Cosmic dynamo equation under cosmological perturbation theory at first order

ilustraciones

Autores:
Bravo Cárdenas, Juan Felipe
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83313
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83313
https://repositorio.unal.edu.co/
Palabra clave:
Space sciences
Ciencias del espacio
Campos magnéticos
Magnetic fields
Cosmología
Relatividad Numérica
Campos magnéticos cosmológicos
Einstein Toolkit
FLRWSolver
Cosmology
Numerical Relativity
Cosmological magnetic fields
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_82fb4951bc6dfb1602b244f4297b898b
oai_identifier_str oai:repositorio.unal.edu.co:unal/83313
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Cosmic dynamo equation under cosmological perturbation theory at first order
dc.title.translated.spa.fl_str_mv Ecuación de dínamo cosmológica bajo teoría de perturbaciones cosmológicas a primer orden
title Cosmic dynamo equation under cosmological perturbation theory at first order
spellingShingle Cosmic dynamo equation under cosmological perturbation theory at first order
Space sciences
Ciencias del espacio
Campos magnéticos
Magnetic fields
Cosmología
Relatividad Numérica
Campos magnéticos cosmológicos
Einstein Toolkit
FLRWSolver
Cosmology
Numerical Relativity
Cosmological magnetic fields
title_short Cosmic dynamo equation under cosmological perturbation theory at first order
title_full Cosmic dynamo equation under cosmological perturbation theory at first order
title_fullStr Cosmic dynamo equation under cosmological perturbation theory at first order
title_full_unstemmed Cosmic dynamo equation under cosmological perturbation theory at first order
title_sort Cosmic dynamo equation under cosmological perturbation theory at first order
dc.creator.fl_str_mv Bravo Cárdenas, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Hortúa Orjuela, Hector Javier
Castañeda Colorado, Leonardo
dc.contributor.author.none.fl_str_mv Bravo Cárdenas, Juan Felipe
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Astronomía Galáctica, gravitación y cosmología
dc.subject.armarc.eng.fl_str_mv Space sciences
topic Space sciences
Ciencias del espacio
Campos magnéticos
Magnetic fields
Cosmología
Relatividad Numérica
Campos magnéticos cosmológicos
Einstein Toolkit
FLRWSolver
Cosmology
Numerical Relativity
Cosmological magnetic fields
dc.subject.lemb.spa.fl_str_mv Ciencias del espacio
Campos magnéticos
dc.subject.lemb.eng.fl_str_mv Magnetic fields
dc.subject.proposal.spa.fl_str_mv Cosmología
Relatividad Numérica
Campos magnéticos cosmológicos
dc.subject.proposal.eng.fl_str_mv Einstein Toolkit
FLRWSolver
Cosmology
Numerical Relativity
Cosmological magnetic fields
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-06T15:31:25Z
dc.date.available.none.fl_str_mv 2023-02-06T15:31:25Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83313
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83313
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Hayley J. Macpherson, Daniel J. Price, and Paul D. Lasky. Einstein’s universe: Cosmological structure formation in numerical relativity. Phys. Rev. D, 99:063522, Mar 2019.
Hayley Jessica Macpherson. Inhomogeneous cosmology in an anisotropic Universe. 9 2019
M. Marklund and C. A. Clarkson. The general relativistic magnetohydrodynamic dynamo equation. Monthly Notices of the Royal Astronomical Society, 358(3):892–900, 04 2005.
Hayley J. Macpherson, Paul D. Lasky, and Daniel J. Price. Inhomogeneous cosmology with numerical relativity. Phys. Rev. D, 95:064028, Mar 2017.
H´ector J. Hortua, Leonardo Casta˜neda, and J. M. Tejeiro. Evolution of magnetic fields through cosmological perturbation theory. Phys. Rev. D, 87:103531, May 2013.
Héctor Javier Hortua. Generación de campos magnéticos primordiales / generation of primordial magnetic fields. Maestría en Ciencias Astronomía, Abril 2011.
Héctor Javier Hortúa and Leonardo Castañeeda. Contrasting formulations of cosmological perturbations in a magnetic FLRW cosmology. Classical and Quantum Gravity, 32(23):235026, nov 2015
Héctor J. Hortúa and Leonardo Castañeeda. Effects of primordial magnetic fields on cmb. Proceedings of the International Astronomical Union, 10(S306):159–161, 2014.
Héctor Javier Hortúa and Leonardo Castañeeda. Primordial magnetic fields and the cmb. In Brian Albert Robson, editor, Redefining Standard Model Cosmology, chapter 4. IntechOpen, Rijeka, 2018.
G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, H. C. Hege, A. Merzky, J. Masso, and J. Shalf. Solving einstein’s equations on supercomputers. Computer, 32(12):52–58, 1999.
Maria Babiuc-Hamilton, Steven R. Brandt, Peter Diener, Matthew Elley, Zachariah Etienne, Giuseppe Ficarra, Roland Haas, Helvi Witek, Miguel Alcubierre, Daniela Alic, Gabrielle Allen, Marcus Ansorg, Luca Baiotti, Werner Benger, Eloisa Bentivegna, Se- bastiano Bernuzzi, Tanja Bode, Bernd Bruegmann, Giovanni Corvino, Roberto De Pietri, Harry Dimmelmeier, Rion Dooley, Nils Dorband, Yaakoub El Khamra, Joshua Faber, Toni Font, Joachim Frieben, Bruno Giacomazzo, Tom Goodale, Carsten Gund- lach, Ian Hawke, Scott Hawley, Ian Hinder, Sascha Husa, Sai Iyer, Thorsten Keller- mann, Andrew Knapp, Michael Koppitz, Gerd Lanferman, Frank L¨offler, Joan Mas- so, Lars Menger, Andre Merzky, Mark Miller, Philipp Moesta, Pedro Montero, Bruno Mundim, Andrea Nerozzi, Christian Ott, Ravi Paruchuri, Denis Pollney, David Radice, Thomas Radke, Christian Reisswig, Luciano Rezzolla, David Rideout, Matei Ripeanu, Erik Schnetter, Bernard Schutz, Ed Seidel, Eric Seidel, John Shalf, Ulrich Sperhake, Nikolaos Stergioulas, Wai-Mo Suen, Bela Szilagyi, Ryoji Takahashi, Michael Thomas, Jonathan Thornburg, Malcolm Tobias, Aaryn Tonita, Paul Walker, Mew-Bing Wan, Barry Wardell, Miguel Zilh ao, Burkhard Zink, and Yosef Zlochower. The Einstein Toolkit, October 2019. To find out more, visit http://www.einsteintoolkit.org.
John D. Barrow, Roy Maartens, and Christos G. Tsagas. Cosmology with inhomogeneous magnetic fields. Physics Reports, 449(6):131–171, 2007.
Eloisa Bentivegna and Marco Bruni. Effects of nonlinear inhomogeneity on the cosmic expansion with numerical relativity. Phys. Rev. Lett., 116:251302, Jun 2016.
Gabriele Bozzola. kuibit: Analyzing einstein toolkit simulations with python. Journal of Open Source Software, 6(60):3099, 2021.
N. Bucciantini and L. Del Zanna. A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD. Monthly Notices of the Royal Astronomical Society, 428(1):71–85, 10 2012.
Vitor Cardoso, Leonardo Gualtieri, Carlos Herdeiro, and Ulrich Sperhake. Exploring new physics frontiers through numerical relativity. Living Reviews in Relativity, (1), 2015.
L Del Zanna and N Bucciantini. Covariant and 3 + 1 equations for dynamo-chiral general relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 479(1):657–666, 06 2018.
E. Dormy and A.M. (Eds.) Soward. Mathematical Aspects of Natural Dynamos. Chapman and Hall/CRC, 2007.
Ruth Durrer. Cosmic magnetic fields and the cmb. New Astronomy Reviews, 51(3):275–280, 2007. Francesco Melchiorri: Scientist, Pioneer, Mentor.
Ruth Durrer and Andrii Neronov. Cosmological magnetic fields: Their generation, evolution and observation. The Astronomy and Astrophysics Review, 21, 03 2013.
Ruth Durrer and Norbert Straumann. Some applications of the 3+1 formalism of general relativity. Helv. Phys. Acta, 61:1027, 01 1988.
David Garfinkle and Lawrence Mead. Cosmological initial data for numerical relativity. Phys. Rev. D, 102:044022, Aug 2020.
Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Masso, Thomas Radke, Harry Seidel, and John Shalf. The cactus framework and toolkit: Design and applications. volume 2565, 06 2002.
´E. Gourgoulhon. 3+1 Formalism in General Relativity: Bases of Numerical Relativity. Lecture Notes in Physics. Springer Berlin Heidelberg, 2012.
Frank Loffler et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class. Quant. Grav., 29:115001, 2012.
Chung-Pei Ma and Edmund Bertschinger. Cosmological perturbation theory in the synchronous and conformal newtonian gauges. The Astrophysical Journal, 455:7, Dec 1995.
Bishop Mongwane. Problems in Cosmology and Numerical Relativity. PhD thesis, Parma U., 2017
G. Montani, M.V. Battisti, and R. Benini. Primordial Cosmology. World Scientific, 2011
Philipp M¨osta, Bruno C Mundim, Joshua A Faber, Roland Haas, Scott C Noble, Tanja Bode, Frank L¨offler, Christian D Ott, Christian Reisswig, and Erik Schnetter. GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the einstein toolkit. Classical and Quantum Gravity, 31(1):015005, nov 2013.
Kouji Nakamura. General formulation of general-relativistic higher-order gauge- invariant perturbation theory. Classical and Quantum Gravity, 28(12):122001, may 2011
Cyril Pitrou, Xavier Roy, and Obinna Umeh. xpand: An algorithm for perturbing homogeneous cosmologies. Classical and Quantum Gravity, 30(16):165002, Jul 2013
Fran¸cois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, 2019.
Kandaswamy Subramanian. The origin, evolution and signatures of primordial mag- netic fields. Reports on Progress in Physics, 79(7):076901, may 2016.
Christos G. Tsagas and Roy Maartens. Magnetized cosmological perturbations. Phys. Rev. D, 61:083519, Mar 2000.
Tanmay Vachaspati. Progress on cosmological magnetic fields. Reports on Progress in Physics, 84(7):074901, jun 2021.
Miguel Zilh˜ao and Frank L¨offler. An introduction to the einstein toolkit. International Journal of Modern Physics A, 28(22n23):1340014, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 93 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83313/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83313/4/1014240747.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c02e05a682f211d25db6ceb8a418d5be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886055278804992
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hortúa Orjuela, Hector Javier4cd41aad25f24005f5e23830ac270392Castañeda Colorado, Leonardo09a756690df646a0589f42b538a56da2Bravo Cárdenas, Juan Felipe16d5a18ac8ffe043ec539dc420db0677Grupo de Astronomía Galáctica, gravitación y cosmología2023-02-06T15:31:25Z2023-02-06T15:31:25Z2022https://repositorio.unal.edu.co/handle/unal/83313Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn este trabajo se pretende dar una introducción a las perturbaciones cosmológicas y aplicaciones desde el punto de vista de la Relatividad numérica, en particular se muestra como se pueden aplicar estas perturbaciones al formalismo 3+1. Las perturbaciones cosmológicas se dan a primer orden sobre la solución espacialmente plana de Friedman-Lemaitre-Robertson-Walker (FLRW), esto con miras a obtener la ecuación de dínamo cosmológico, bajo la aproximación de dínamo cinemático, para poder estudiar la evolución de los campos magnéticos primordiales y su amplificación. También se mostrará el estudio computacional de perturbaciones cosmológicas a partir de la Relatividad Numérica haciendo uso del software Einstein Toolkit, se hace énfasis en FLRWSolver para la solución numérica de las ecuaciones de campo de Einstein desde el punto de vista cosmológico. (Texto tomado de la fuente)This thesis aims to give an introduction to cosmological perturbations and their applications from the point of view of numerical relativity, in particular it shows how these perturbations can be applied to the 3+1 formalism. The cosmological perturbations are given up to first order on the spatially flat Friedman-Lemaitre-Robertson-Walker (FLRW) solution, this looking to obtaining the cosmological dynamo equation, under the kinematic-dynamo approximation, in order to study the evolution of primordial magnetic fields and their amplification. The computational study of cosmological perturbations from Numerical Relativity will also be shown using the Einstein Toolkit software, emphasizing FLRWSolver for the numerical solution of the Einstein field equations from the cosmological point of view.MaestríaMagíster en Ciencias - AstronomíaGravitación, Relatividad General, Cosmologia, Relatividad Numéricaix, 93 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáCosmic dynamo equation under cosmological perturbation theory at first orderEcuación de dínamo cosmológica bajo teoría de perturbaciones cosmológicas a primer ordenTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHayley J. Macpherson, Daniel J. Price, and Paul D. Lasky. Einstein’s universe: Cosmological structure formation in numerical relativity. Phys. Rev. D, 99:063522, Mar 2019.Hayley Jessica Macpherson. Inhomogeneous cosmology in an anisotropic Universe. 9 2019M. Marklund and C. A. Clarkson. The general relativistic magnetohydrodynamic dynamo equation. Monthly Notices of the Royal Astronomical Society, 358(3):892–900, 04 2005.Hayley J. Macpherson, Paul D. Lasky, and Daniel J. Price. Inhomogeneous cosmology with numerical relativity. Phys. Rev. D, 95:064028, Mar 2017.H´ector J. Hortua, Leonardo Casta˜neda, and J. M. Tejeiro. Evolution of magnetic fields through cosmological perturbation theory. Phys. Rev. D, 87:103531, May 2013.Héctor Javier Hortua. Generación de campos magnéticos primordiales / generation of primordial magnetic fields. Maestría en Ciencias Astronomía, Abril 2011.Héctor Javier Hortúa and Leonardo Castañeeda. Contrasting formulations of cosmological perturbations in a magnetic FLRW cosmology. Classical and Quantum Gravity, 32(23):235026, nov 2015Héctor J. Hortúa and Leonardo Castañeeda. Effects of primordial magnetic fields on cmb. Proceedings of the International Astronomical Union, 10(S306):159–161, 2014.Héctor Javier Hortúa and Leonardo Castañeeda. Primordial magnetic fields and the cmb. In Brian Albert Robson, editor, Redefining Standard Model Cosmology, chapter 4. IntechOpen, Rijeka, 2018.G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, H. C. Hege, A. Merzky, J. Masso, and J. Shalf. Solving einstein’s equations on supercomputers. Computer, 32(12):52–58, 1999.Maria Babiuc-Hamilton, Steven R. Brandt, Peter Diener, Matthew Elley, Zachariah Etienne, Giuseppe Ficarra, Roland Haas, Helvi Witek, Miguel Alcubierre, Daniela Alic, Gabrielle Allen, Marcus Ansorg, Luca Baiotti, Werner Benger, Eloisa Bentivegna, Se- bastiano Bernuzzi, Tanja Bode, Bernd Bruegmann, Giovanni Corvino, Roberto De Pietri, Harry Dimmelmeier, Rion Dooley, Nils Dorband, Yaakoub El Khamra, Joshua Faber, Toni Font, Joachim Frieben, Bruno Giacomazzo, Tom Goodale, Carsten Gund- lach, Ian Hawke, Scott Hawley, Ian Hinder, Sascha Husa, Sai Iyer, Thorsten Keller- mann, Andrew Knapp, Michael Koppitz, Gerd Lanferman, Frank L¨offler, Joan Mas- so, Lars Menger, Andre Merzky, Mark Miller, Philipp Moesta, Pedro Montero, Bruno Mundim, Andrea Nerozzi, Christian Ott, Ravi Paruchuri, Denis Pollney, David Radice, Thomas Radke, Christian Reisswig, Luciano Rezzolla, David Rideout, Matei Ripeanu, Erik Schnetter, Bernard Schutz, Ed Seidel, Eric Seidel, John Shalf, Ulrich Sperhake, Nikolaos Stergioulas, Wai-Mo Suen, Bela Szilagyi, Ryoji Takahashi, Michael Thomas, Jonathan Thornburg, Malcolm Tobias, Aaryn Tonita, Paul Walker, Mew-Bing Wan, Barry Wardell, Miguel Zilh ao, Burkhard Zink, and Yosef Zlochower. The Einstein Toolkit, October 2019. To find out more, visit http://www.einsteintoolkit.org.John D. Barrow, Roy Maartens, and Christos G. Tsagas. Cosmology with inhomogeneous magnetic fields. Physics Reports, 449(6):131–171, 2007.Eloisa Bentivegna and Marco Bruni. Effects of nonlinear inhomogeneity on the cosmic expansion with numerical relativity. Phys. Rev. Lett., 116:251302, Jun 2016.Gabriele Bozzola. kuibit: Analyzing einstein toolkit simulations with python. Journal of Open Source Software, 6(60):3099, 2021.N. Bucciantini and L. Del Zanna. A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD. Monthly Notices of the Royal Astronomical Society, 428(1):71–85, 10 2012.Vitor Cardoso, Leonardo Gualtieri, Carlos Herdeiro, and Ulrich Sperhake. Exploring new physics frontiers through numerical relativity. Living Reviews in Relativity, (1), 2015.L Del Zanna and N Bucciantini. Covariant and 3 + 1 equations for dynamo-chiral general relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 479(1):657–666, 06 2018.E. Dormy and A.M. (Eds.) Soward. Mathematical Aspects of Natural Dynamos. Chapman and Hall/CRC, 2007.Ruth Durrer. Cosmic magnetic fields and the cmb. New Astronomy Reviews, 51(3):275–280, 2007. Francesco Melchiorri: Scientist, Pioneer, Mentor.Ruth Durrer and Andrii Neronov. Cosmological magnetic fields: Their generation, evolution and observation. The Astronomy and Astrophysics Review, 21, 03 2013.Ruth Durrer and Norbert Straumann. Some applications of the 3+1 formalism of general relativity. Helv. Phys. Acta, 61:1027, 01 1988.David Garfinkle and Lawrence Mead. Cosmological initial data for numerical relativity. Phys. Rev. D, 102:044022, Aug 2020.Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Masso, Thomas Radke, Harry Seidel, and John Shalf. The cactus framework and toolkit: Design and applications. volume 2565, 06 2002.´E. Gourgoulhon. 3+1 Formalism in General Relativity: Bases of Numerical Relativity. Lecture Notes in Physics. Springer Berlin Heidelberg, 2012.Frank Loffler et al. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics. Class. Quant. Grav., 29:115001, 2012.Chung-Pei Ma and Edmund Bertschinger. Cosmological perturbation theory in the synchronous and conformal newtonian gauges. The Astrophysical Journal, 455:7, Dec 1995.Bishop Mongwane. Problems in Cosmology and Numerical Relativity. PhD thesis, Parma U., 2017G. Montani, M.V. Battisti, and R. Benini. Primordial Cosmology. World Scientific, 2011Philipp M¨osta, Bruno C Mundim, Joshua A Faber, Roland Haas, Scott C Noble, Tanja Bode, Frank L¨offler, Christian D Ott, Christian Reisswig, and Erik Schnetter. GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the einstein toolkit. Classical and Quantum Gravity, 31(1):015005, nov 2013.Kouji Nakamura. General formulation of general-relativistic higher-order gauge- invariant perturbation theory. Classical and Quantum Gravity, 28(12):122001, may 2011Cyril Pitrou, Xavier Roy, and Obinna Umeh. xpand: An algorithm for perturbing homogeneous cosmologies. Classical and Quantum Gravity, 30(16):165002, Jul 2013Fran¸cois Rincon. Dynamo theories. Journal of Plasma Physics, 85(4):205850401, 2019.Kandaswamy Subramanian. The origin, evolution and signatures of primordial mag- netic fields. Reports on Progress in Physics, 79(7):076901, may 2016.Christos G. Tsagas and Roy Maartens. Magnetized cosmological perturbations. Phys. Rev. D, 61:083519, Mar 2000.Tanmay Vachaspati. Progress on cosmological magnetic fields. Reports on Progress in Physics, 84(7):074901, jun 2021.Miguel Zilh˜ao and Frank L¨offler. An introduction to the einstein toolkit. International Journal of Modern Physics A, 28(22n23):1340014, 2013.Space sciencesCiencias del espacioCampos magnéticosMagnetic fieldsCosmologíaRelatividad NuméricaCampos magnéticos cosmológicosEinstein ToolkitFLRWSolverCosmologyNumerical RelativityCosmological magnetic fieldsMinisterio de Ciencia y TecnologíaLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83313/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1014240747.pdf1014240747.pdfTesis de Maestría en Ciencias - Astonomíaapplication/pdf1058067https://repositorio.unal.edu.co/bitstream/unal/83313/4/1014240747.pdfc02e05a682f211d25db6ceb8a418d5beMD54unal/83313oai:repositorio.unal.edu.co:unal/833132023-02-06 10:33:26.063Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=