-2-quinolone), an alkaloid with anthelmintic activity from the Chinese medicinal plant, Evodia rutaecarpa. Planta Med. https://doi.org/10.1055/s-2006-958073ingali, S., Donahue, J., Payton-stewart, F., 2015. Tetrahydroberberine, a pharmacologically active naturally occurring alkaloid. Acta Crystallogr. Sect. C Struct. Chem. 71, 262–265. https://doi.org/10.1107/S2053229615004076Pluskal, T., Castillo, S., Villar-Briones, A., Orešič, M., 2010. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395. https://doi.org/10.1186/1471-2105-11-395Porat, Y., Abramowitz, A., Gazit, E., 2006. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.xQing, Z., Cheng, P., Liu, X., Liu, Y., Zeng, J., 2015. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharm. Biomed. Anal. 103, 26–34. https://doi.org/10.1016/j.jpba.2014.11.002R-antagonismus, M.H., Ismaili, L., Joffrin, P., Jimeno, M.L., Kalinowsky, L., Proschak, E., Iriepa, I., Moraleda, I., Schwed, J.S., Martínez, A.R., López-muçoz, F., Chioua, M., Egea, J., Ramsay, R.R., Marco-contelles, J., Stark, H., 2017. Multipotente Liganden mit kombinierter Cholinesterase- und Monoaminooxidase-Inhibition sowie Histamin-H 3 R-Antagonismus bei neurodegenerativen Erkrankungen 1–6. https://doi.org/10.1002/ange.201706072Ramsay, R., Albreht, A., 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural Transm. 125, 1659–1683. https://doi.org/10.1007/s00702-018-1861-9Ramsay, R., Nikolic, M., Nikolic, K., Uliassi, E., Bolognesi, M., 2018. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 7, 3. https://doi.org/10.1186/s40169-017-0181-2Ramsay, R.R., Majekova, M., Medina, M., Valoti, M., 2016. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci. 10. https://doi.org/10.3389/fnins.2016.00375Renaud, J., Delsuc, M.-A., 2009. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol. 9, 622–628. https://doi.org/10.1016/j.coph.2009.06.008Roher, A.E., Kokjohn, T.A., Clarke, S.G., Sierks, M.R., Maarouf, C.L., Serrano, G.E., Sabbagh, M.S., Beach, T.G., 2017. APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem. Int. 110, 1–13. https://doi.org/10.1016/j.neuint.2017.08.007Sandjo, L., Kuete, V., Tchangna, R., Efferth, T., Ngadjui, B., 2014. Cytotoxic Benzophenanthridine and Furoquinoline Alkaloids from Zanthoxylum buesgenii (Rutaceae). Chem. Cent. J. 8, 61. https://doi.org/10.1186/s13065-014-0061-4Schliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j.bbr.2010.11.058 Schliebs, R., Arendt, T., 2006. Review The significance of the cholinergic system in the brain during aging and in Alzheimer ’ s disease 1625–1644. https://doi.org/10.1007/s00702-006-0579-2Silva, T., Reis, J., Teixeira, J., Borges, F., 2014. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res. Rev. 15, 116–145. https://doi.org/10.1016/j.arr.2014.03.008Singh, A., Bajpai, V., Srivastava, M., Arya, K., Kumar, B., 2014. apid profiling and structural characterization of bioactive compounds and their distribution in different parts of Berberis petiolaris Wall. ex G. Don applying hyphenated mass spectrometric techniques. Rapid Commun. Mass Spectrom. 28, 2089–2100. https://doi.org/10.1002/rcm.7001Sugino, H., Watanabe, A., Amada, N., Yamamoto, M., Ohgi, Y., Kostic, D., Sanchez, R., 2015. Global Trends in Alzheimer Disease Clinical Development : Increasing the Probability of Success. Clin. Ther. 37, 1632–1642. https://doi.org/10.1016/j.clinthera.2015.07.006Swerdlow, R.H., 2007. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2, 347–359.Talevi, A., 2015. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol. 6, 205. https://doi.org/10.3389/fphar.2015.00205Talić, S., Dragičević, I., Ćorajević, L., Martinović, A., 2014. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of extracts from medicinal plants. Bull. Chem. Technol. Bosnia Herzegovina 43, 11–14.Tavares, L., Graciane, Z., Weber, D., Neto, A., Mostardeiro, C., Cruz, I., Oliveira, R., Ilha, V., Dalcol, I., Morel, A., 2014. Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 9, e97000. https://doi.org/10.1371/journal.pone.0097000Tsai, S., Lee, S., 2010. Characterization of acetylcholinesterase inhibitory constituents from Annona glabra assisted by HPLC microfractionation. J. Nat. Prod. 73, 1632–1635. https://doi.org/10.1021/np100247rViegas, A., Manso, J., Nobrega, F., Cabrita, E., 2011. Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J. Chem. Educ. 88, 990–994. https://doi.org/10.1021/ed101169tVinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., Deepak, M., 2007. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363. https://doi.org/10.1016/j.jep.2006.06.014Wang, Y., Liu, D., Wyss, D.F., 2015. Competition STD NMR for the detection of high-affinity ligands and NMR-based screening 485–489. https://doi.org/10.1002/mrc.1381Wei, X., Shen, H., Wang, L., Meng, Q., Liu, W., 2016. Analyses of total alkaloid extract of corydalis yanhusuo by comprehensive RP× RP liquid chromatography with pH difference. J. Anal. Methods Chem. 2016, 1–8. https://doi.org/10.1155/2016/9752735Weinreb, O., Amit, T., Bar-Am, O., Youdim, M., 2012. Ladostigil: A Novel Multimodal Neuroprotective Drug with Cholinesterase and Brain-Selective Monoamine Oxidase Inhibitory Activities for Alzheimers Disease Treatment. Curr. Drug Targets 13, 483–494. https://doi.org/10.2174/138945012799499794Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E., Edlund, U., Shockcor, J., Gottfries, J., Moritz, T., Trygg, J., 2008. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122. https://doi.org/10.1021/ac0713510Williams, P., Sorribas, A., Howes, M.J.R., 2011. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep. 28, 48–77. https://doi.org/10.1039/c0np00027bProd. Rep. 36, 855–868. https://doi.org/10.1039/c9np00004f Wolfender, J., Marti, G., Thomas, A., Bertrand, S., 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. J. Chromatogr. A 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.11.043Wszelaki, N., Kuciun, A., Kiss, A., 2010. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm. 60, 119–128. https://doi.org/10.2478/v10007-010-0006-yXiao, J., Tundis, R., 2013. Natural products for Alzheimer’s disease therapy: basic and application. J. Pharm. Pharmacol. 65, 1679–1680. https://doi.org/10.1111/jphp.12186Yang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., Sheng, W., 2014. Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation 1–4. https://doi.org/10.1038/ja.2014.139Yeong, K., Liew, W., Murugaiyah, V., Ang, C., Osman, H., Tan, S., 2017. Ethyl nitrobenzoate: A novel scaffold for cholinesterase inhibition. Bioorg. Chem. 70, 27–33. https://doi.org/10.1016/j.bioorg.2016.11.005Yuliana, N., Khatib, A., Choi, Y., Verpoorte, R., 2011. Metabolomics for bioactivity assessment of natural products. Phyther. Res. 25, 157–169. https://doi.org/10.1002/ptr.3258Zheng, H., Fridkin, M., Youdim, M., 2014. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals 7, 113–135. https://doi.org/10.3390/ph7020113Zuo, Z., Zheng, Y., Liang, Z., Liu, Y., Tang, Q., Liu, X., Zhao, Z., 2017. Tissue-specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom 31, 397–410. https://doi.org/10.1002/rcm.7804ORIGINAL46385503.2020.pdf.pdf46385503.2020.pdf.pdfapplication/pdf11682338https://repositorio.unal.edu.co/bitstream/unal/77833/1/46385503.2020.pdf.pdf9db0777bb661a7a8115a147793eb2158MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77833/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77833/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAIL46385503.2020.pdf.pdf.jpg46385503.2020.pdf.pdf.jpgGenerated Thumbnailimage/jpeg4884https://repositorio.unal.edu.co/bitstream/unal/77833/4/46385503.2020.pdf.pdf.jpg1f2545687759a2bd978085058e2be9c3MD54unal/77833oai:repositorio.unal.edu.co:unal/778332024-07-22 00:39:06.443Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |